
��������	
		������	
		���������	
	�����	
		������	
		������	
		��������	
		��������	
		����	
		���������

HMS Industrial Networks
Mailing address: Box 4126, 300 04 Halmstad, Sweden
Visiting address: Stationsgatan 37, Halmstad, Sweden

Connecting DevicesTM

E-mail: info@hms-networks.com
Web: www.anybus.com

Tutorial

Anybus® CompactCom Implementation
Doc.Id. HMSI-168-106

Rev. 1.01

Important User Information

This document is intended to promote a good understanding of how to develop an application using Anybus Com-
pactCom. The document describes functions and actions that are common to all products in the Anybus Compact-
Com family. For information regarding the specific Anybus CompactCom modules, consult the Anybus
CompactCom Network Interface Appendices.

Please note that the reader of this document is expected to be familiar with high level software design, and com-
munication systems in general. The document describes a simple application using an Anybus CompactCom
module. For more advanced applications, please consult the Anybus CompactCom Software Design Guide and
the respective network interface appendices.

Liability

Every care has been taken in the preparation of this document. Please inform HMS Industrial Networks AB of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks AB, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that
may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards.

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot
assume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights

HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications
in the US and other countries.

Trademark Acknowledgements

Anybus ® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their
respective holders.

Warning: This is a class A product. In a domestic environment this product may cause radio interference in
which case the user may be required to take adequate measures.

ESD Note: This product contains ESD (Electrostatic Discharge) sensitive parts that may be damaged if ESD
control procedures are not followed. Static control precautions are required when handling the prod-
uct. Failure to observe this may cause damage to the product.

Anybus CompactCom Tutorial

Rev 1.01

Copyright© HMS Industrial Networks AB

Mar 2013 Doc Id HMSI-168-106

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Preface About This Document ..1

Related Documents.. 1

Document History ... 1

Conventions & Terminology.. 2
Definitions ... 2

Sales and Support ... 3

Chapter 1 How to use this Document .. 4

Chapter 2 Introduction to the Anybus CompactCom .. 5

Chapter 3 Tutorial ... 6

Introduction .. 6

Connect the Anybus CompactCom Module.. 7
Host Interface Signals .. 7

Set Operating Mode... 9

Telegrams .. 10

Parallel Interface Mode ... 11
Initial Handshake ... 11
DPRAM .. 12
Sending Telegrams - Parallel Communication ... 14

Serial Interface Mode... 19
Initial Handshake ... 19
Serial Telegram Frame... 20
Sending Telegrams - Serial Communication .. 22

Setup continued.. 29
Anybus CompactCom State Machine... 29
Accessing the Anybus CompactCom... 30
 Mapping ADIs .. 31
Setup Complete .. 33

Network Initialization.. 34

Further Configuration and Certification... 35

Table of Contents

Table of Contents

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Chapter 4 Resources ..36

Categorization of Functionality.. 36
Basic.. 36
Extended ... 36
Advanced... 36

Design Guides .. 37
Anybus CompactCom Software Design Guide.. 37
Anybus CompactCom Hardware Design Guide ... 37

Network Interface Appendices .. 37

Drivers ... 37

Starter Kit .. 37

Drive Profiles .. 38

Appendix A Trace, DeviceNet ..39

Appendix B Trace, Profibus DP-V1 ..45

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Preface

P. About This Document

For more information, documentation etc., please visit the HMS website, www.anybus.com.

P.1 Related Documents

In the tutorial you will find references to these documents in the margins, showing the abbreviation of
the document name within a frame in the right margin. All documents are available at www.anybus.com.

P.2 Document History

Summary of Recent Changes (1.00 ... 1.01)

Revision List

Document Abbr. Doc. Id. Author

Anybus CompactCom Software Design Guide SWDG HMSI-168-97 HMS

Anybus CompactCom Hardware Design Guide HWDG HMSI-168-31 HMS

Anybus CompactCom Standard Driver Implementation Guide SDRV SCM-1200-043 HMS

Anybus CompactCom Lite Driver Implementation Guide LDRV SCM-1200-042 HMS

Anybus CompactCom Network Interface Appendices “network” APP. See www.anybus.com HMS

Change Page(s)

Corrected example 25

Updated support information 3

Added information on reference documents 4

Corrected information in table on how to connect unused pins 8

Revision Date Author(s) Chapter(s) Description

1.00 2010-04-19 KeL - First official release

1.01 2013-03-04 KeL P, 1, 3 Minor updates

About This Document 2

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

P.3 Conventions & Terminology

The following conventions are used throughout this manual:

• Numbered lists provide sequential steps

• Bulleted lists provide information, not procedural steps

• The terms ‘Anybus’ or ‘module’ refers to the Anybus CompactCom module.

• The terms ‘host’ or ‘host application’ refers to the device that hosts the Anybus module.

• Hexadecimal values are normally written in the format NNNNh, where NNNN is the hexadec-
imal value. When a hexadecimal value is present in code or in pseudo code in an example, the
value is written in the format 0xnnnn, where nnnn is the hexadecimal value.

P.3.1 Definitions

Word Explanation

Process data Fast cyclic network I/O data

Acyclic data Data that is updated on demand, e.g. application parameters

ADI Application Data Instance. An ADI is an application variable that is accessible for the updating
of acyclic data or for the mapping of process data, exactly what is defined by the application.

ABCC Anybus CompactCom

object model See “Accessing the Anybus CompactCom” on page 30

object

instance

attribute

telegram See “Telegrams” on page 10

message

About This Document 3

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

P.4 Sales and Support

Sales Support

HMS Sweden (Head Office)

E-mail: sales@hms-networks.com E-mail: support@hms-networks.com

Phone: +46 (0) 35 - 17 29 56 Phone: +46 (0) 35 - 17 29 20

Fax: +46 (0) 35 - 17 29 09 Fax: +46 (0) 35 - 17 29 09

Online: www.anybus.com Online: www.anybus.com

HMS North America

E-mail: us-sales@hms-networks.com E-mail: us-support@hms-networks.com

Phone: +1-312 - 829 - 0601 Phone: +1-312-829-0601

Toll Free: +1-888-8-Anybus Toll Free: +1-888-8-Anybus

Fax: +1-312-629-2869 Fax: +1-312-629-2869

Online: www.anybus.com Online: www.anybus.com

HMS Germany

E-mail: ge-sales@hms-networks.com E-mail: ge-support@hms-networks.com

Phone: +49 (0) 721-989777-000 Phone: +49 (0) 721-989777-300

Fax: +49 (0) 721-989777-010 Fax: +49 (0) 721-989777-010

Online: www.anybus.de Online: www.anybus.de

HMS Japan

E-mail: jp-sales@hms-networks.com E-mail: jp-support@hms-networks.com

Phone: +81 (0) 45-478-5340 Phone: +81 (0) 45-478-5340

Fax: +81 (0) 45-476-0315 Fax: +81 (0) 45-476-0315

Online: www.anybus.jp Online: www.anybus.jp

HMS China

E-mail: cn-sales@hms-networks.com E-mail: cn-support@hms-networks.com

Phone: +86 (0) 10-8532-3183 Phone: +86 (0) 10-8532-3023

Fax: +86 (0) 10-8532-3209 Fax: +86 (0) 10-8532-3209

Online: www.anybus.cn Online: www.anybus.cn

HMS Italy

E-mail: it-sales@hms-networks.com E-mail: it-support@hms-networks.com

Phone: +39 039 59662 27 Phone: +39 039 59662 27

Fax: +39 039 59662 31 Fax: +39 039 59662 31

Online: www.anybus.it Online: www.anybus.it

HMS France

E-mail: fr-sales@hms-networks.com E-mail: fr-support@hms-networks.com

Phone: +33 (0) 3 68 368 034 Phone: +33 (0) 3 68 368 033

Fax: +33 (0) 3 68 368 031 Fax: +33 (0) 3 68 368 031

Online: www.anybus.fr Online: www.anybus.fr

HMS UK & Eire

E-mail: uk-sales@hms-networks.com E-mail: support@hms-networks.com

Phone: +44 (0) 1926 405599 Phone: +46 (0) 35 - 17 29 20

Fax: +44 (0) 1926 405522 Fax: +46 (0) 35 - 17 29 09

Online: www.anybus.co.uk Online: www.anybus.com

HMS Denmark

E-mail: dk-sales@hms-networks.com E-mail: support@hms-networks.com

Phone: +45 (0) 35 38 29 00 Phone: +46 (0) 35 - 17 29 20

Fax: +46 (0) 35 17 29 09 Fax: +46 (0) 35 - 17 29 09

Online: www.anybus.com Online: www.anybus.com

HMS India

E-mail: in-sales@hms-networks.com E-mail: in-support@hms-networks.com

Phone: +91 (0) 20 40111201 Phone: +91 (0) 20 40111201

Fax: +91 (0) 20 40111105 Fax: +91 (0) 20 40111105

Online: www.anybus.com Online: www.anybus.com

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Chapter 1

1. How to use this Document

The purpose of this tutorial is to help the user to a better understanding of the Anybus CompactCom
concept and how to configure the module, by discussing a simple example application.

When to Read and Use the Document

Whether you already have decided to develop an application with the Anybus CompactCom or not, you
can read this tutorial as a first introduction on how to communicate with the module. It will walk you
through examples to show you how to connect the module and how to set up the communication. It is
recommended to perform this “in real life” to get a deeper understanding of how the module is func-
tioning.

This tutorial does not cover any network specific issues. Each network interface appendix includes a
short tutorial, that will help you prepare an application with the necessary elements for the certification
of your product.

The Anybus CompactCom concept is further described in the Anybus CompactCom Software Design
Guide (SWDG) and the Anybus CompactCom Hardware Design Guide (HWDG).

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Chapter 2

2. Introduction to the Anybus CompactCom

Background

Today there is no single standard for industrial communication. Several different industrial networks ex-
ist, using different protocols for exchanging information with devices connected to the network. The
growing use and fragmentation of industrial Ethernet and fieldbus communication makes it even more
difficult to decide which networks to support when you release a new product. To exchange one net-
work or one device for another may be expensive and time consuming, not the least in development
efforts and in extra equipment.

Anybus CompactCom

With Anybus CompactCom you have full flexibility. The different modules in the Anybus CompactCom
family are designed to make it possible for a user to easily connect a device to any industrial network.
The developing efforts when changing network is minimal i.e. an application developed for one net-
work, is easy to move to another network.

Each module in the Anybus CompactCom family is dedicated to a specific industrial network. The mod-
ule includes network specific firmware, that makes any data exchanged on the network available to the
host application. The host application will thereby act as a device on the network through the module.

Regardless of network, the software interface that meets the host application and the developer is the
same. The interface is structured in an object oriented manner. Each object is centred around a group
of related information and services. This provides an efficient way of categorizing and addressing infor-
mation.

The firmware in the Anybus CompactCom module typically controls the behavior of the module and its
actions on the network. The host application is accessed from the Anybus CompactCom module, and
the host application must be designed to handle these requests appropriately. This handling, though, is
to a great extent independent of which industrial network the module is dedicated to. Ideally you should
be able to exchange any module for any other in the Anybus CompactCom family, and the application
should still be able to run without any changes to the host application firmware.

By using Anybus CompactCom you can save on your development costs, up to 70%. You will achieve
maximum flexibility by getting access to all common fieldbuses and Ethernet networks. This gives you
fast access to the market with very competitive network connectivity solutions.

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Chapter 3

3. Tutorial

3.1 Introduction

To implement an application, follow these steps:

1. Connect the Anybus CompactCom module, see
“Connect the Anybus CompactCom Module” on
page 7

2. Set operating mode (parallel or serial, baud rate),
see “Set Operating Mode” on page 9

3. Verify initial handshaking functionality, see “Ini-
tial Handshake” on page 11 (parallel mode) or page 19
(serial mode).

4. Verify sending/receiving telegrams, see “Sending
Telegrams - Parallel Communication” on page 14 or
“Sending Telegrams - Serial Communication” on page
22

5. Finalize setup, see “Setup continued” on page 29.

6. Set necessary network specific parameters, see re-
spective network interface appendix.

Step 1 - 5 are described below. The text presents examples
and descriptions of functionality and characteristics of the
Anybus CompactCom concept and modules.

Step 6 is described in the respective Network Interface
Appendices.

To illustrate the procedure, two example traces of com-
munication have been included, see appendices “Trace,
DeviceNet” on page 39 and “Trace, Profibus DP-V1” on
page 45.

1. Connect
module

2. Set
operating

mode

3. Initial
handshake

4. Send and
receive

telegrams

5. Continue
 and finalize

setup

6. Set network
parameters

Start

Module
ready

Tutorial 7

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.2 Connect the Anybus CompactCom Module

If you use the Anybus CompactCom Starter Kit,
you can go straight to “Serial Interface Mode” on
page 19. Please note that the starter kit does not al-
low use of the parallel mode.

3.2.1 Host Interface Signals

The Anybus CompactCom host inter-
face uses a 50 pin CompactFlash™ style
connector.

Note 1: The host interface is not pin compatible with the CompactFlash™ standard.

Note 2: The interface is not hot-swap capable. The power must be turned off before the module is at-
tached or detached. Failure to observe this may damage the host product and/or the Anybus Compact-
Com module.

1. Connect
module

2. Set
operating

Start

25
50

1
26

MD
1

A1 A3 A5 A7 A9 A1
1

A1
3

D6 D4 D2 D0 VD
D

VS
S

OM
1

CE IR
Q

RE
SE

T
GO

P0
GI

P0
LE

D2
B

LE
D1

B
Tx MI

1
VS

S

VS
S A0 A2 A4 A6 A8 A1
0

A1
2 D7 D5 D3 D1 VD
D

VS
S

OM
0

OM
2

R/
W OE

GO
P1

GI
P1

LE
D2

A
LE

D1
A Rx MI
0

MD
0

HWDG

Tutorial 8

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Each signal presented in the table below is described in detail in the Anybus CompactCom Hardware
Design Guide.

Note 1: For mechanical properties, measurements etc. see Appendix B “Mechanical Specification” in
Hardware Design Guide.

Note 2: Connect either the parallel interface OR the serial interface to the host application. The interface
not used must be connected as indicated in the table.

Note 3: None of the host interface signals are 5V tolerant.

Position Signal Type Function
How to connect for the tutorial
example

36, 11, 35 OM[0...2] I Operation Mode See “Set Operating Mode” on
page 9

27, 2 MI[0...1] O Module Identification Leave unconnected

8 RESET I Reset Input, active low Connect to a host application con-
trollable output

26, 25 MD[0...1] O Module Detection Leave unconnected

14, 39, 15, 40, 16, 41, 17, 42 D[0...7] BI Parallel Interface, active if
set by the Operation Mode
pins

Tie to VSS when unused

49, 24, 48, 23, 47, 22, 46, 21,
45, 20, 44

A[0...10] I Tie to VSS when unused

19, 43, 18 A[11...13] I Tie to VDD when unused

10 CE I Tie to VDD when unused

33 OE I Tie to VDD when unused

34 R/W I Tie to VDD when unused

9 IRQ O Leave unconnected if unused

28 Rx I Serial Interface, active if
set by the Operation Mode
pins

Tie to VDD when unused

3 Tx O Leave unconnected if unused

30 LED2A O Network Status LED Out-
puts

Leave unconnected

29 LED1A O

5 LED2B O

4 LED1B O

6, 31 GIP[0...1] I General Purpose I/O Tie to VSS

7, 32 GOP[0...1] O Leave unconnected

13, 38 VDD PWR Power Supply 3.3 V

1, 12, 37, 50 VSS PWR Ground Ground

 I = Input, CMOS (3.3V)
 O = Output, CMOS (3.3V)
 BI = Bidirectional, Tristate
 P = Power supply inputs

Tutorial 9

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.3 Set Operating Mode

Following the flowchart on page 6, choose either parallel
mode or serial mode as shown in the table below.

The inputs OM2, OM1, and OM0 select which interface
that should be used to exchange data (parallel or serial)
and, if the serial interface option is used, the operating
baud rate. The state of these signals is sampled once dur-
ing startup, i.e. any change requires a reset in order to have
effect.

Note 1: VDD, VSS and the state of the operation mode inputs must be stable prior to releasing the RE-
SET signal. Failure to observe this may result in faulty or unexpected behavior.

Note 2: If you use the Anybus CompactCom Starter Kit, which includes the Anybus CompactCom se-
rial adapter, the parallel mode is not available.

Operating Mode Setting

Parallel interface State Serial interface State OM2 OM1 OM0

Enabled (disabled) LOW LOW LOW

(disabled) Enabled, baud rate: 19.2 kbps LOW LOW HIGH

Enabled, baud rate: 57.6 kbps LOW HIGH LOW

Enabled, baud rate: 115.2 kbps LOW HIGH HIGH

Enabled, baud rate: 625 kbps HIGH LOW LOW

 LOW = VIL

 HIGH = VIH

module

2. Set
operating

mode

3. Initial
h d h k

SWDG

Tutorial 10

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.4 Telegrams

The hardware setup of the module is finished and the rest of the tutorial will describe the setup of the
communication between the host application and the Anybus CompactCom module and the configura-
tion of the module.

Communication with the Anybus CompactCom module is handled through telegrams.These telegrams
have a well defined format, where each telegram always include at least control or status information.
They are sent in a ping-pong protocol, i.e. the application sends a telegram, including at least control
information, to the module and waits for a telegram in return before it sends the next telegram.The re-
turn telegram always includes at least status information.

The control and status information is structured in registers, and dedicated bits, CTRL_T in the control
register and STAT_T in the status register, are used to indicate need of retransmission and to make poll-
ing applications feasible.1

All telegrams, whether in parallel or serial mode, have dedicated sections for control/status information
and message data. Once the module is up and running, there is also a section for process data. Telegrams,
registers and messages will be described further later in this chapter.

The user can define a maximum time for an expected response, yielding a time out exception if the re-
sponse time is too long. For more information see “Anybus CompactCom Software Design Guide”,
chapter three, sections “Anybus Watchdog” and “Application Watchdog”.

1. See descriptions of these bits and registers on page 13 for parallel mode and on page 20 for serial mode.

Host Application Anybus Module

Telegram (CTRL_T=0)

Telegram (STAT_T=0)

Telegram (CTRL_T=1)

Telegram (STAT_T=1)

Telegram (CTRL_T=0)

Telegram (STAT_T=0)

Expected CTRL_T=1

Expected CTRL_T=0

Expected CTRL_T=0

OK, send next

OK, send next

OK, send next

SWDG

Tutorial 11

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.5 Parallel Interface Mode

For serial interface mode, please proceed to section 3.6 on page 19.

3.5.1 Initial Handshake

The purpose of the initial handshake is to make sure that
the Anybus CompactCom module is ready to communi-
cate. When done, the module will enter the SETUP-state.

The internal status register, see page 13, is cleared at start-
up, which is essential for a correct setup. The host appli-
cation must wait at least 1.5 s after reset or power up, to
be sure that a correct reading of the status register can be
done. Any interrupts detected during this period must be
ignored. After this initial handshaking the module has en-
tered SETUP state and can be configured. The host appli-
cation can either react on interrupts or poll the internal
Status Register for an indication that information is avail-
able.

operating
mode

3. Initial
handshake

4. Send and
receive

Min. 1.5s

Wait & Ignore Interrupts If applicable, act on / enable Interrupts
(Anybus enters ‘SETUP’-state)

Release
Reset

Read
Status Register

Tutorial 12

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.5.2 DPRAM

After the initial handshake has been performed, the host application can start to communicate with the
Anybus CompactCom module with telegrams. This section gives a short introduction to the means of
communication used.

The communication between the application and Anybus CompactCom module in parallel mode is per-
formed in the internal DPRAM (dual port memory). The host application can access and address this
memory just as any memory in an embedded system. When a telegram is sent from the host application,
the contents are written by the host application to specific areas in the DPRAM. When the host appli-
cation receives a telegram, specific areas of the memory hold the contents of the telegram for the host
application to read.

The DPRAM memory includes areas for the Control and Status Registers (used to control the commu-
nication between the host application and the module), read and write areas for Messages, and read and
write areas for Process Data. The addresses for the different areas are fixed. A telegram sent by the host
application to the Anybus CompactCom always contain data to be written to the Control Register in the
DPRAM. A telegram sent the other way, from the Anybus CompactCom to the host application, always
replicates the Status Register in the DPRAM. Depending on the contents of these registers, the telegram
may contain Messages and/or Process Data. The Process Data Read and Write Areas are not used dur-
ing setup and configuration.

Memory Map

The address offset specified below is relative to the base address of the module, i.e. from the beginning
of the area in the host application memory space where the parallel interface has been implemented.

IMPORTANT: C-programmers are reminded to declare the entire shared memory area as volatile.

Address Offset: Area: Access: Notes:

0000h... 37FFh
(reserved) - (reserved for future use)

3800h... 38FFh Process Data Write Area Write Only Not used during setup and configuration.
See “Process Data Subfield” in SWDG

3900h... 39FFh Process Data Read Area Read Only Not used during setup and configuration.
See “Process Data Subfield” in SWDG

3A00h... 3AFFh (reserved) -

3B00h... 3C06h Message Write Area Write Only Used for messages to the module from
the host application.
See “Object Messaging” in SWDG

3C07h... 3CFFh (reserved) -

3D00h... 3E06h Message Read Area Read Only Used for messages from the module to
the host application.
See “Object Messaging” in SWDG

3E07h... 3FFDh
(reserved) -

3FFEh Control Register Write Only See “Control Register” on page 13

3FFFh Status Register Read Only See “Status Register” on page 13

SWDG

Tutorial 13

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Control Register (Read/Write)

The Control Register controls the communication with the Anybus CompactCom module. In this tuto-
rial only bits 5 (CTRL_R), 6 (CTRL_M) and 7 (CTRL_T) are used. The other bits can be ignored for
the time being. For a complete description, see Anybus CompactCom Software Design Guide.

Status Register (Read Only)

This register holds the current status of the Anybus CompactCom module. At this stage in the tutorial
we will only use bits 5 (STAT_R), bit 6 (STAT_M) and bit 7 (STAT_T). The remaining bits can be ig-
nored for the time being. For a complete description see Anybus CompactCom Software Design Guide.

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

CTRL_T CTRL_M CTRL_R CTRL_AUX - - - -

Bit Description

CTRL_T The host application shall toggle this bit when sending a new telegram. CTRL_T must be set to “1” in the
initial telegram sent by the application to the module.

CTRL_M Set if the telegram contains message data.

CTRL_R If set, the host application is ready to receive a new command.

CTRL_AUX Auxiliary bit

- (reserved, set to zero)

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

STAT_T STAT_M STAT_R STAT_AUX SUP S2 S1 S0

Bit Description

STAT_T When the Anybus CompactCom module issues new telegrams, this bit will be set to the same value as
CTRL_T in the last telegram received from the host application.

STAT_M Set if the telegram contains message data.

STAT_R If set, the Anybus CompactCom module is ready to receive a new command.

STAT_AUX Auxiliary bit

SUP Value:Meaning:a

 0: Anybus CompactCom module is not supervised.
 1: Anybus CompactCom module is supervised by another network device

a. This bit is not used in all networks. Please consult the appropriate appendix for explanation

S[0... 2] These bits indicates the current state of the Anybus CompactCom module

S2 S1 S0 Anybus CompactCom State

0 0 0 SETUP

0 0 1 NW_INIT

0 1 0 WAIT_PROCESS

0 1 1 IDLE

1 0 0 PROCESS_ACTIVE

1 0 1 ERROR

1 1 0 (reserved)

1 1 1 EXCEPTION

SWDG

SWDG

Tutorial 14

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.5.3 Sending Telegrams - Parallel Communication

The examples in this section show what the host applica-
tion writes to and reads from the different areas in the
DPRAM, illustrating the steps when the application sends
and receives telegrams. For example, “W Control Reg
0x80” means that the host application writes the hexadec-
imal value 80 to the control register area of the DPRAM.
Bit 7 of the register is set to 1, the rest of the register is all
zeroes.

Sending Telegrams (Parallel)

Once the initial handshaking is done, see page 11,
the host application can start to send telegrams to
the module. That is, the host applications starts
writing to the control register area in the
DPRAM.

The example shows the underlying telegram ping-
pong protocol. Each telegram to the module
from the host application generates a response
telegram from the module to the host application.

Example:

W Control Reg 0x80
R Status Reg 0x80
W Control Reg 0x00
R Status Reg 0x00
W Control Reg 0x80
R Status Reg 0x80
W Control Reg 0x00
R Status Reg 0x00
etc.

During parallel communication, the host applica-
tion sends a telegram by toggling CTRL_T in the
Control Register in the DPRAM. When this reg-
ister is written an interrupt is generated in the An-
ybus CompactCom module, and the module
checks the CTRL_T bit to see if a new telegram is
available

3. Initial
handshake

4. Send and
receive

telegrams

5. Continue
d fi li

Toggle CTRL_T

Send Telegram

Tutorial 15

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

The Anybus CompactCom module checks its sta-
tus, and when it is satisfied that it has performed
all actions possible at the time being, it toggles the
STAT_T bit in Status register to equal CTRL_T.
A valid response telegram is available for the host
application.

The host application keeps checking the STAT_T
bit. When this bit equals CTRL_T at two consec-
utive readings, it has received a response tele-
gram. Two consecutive readings are performed to
be sure that the value of the STAT_T bit is stable.

Telegrams are sent and received like this, in a
ping-pong protocol, as long as the Anybus Com-
pactCom module is communicating normally.

The continuous exchange of telegrams is estab-
lished. The host application waits for a signal to send a mes-
sage to the module.

Example:

W Control Reg 0x80
R Status Reg 0x80
W Control Reg 0x00
R Status Reg 0x00
W Control Reg 0x80
R Status Reg 0xa0

In the last line of the example above, the status register has
not only had its STAT_T bit toggled to equal CTRL_T, but
also the STAT_R bit set to 1. This indicates that the module
is ready to accept a command from the application. In the
next telegram the application sends, it can add message data
to the telegram. It is not necessary or mandatory to send a
message at this stage, but if you do, it has to be a command.

Please note that the number of telegrams exchanged, before
the module is ready to accept a message, can vary.

Receive Telegram

STAT_T =
CTRL_T No

Yes

Telegram received

STAT_T =
CTRL_T No

Yes

Send Command

STAT_R = 1?

Send Message

Yes

No

Tutorial 16

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Sending a Message to the Anybus CompactCom Module (Parallel)

To check that the communication is working, a message in-
cluding a command can be sent to the module. For example,
a message is sent to the module to return its module type, as
in this case.

Example:

W Control Reg 0x80
R Status Reg 0xa0
W Message Write Area 0x01, 0x01, 0x01,

0x00, 0x41,0x00, 0x01, 0x00
W Control Reg 0x40
R Status Reg 0x60
R Message Read Area 0x01, 0x01, 0x01,

0x00, 0x01,0x02, 0x01, 0x00, 0x01, 0x04

Note: Please refer to the table on page 17 for an explanation
of the format and the contents of the message write and read
areas in the DPRAM.

The application writes a message to the message write area in
the DPRAM, see the memory map on page 12. Once this is
done, it writes to the control register, toggling the CTRL_T
bit AND setting the CTRL_M bit simultaneously. Each time
anything is written to this register, an interrupt is generated in
the Anybus module, so it is important that all bits in the reg-
ister are written at the same time. It is equally important that
the application has finished writing the message write area
prior to writing to the Control Register.

 Receiving a Message from the Anybus CompactCom Module (Parallel)

The module reads the telegram the host application has sent,
and returns the module type.

Example (repeated):

W Message Write Area 0x01, 0x01, 0x01,
0x00, 0x41,0x00, 0x01, 0x00
W Control Reg 0x40
R Status Reg 0x60
R Message Read Area 0x01, 0x01, 0x01,
0x00, 0x01,0x02, 0x01, 0x00, 0x01, 0x04

When the application has finished sending its telegram by
writing to the control register, an interrupt is generated and
the module detects the arrival of the telegram including the
message. It reads the message write area in the DPRAM and
processes the command. (For a description of the contents of
the message write and read areas, see the table on page 17).

The module processes the data and then writes its response
to the message read area. This done, it writes to the status reg-
ister, toggling the STAT_T bit to equal CTRL_T bit and set-
ting STAT_M to one to indicate that a message is available in
the message read area.

The application detects that STAT_T has changed and that
STAT_M is set to 1. It will then have to fetch the message in
the DPRAM message read area, before the next telegram is
sent.

Send message

Write message data

Send telegram with
CTRL_M = 1

Receive message

STAT_M =1?

Read message data

Receive telegram

Yes

No

Tutorial 17

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Please note that after writing to the control register, the application is not allowed to read the contents
of the DPRAM, except for the status register, until the Anybus CompactCom module has finished up-
dating the status register. This can be detected by the application either by polling the status register until
STAT_T1 equals CTRL_T or by using an interrupt signal (IRQ) from the Anybus CompactCom mod-
ule.

The contents of the messages in the telegrams are explained in the tables below. For a complete descrip-
tion of the message layout, please refer to the Software Design Guide, chapter 5

Command:.

Response:

Note: As stated above, telegram transmission is triggered via the Control Register, and the reception of
a new telegram is indicated in the Status Register. This means that the Process Data and Message sub-
fields must be written prior to accessing the Control Register. Do not use bit handling or other read-mod-
ify-write instructions directly on this register, since the module may interpret this as multiple accesses.
All bit handling etc. must instead be performed in a temporary register, and after manipulation be written
back. Also, while waiting for reception of a telegram, any access to the parallel interface other than poll-
ing of the Status Register must be avoided.

1. To ensure valid results when polling the Status Register, it is required to use a read-until-two-consecutive-readings-agree procedure,
i.e. the same value is read at two consecutive readings.

Area offset Contentsa of request in Write
Message Area

a. All data is little endian.

Description (request)b

b. Object messaging is used when addressing the objects in the Anybus CompactCom module and in the host appli-
cation. See “Accessing the Anybus CompactCom” on page 30 for more information.

0 00h Source ID

1 01h The Anybus object in the Anybus CompactCom module.

2 01h (lsb) Instance 1

3 00h (msb)

4 41h Message type: command (request to return module type)

5 00h Size of Message Data (0 bytes)

6 01h Attribute 1 (Module type)

7 00h (not used)

Area offset Contentsa of response in
Read Message Area

a. All data is little endian.

Description (response)

0 00h Source IDb

b. To keep track of which response belongs to which request, each message is tagged with a Source ID. When issu-
ing commands, the host application may choose Source ID arbitrarily, and the response from the module will have
the same Source ID. When sending a response to a command from the module, the host application should
always copy the Source ID, the object number and the instance number of the message with the original com-
mand. The command is also copied, but the C bit is set to 0.

1 01h The Anybus object in the Anybus CompactCom module.

2 01h (lsb) Instance 1

3 00h (msb)

4 01h Message type: response (the command is copied, with the C bit set to 0)

5 02h Size of Message Data (2 bytes)

6 01h Attribute 1 (Module type)

7 00h (not used)

8-9 01h, 04h Message data: module type (0401h = Anybus CompactCom)

SWDG

Tutorial 18

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Parallel Telegram Handling, Summary

On the parallel interface, transmission and reception is managed through the Handshake Registers, i.e.
the Status Register and the Control Register.

To transmit a telegram, perform the following steps:

1. If applicable, write the Write Process Data to the Process Data Write Area (3800h...38FFh)

2. If applicable, write the message to the Message Write Area (3B00h...3C06h)

3. Update the Control Register to trigger the transmission.

Telegram reception is signalled by the STAT_T-bit in the Status Register. The host application can either
poll the Status Register cyclically to detect new telegrams, or rely on interrupt operation.

IMPORTANT:

• To ensure valid results when polling the Status Register, it is required to use a read-until-two-
consecutive-readings-agree procedure, i.e. the same value is read at two consecutive readings.

• The host application must ensure continuous ping-pong communication, so that the ABCC
module will be able to send commands as well.

• One command always results in one and only one response.

• Message responses can always be sent, regardless of the state of the CTRL_R-bit or the
STAT_R-bit.

• Several telegrams can occur before a response is sent.

• Several commands can be waiting for a response, in both directions. As long as the CTRL_R-bit
or the STAT_R-bit is set, new commands are allowed in the respective direction.

• If several commands have been sent without waiting for responses, the order of responses may
be different than the order of commands.

Please continue to “Setup continued” on page 29.

Tutorial 19

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.6 Serial Interface Mode

In this section, the same steps are described as in section 3.5, but for the serial interface mode.

3.6.1 Initial Handshake

The purpose of the initial handshake is to make sure that
the Anybus CompactCom module is ready to communi-
cate. When done, the module will enter the SETUP-state.

The internal status register, see page 21, is cleared at start-
up, which is essential for a correct setup. The host appli-
cation must thus wait at least 1.5 s after reset or power up
before it sends the first telegram to be sure that the mod-
ule is ready to receive serial data.

operating
mode

3. Initial
handshake

4. Send and
receive

Min. 1.5s

Wait... (Anybus enters ‘SETUP’-state)

Release
Reset

Send
1st Telegram

Tutorial 20

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.6.2 Serial Telegram Frame

The telegrams sent in serial mode all use the frame shown below. During SETUP, the Process Data Sub-
field is not present in the telegrams, leaving 19 bytes to be sent in each telegram.

• Handshake Register Field

This field contains the Control Register, see page 20, in telegrams sent to the Anybus Compact-
Com module, and the Status Register, see page 21, in telegrams received from the Anybus Com-
pactCom module.

• Message Subfield

This field holds the message (or message fragment) that is to be sent. To maintain throughput
for the Process Data, the message subfield is limited to 16 bytes when using the serial interface.
Longer messages are exchanged as several smaller fragments (see “ Fragmentation” in the Soft-
ware Design Guide).

• Process Data Subfield

This field contains the Write Process Data in telegrams sent to the Anybus CompactCom mod-
ule, and the Read Process Data in telegrams received from the Anybus CompactCom module.
Please note that this field does not exist when the Anybus CompactCom module is operating in
the ‘SETUP’-state.

• CRC16

This field holds a 16 bit Cyclic Redundancy Check, see “CRC Calculation” in the Software De-
sign Guide. The CRC covers the entire telegram except for the CRC itself.

Control Register (Sent)

The Control Register controls the communication with the Anybus CompactCom module. In this tuto-
rial we will only use bits 5 (CTRL_R), 6 (CTRL_M) and 7 (CTRL_T). The other bits can be ignored for
the time being. For a complete description, see Anybus CompactCom Software Design Guide.

1 byte 16 bytes Up to 256 bytes 2 bytes

Handshake
Register Field

Message
Subfield

Process Data Subfield,
not existing during SETUP

CRC16

(1st byte) Please consult the Software
Design Guide for a thorough
description of this field.

(last byte)

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

CTRL_T CTRL_M CTRL_R CTRL_AUX - - - -

Bit Description

CTRL_T The host application shall toggle this bit when sending a new telegram. CTRL_T must be set to “1” in the
initial telegram sent by the application to the module.

CTRL_M Set if the telegram contains message data.

CTRL_R If set, the host application is ready to receive a new command.

CTRL_AUX Auxiliary bit

- (reserved, set to zero)

SWDG

SWDG

SWDG

Tutorial 21

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Status Register (Received)

This register holds the current status of the Anybus CompactCom module. At this stage in the tutorial
we will only use bits 5 (STAT_R), bit 6 (STAT_M) and bit 7 (STAT_T). The remaining bits can be ig-
nored for the time being. For a complete description see Anybus CompactCom Software Design Guide.

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

STAT_T STAT_M STAT_R STAT_AUX SUP S2 S1 S0

Bit Description

STAT_T When the Anybus CompactCom module issues new telegrams, this bit will be set to the same value as
CTRL_T in the last telegram received from the host application.

STAT_M Set if the telegram contains message data.

STAT_R If set, the Anybus CompactCom module is ready to receive a new command.

STAT_AUX Auxiliary bit

SUP Value:Meaning:a

 0: Anybus CompactCom module is not supervised.
 1: Anybus CompactCom module is supervised by another network device

a. This bit is not used in all networks. Please consult the appropriate appendix for explanation

S[0... 2] These bits indicates the current state of the Anybus CompactCom module

S2 S1 S0 Anybus CompactCom State

0 0 0 SETUP

0 0 1 NW_INIT

0 1 0 WAIT_PROCESS

0 1 1 IDLE

1 0 0 PROCESS_ACTIVE

1 0 1 ERROR

1 1 0 (reserved)

1 1 1 EXCEPTION

SWDG

Tutorial 22

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.6.3 Sending Telegrams - Serial Communication

The examples in this section show what is sent from the
host application to the Anybus CompactCom module and
what is received by the application from the module, illus-
trating the steps when using serial communication.

All telegrams sent in serial mode contains 19 bytes, even
when not all fields are needed. The fields not used, are
filled with zeroes. The examples thus show the total con-
tent of each telegram.

3. Initial
handshake

4. Send and
receive

telegrams

5. Continue
d fi li

Tutorial 23

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Sending Telegrams (Serial)

Once the initial handshaking is done, see page 19,
the host application can start to send telegrams to
the module.

Example:

Send: {0x80, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, bCrccHi, bCrccLo}

Receive: {0x80, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, bCrccHi, bCrccLo}

Send: {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, bCrccHi, bCrccLo}

Receive: {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, bCrccHi, bCrccLo}

Send: {0x80, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, bCrccHi, bCrccLo}

Receive: {0x80, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, bCrccHi, bCrccLo}

etc.

The application sends a telegram with the
CTRL_T bit in the Control Register set to 1. The
module sends a telegram in return, toggling the
STAT_T bit to equal CTRL_T. No data has been
sent yet, the rest of the telegram frames are emp-
ty, apart from the CRC (bCrccHi, bCrccLo)
which ends each frame.

Even though there is no information in most of
the telegram frame, a complete frame has to be
sent each time. The parts not used are filled with
zeroes.

Telegrams are sent and received like this, in a
ping-pong protocol, as long as the Anybus Com-
pactCom module is communicating normally.

Toggle CTRL_T

Send Telegram

Receive Telegram

STAT_T =
CTRL_T No

Yes

Telegram received

Tutorial 24

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

The continuous exchange of telegrams is established. The
host application waits for a signal to send a message to the
module.

Example:

Send: {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, bCrccHi, bCrccLo}

Receive: {0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, bCrccHi,
bCrccLo}

Send: {0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, bCrccHi, bCrccLo}

Receive: {0xa0, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, bCrccHi,
bCrccLo}

In the last telegram in the example above, the status register
has not only had its STAT_T bit toggled to equal CTRL_T,
but also the STAT_R bit set to 1. This indicates that the
module is ready to accept a command from the application.

In the next telegram the application sends, it can add mes-
sage data to the telegram. It is not necessary or mandatory
to send a message at this stage, but if you do, it has to be a
command.

Please note that the number of telegrams exchanged, before
the module is ready to accept a message, can vary.

Send Command

STAT_R = 1?

Send Message

Yes

No

Tutorial 25

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Sending a Message to the Anybus CompactCom Module (Serial)

To check that the communication is working, a telegram
with a message including a command can be sent from the
host application to the module. For example, a message can
be sent to the module to return its module type, as in this
case.

Example:

Send: {0x40, 0x00, 0x01, 0x01, 0x00, 0x41,
0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, bCrccHi, bCrccLo}

Receive: {0x20, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, bCrccHi,
bCrccLo}

The application sends the command in the message data
subfield in the telegram frame, see the table below. The
module acknowledges the telegram, but doesn’t take any ac-
tion yet, as it doesn’t know if all data in the message has ar-
rived.

Description of the contents of the first telegram sent:.

The layout of the message subfield, bytes 2 - 17, is described in detail in SWDG, chapter 5.

The telegram the application receives from the module in this example is empty, apart from the status
register in the first byte (20h), and the CRC in the two last bytes. The STAT_T bit is toggled to the same
value as CTRL_T. STAT_R is set, to indicate that a new command can be accepted. As a telegram frame
always has 19 bytes, the empty message subfield is filled with zeroes.

Byte no From application to modulea

a. All data is little endian.

Description (to module)b

b. Object messaging is used when addressing the objects in the Anybus CompactCom module and in the host
application. See “Accessing the Anybus CompactCom” on page 30 for more information.

1 40h Control Register, CTRL_M = 1

2 00h Source ID

3 01h The Anybus object in the Anybus CompactCom module

4 01h (lsb) Instance 1

5 00h (msb)

6 41h Message type: command (request to return module type)

7 00h Size of Message Data (0 bytes)

8 01h Attribute 1 (Module type)

9 00h (not used)

10-17 00h, 00h, 00h, 00h, 00h, 00h, 00h,
00h

(no message data)

18-19 bCrccHi, bCrccLo CRC

Send message

Write message data

Send telegram with
CTRL_M = 1

SWDG

Tutorial 26

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Receiving a Message (Serial)

The host application has sent all message data needed to
the Anybus CompactCom module, but it has to tell the
module that so is the case. This done, the module sends
a telegram that includes the response to the command
sent by the host application.

Example:

Send: {0x80, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
bCrccHi, bCrccLo}

Receive: {0xE0, 0x00, 0x01, 0x01, 0x00,
0x01, 0x02, 0x01, 0x00, 0x01, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
bCrccHi, bCrccLo}

The telegram, sent by the application, contains no mes-
sage data. This tells the module that all message data has
arrived, and it can start to process the previously arrived
command. In this example, the response from the mod-
ule is included in the next telegram, that the application
receives from the module, see table below. This may not
necessarily be the case. Several telegrams can be ex-
changed before the module has finished processing the
command and sends the response.

Description of the contents of the second telegram received by the application:

The layout of a message is described in detail in SWDG, chapter 5.

Byte no From module to applicationa

a. All data is little endian.

Description (to module/from module)

1 E0h Status Register

2 00h Source IDb

b. To keep track of which response belongs to which request, each message is tagged with a Source ID. When issu-
ing commands, the host application may choose Source ID arbitrarily, and the response from the module will have
the same Source ID. When sending a response to a command from the module, the host application should
always copy the Source ID, the object number and the instance number of the message with the original com-
mand. The command is also copied, but the C bit is set to 0.

3 01h The Anybus object in the Anybus CompactCom module/

4 01h (lsb) Instance 1

5 00h (msb)

6 01h Message type: response (the command is copied, with the C bit set to 0)

7 02h Size of Message Data (0/2 bytes)

8 01h attribute 1 (Module type)

9 00h (not used)

10-11 01h, 04h Message data: module type (0401h = Anybus CompactCom)

12-17 00h, 00h, 00h, 00h, 00h, 00h (not used)

18-19 bCrccHi, bCrccLo CRC

Receive message

STAT_M =1?

Read message data
fragment to internal buffer

Receive telegram

Yes

No

SWDG

Tutorial 27

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Number of Telegrams in Serial Communication

In serial communication, a telegram with CTRL_M = 0 (from the application) or STAT_M = 0 (from
the Anybus CompactCom module) signals that all data belonging to the message has been sent. This
implies that any message needs at least two telegrams to be delivered to the module, as well as the other
way around.

The figure below show an example of a sequence of telegrams between the host application and the An-
ybus CompactCom module. The application sends a telegram to check that the module is ready to accept
a command. The module returns a telegram where STAT_R is set to 1, indicating that it is ready to ac-
cept a command. Then the application can send a telegram with a message including a command. The
Anybus CompactCom module receives this telegram but does not process the message until it has re-
ceived a telegram with an empty message field to ensure that all of the message has been sent. The An-
ybus CompactCom processes the message and sends a response back, also finished by a telegram
including an empty message.

Each arrow in this example of ping-pong communication, indicates a telegram sent either from the ap-
plication to the Anybus CompactCom module, or the other way around.

Host Application Anybus CompactCom Module

Telegram (CTRL_T=1)

Telegram (STAT_T=1, STAT_R=1)

Telegram (CTRL_T=0, CTRL_M=1)

Telegram (STAT_T=0)

Telegram (CTRL_T=1, CTRL_M=0)

Telegram (STAT_T=1)

Expected CTRL_T=0
OK
Read message data
as CTRL_M=1
Send next

Expected CTRL_T=1
OK
Process message as
CTRL_M = 0
Send next

Expected CTRL_T=1
OK, send next.
Ready to accept command

��������	
	
OK to send command

OK, send next with
empty message,
CTRL_M=0, to indicate
that complete message
has been sent

Telegram (CTRL_T=0)

Telegram (STAT_T=0, STAT_M=1)

Telegram (CTRL_T=1)

Telegram (STAT_T=1, STAT_M=0)

OK, send next

Expected CTRL_T=0
OK,
send message (STAT_M=1)

OK,
read message data
as STAT_M=1,
send next Expected CTRL_T=1

OK, send next with
empty message,
STAT_M=0, to indicate
that complete message
has been sent

OK,
Process message as
STAT_M=0
Send next

Tutorial 28

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Serial Message Handling, Summary

On the serial interface, transmission and reception of messages are managed through the Handshake
Registers, which contents always are available in the first byte of the telegram.

To transmit a message, perform the following steps:

1. Send a telegram to the Anybus CompactCom module with a message in the message subfield of
the telegram frame and set CTRL_M = 1.

2. Wait for a telegram from the module where STAT_T equals CTRL_T

3. If the message is larger than the defined fields in the telegram frame, the message will have to be
fragmented, see “Fragmentation” in SWDG. Continue sending telegrams with message data and
CTRL_M set until all message data has been sent.

4. Send a telegram with CTRL_M = 0 to the Anybus CompactCom module to indicate that the
transmission of the message is finished.

IMPORTANT:

• The host application must ensure continuous ping-pong communication, so that the ABCC
module will be able to send commands as well.

• One command always results in one and only one response.

• Message responses can always be sent, regardless of the state of the CTRL_R-bit or the
STAT_R-bit.

• Several telegrams can occur before a response is sent.

• Several commands can be waiting for a response, in both directions. As long as the CTRL_R-bit
or the STAT_R-bit is set, new commands are allowed in the respective direction.

• If several commands have been sent without waiting for responses, the order of responses may
be different than the order of commands.

SWDG

Tutorial 29

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.7 Setup continued

In the examples in the rest of this tutorial, only the con-
tents of the Control and Status Registers, and the Message
Read and Write Areas will be presented. If serial or paral-
lel communication is used is not relevant at this level of
communication as the telegrams only act as means of
transport for messages and data according to the proto-
cols presented in the previous sections.

3.7.1 Anybus CompactCom State Machine

After the initial handshake the Anybus
CompactCom enters the SETUP state.

The host application can send telegrams to
the module, and read/receive the respons-
es. All communication to and from the
module is defined in telegrams that act as
means of transport for messages and data.1
In this section the continued setup of the
Anybus CompactCom will be described, to
show how to make the module ready for
transmitting and receiving process data.

After setup has been finished the module
will enter the NW_INIT state, where it per-
forms network related initalization tasks.
These tasks differs depending on the net-
work interface used. When this is done, the
module enters the WAIT_PROCESS state,
and is ready to take part in the communica-
tion of the selected network interface. The
state of the CompactCom module can al-
ways be decided by reading bits 0-2 in the
status register, see “Status Register (Read
Only)” on page 13, but the transitions be-
tween the states may be so fast, that you will
not be able to detect all of them.

1. No process data can be sent during the SETUP state, only message data.

telegrams

5. Continue
 and finalize

setup

6. Set network

SETUP
(00h)

WAIT_PROCESS
(02h)

PROCESS_ACTIVE
(04h)

IDLE
(03h)

EXCEPTION
(07h)

(Power up)

(From all states)

ERROR
(05h)

NW_INIT
(01h)

SWDG

Tutorial 30

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.7.2 Accessing the Anybus CompactCom

The first part of a message sent to the module, contains information to identify where the command/
request is to be sent within the module firmware.

Information and services in the module are grouped into objects, each holding information and services
that belong to or are related to each other. This provides an easy and efficient way of accessing the mod-
ule for configuration, Object Messaging. Each message is tagged with an object number and an instance
number, specifying the location of the data or setting associated with the message.

Requests from the module are of the same format, expecting the application to be designed in the same
manner, implementing objects that are similar in structure to the objects in the Anybus CompactCom
Firmware.

The host application must be able to handle all requests arriving from the module, even when the object
the request is asking for does not exist. If the module sends a message, that addresses an object that is
not implemented in the application, the application should respond with an error message. For further
information see “The Object Model” in the Anybus CompactCom Software Design Guide

There is only one object that is mandatory for the application to implement, the Application Data object,
that is used to exchange data through so called ADIs (Application Data Instances, see below). In most
applications it is recommended to implement more objects, as they may be needed for certification.
Please refer to the Network Interface Appendices.

SWDG

Tutorial 31

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.7.3 Mapping ADIs

Data is exchanged on the network through ADIs (Appli-
cation Data Instances) in the Application Data Object, re-
siding in the host application. Each ADI represents a
block of network data. An ADI is normally associated
with acyclic parameters on the network side. It may also
be mapped as Process Data. Process data is exchanged
through a dedicated data channel in the Anybus Compact-
Com host protocol, and is normally associated with fast
cyclical network I/O.

Each ADI can be tagged with a name, data type, range and
default value, which makes it easily accessible from the
network.

The exact representation of ADIs is highly network spe-
cific, so in this example we only show a simple, compara-
tively general ADI mapping. First two bytes (data type UINT16), and then one byte (data type UINT8)
are mapped to the Process Read Area. Please note, that this is only the setup of the area. The area itself
will not be accessible until setup is finished. Only the content of the message will be shown in the ex-
ample

Example:

First message to module:
{0x02, 0x03, 0x01, 0x00, 0x51, 0x04, 0x01, 0x00, 0x05, 0x01, 0x01, 0x00}

The module responds with:
{0x02, 0x03, 0x01, 0x00, 0x11, 0x01, 0x01, 0x00, 0x00}

Second message to module:
{0x03, 0x03, 0x01, 0x00, 0x51, 0x04, 0x02, 0x00, 0x04, 0x01, 0x02, 0x00}

The module responds with:
{0x03, 0x03, 0x01, 0x00, 0x11, 0x01, 0x02, 0x00, 0x02}

For explanation of the example, please see tables below and on next page

.First command:

Area offset Contents of request Description (request)

0 02h Source ID

1 03h The Network Object in the Anybus CompactCom module.

2 - 3 01h 00h Instance 1

4 51h Message type: command (Map_ADI_Read_Area)

5 04h Size of Message Data (4)

6 - 7 01h 00h ADI instance number (1)

8 05h Data type UINT16

9 01h Number of elements in ADI (1)

10 - 11 01h 00h Order number of the ADI (1)

telegrams

5. Continue
 and finalize

setup

6. Set network
t

Tutorial 32

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

First response:

Second command:

Second response:

Note:

• The offset of the mapped ADI is 2 in has second response, as the first ADI that was mapped has
the data type UINT8.

For details, see “Network Object” and “Message Layout” in the Anybus CompactCom Software Design
Guide.

Area offset Contents of response Description (response)

0 02h Source ID

1 03h The Network Object in the Anybus CompactCom module.

2 - 3 01h 00h Instance 1

4 11h Message type: response

5 01h Size of Message Data (1 byte)

6 - 7 01h 00h ADI instance number (1)

8 00h Successful response, giving offset of mapped ADI

Area offset Contents of request Description (request)

0 03h Source ID

1 03h The Network Object in the Anybus CompactCom module.

2 - 3 01h 00h Instance 1

4 51h Message type: command (Map_ADI_Read_Area)

5 04h Size of Message Data (4)

6 - 7 02h 00h ADI instance number (2)

8 04h Data type UINT8

9 01h Number of elements in ADI (1)

10 - 11 02h 00h Order number of the ADI (2)

Area offset Contents of response Description (response)

0 03h Source ID

1 03h The Network Object in the Anybus CompactCom module.

2 - 3 01h 00h Instance 1

4 11h Message type: response

5 01h Size of Message Data (1 byte)

6 - 7 02h 00h ADI instance number (2)

8 02h Successful response, giving offset of mapped ADI

SWDG

Tutorial 33

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.7.4 Setup Complete

To finish setup the application sends this message to the
module:

Example:

The following message is sent to the module:
{0x04, 0x01, 0x01, 0x00, 0x42, 0x01, 0x05,
0x00, 0x01}
The module responds with:
{0x04, 0x01, 0x01, 0x00, 0x02, 0x00, 0x05,
0x00}

Command:.

Response:

Once setup is finished, signalled by the Setup Complete attribute set to 1, the Anybus CompactCom will
have changed states from SETUP to NW_INIT. The state of the module is always presented on bits b2,
b1 and b0 in the Status Register, see page 13.

Area offset Contents of request Description (request)

0 04h Source ID

1 01h The Anybus object in the Anybus CompactCom module.

2 01h (lsb) Instance 1

3 00h (msb)

4 42h Message type: command (Set_attribute)

5 01h Size of Message Data (1 byte)

6 05h Attribute 5 (Setup complete)

7 00h (not used)

8 01h Setup complete attribute set to 1

Area offset Contents of response Description (response)

0 04h Source ID

1 01h The Anybus object in the Anybus CompactCom module.

2 01h (lsb) Instance 1

3 00h (msb)

4 02h Message type: response (the command is copied, with the C bit set to 0)

5 00h Size of Message Data (0 bytes)

6 05h Attribute 5 (Setup Complete)

7 00h (not used)

telegrams

5. Continue
 and finalize

setup

6. Set network
t

Tutorial 34

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.8 Network Initialization

The Anybus CompactCom has now entered the
NW_INIT state. The module will start to send commands
to the application, to initialize the network communica-
tion. Exactly what commands are sent, depend on choice
of industrial network, see appendices for examples (De-
viceNet on page 39 and PROFIBUS DP-V1 on page 45).
For each command received, the application must give a
valid response to the module, even if the requested ob-
jects is not implemented in the application. In this case a
request to return the Vendor ID, that is a parameter in the
DeviceNet Object, is sent from the module. This object is not implemented in the application, so the
application returns an error message that says “unsupported object”.

Example:

The following message is sent from the module to the application:
{0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x01, 0x00}

The application responds with:
{0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x01, 0x00, 0x03}

Command (from the module to the host application):.

Response (from the host application to the module):

As mentioned above, the commands will differ between the industrial networks supported by Anybus
CompactCom. Also the number of commands will differ. There are default values for all attributes that
are requested by the module, so as long as a valid response is given (as shown in the example), the mod-
ule will continue the network initialization. Once finished it will enter the WAIT_PROCESS state, see
“Anybus CompactCom State Machine” on page 29.

Area offset Contents of request Description (request)

0 06h Source ID

1 FCh The DeviceNet object in the host application.

2 01h (lsb) Instance 1

3 00h (msb)

4 41h Message type: command (Get_attribute)

5 00h Size of Message Data (0 bytes)

6 01h Attribute 1 (Vendor ID)

7 00h (not used)

Area offset Contents of response Description (response)

0 06h Source ID

1 FCh The DeviceNet object in the host application.

2 01h (lsb) Instance 1

3 00h (msb)

4 81h Message type: error response

5 01h Size of Message Data (1 byte)

6 01h Attribute 1 (Vendor ID)

7 00h (not used)

8 03h Error message: Unsupported object

 and finalize
setup

6. Set network
parameters

Module
d

Tutorial 35

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

3.9 Further Configuration and Certification

The examples given above show a very simple implementation. The host application can contain several
more objects of different kinds, and in some cases it is recommended to implement some of them, e.g.
when the end product will be certified with the fieldbus organization in question.

Please consult the respective appendices where any further necessary settings and initializations are de-
scribed.

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Chapter 4

4. Resources

The previous chapter gives a relatively simple example of how to implement an application with an An-
ybus CompactCom module. The modules are very versatile, and include a lot more functionality than is
used in this tutorial. This chapter lists other documentation and material, that can be used when making
your own application.

4.1 Categorization of Functionality

The objects, including attributes and services, of the Anybus CompactCom and the application are di-
vided into three categories: basic, advanced and extended.

4.1.1 Basic

This category includes objects, attributes and services that are mandatory to implement or to use. They
will be enough for starting up the Anybus CompactCom and sending/receiving data with the chosen
network protocol. The basic functions of the industrial network are used.

These objects are presented in this tutorial (and the appropriate industrial network appendix). Additional
objects etc, that will make it possible to certify the product also belong to this category.

4.1.2 Extended

Use of the objects in this category extends the functionality of the application. Access is given to the
more specific characteristics of the industrial network, not only the basic moving of data to and from
the network. Extra value is given to the application.

4.1.3 Advanced

The objects, attributes and services that belong to this group offer specialized and/or seldom used func-
tionality. Most of the available network functionality is enabled and accessible. Access to the specifica-
tion of the industrial network is normally required.

Resources 37

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

4.2 Design Guides

4.2.1 Anybus CompactCom Software Design Guide

This document is the complete manual for the software interface. It provides information, that covers
all parts of the software interface that are common to all Anybus CompactCom communication mod-
ules.

4.2.2 Anybus CompactCom Hardware Design Guide

This document is intended to provide a good understanding of the mechanical and electric properties
of the Anybus CompactCom platform.

4.3 Network Interface Appendices

Each module is accompanied by an appendix describing the network interface specific issues, such as
what is necessary to implement in an application, so that it can be certified.

4.4 Drivers

HMS supplies two free source level (C language) software drivers,
the Standard Driver and the Lite Driver. These drivers are designed
to speed up the development process, by acting as “glue” between
the Anybus module and the host application. They separate low
level communication tasks from the host software environment.

The Standard Driver is designed to exploit the versatility of the An-
ybus-CompactCom concept while still keeping a high level of ab-
straction and flexibility. This means that it needs a certain degree
of memory and processing power by itself, which may prove im-
practical in smaller applications. To bridge this gap, HMS supplies
an alternative driver, known as the ‘Lite Driver’, which provides a
bare-bones solution suitable for applications with tight memory
and/or performance demands.

The Standard Driver is completely self-contained, i.e. it does not
require an operating system to function, and can be run either as an
interrupt driven service or polled cyclically by the host firmware.

The drivers, including documentation are available for download at
www.anybus.com.

4.5 Starter Kit

A starter kit is available for the Anybus CompactCom platform. It includes an evaluation board which
can be used to develop networking applications via the serial host interface channel.

The starter kit also includes a Software Development Kit (SDK). The aim of this is to show how a soft-
ware application can be implemented using the Anybus CompactCom driver for communication with
the Anybus CompactCom.

Main Application
Software

Standard Driver

An
yb

us
 M

od
ule

Ho

st
Ap

pli
ca

tio
n

Host Interface

Resources 38

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

The SDK is designed to run as a console application on win32 PC, communicating with the Anybus
CompactCom using a serial port.

Please visit www.anybus.com for more information.

4.6 Drive Profiles

The Anybus-CompactCom Drive Profile range of products extends the Anybus-CompactCom concept
with additional Drive Profile functionality. This extended software functionality makes it easier for man-
ufacturers to make products which comply to the latest communication standards for drives. This tuto-
rial does not cover drive profiles, but the issues covered are of course valid for those products as well.
On www.anybus.com documentation is available both for drive profiles in general and for those mod-
ules that incorporate drive profiles.

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Appendix A

A. Trace, DeviceNet

This appendix holds a transcription of an example communication in parallel mode between a host ap-
plication and an Anybus CompactCom DeviceNet module. The Data column contains what is either
written to or read from the specified DPRAM area by the host application. See also the Anybus Com-
pactCom Software Design Guide and the Network Interface Appendix for DeviceNet.

Trace, D
eviceN

et 40

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

R/W DPRAM area Data
Destination
Object

Instance
Command/
Response

Information

W Control Register 0x80 Initial Handshake

R Status Register 0x80

W Control Register 0x00

R Status Register 0x00

W Control Register 0x80

R Status Register 0xa0

Ask for module type

W Message Write
Area

0x01, 0x01, 0x01, 0x00, 0x41, 0x00, 0x01, 0x00 Anybus (0x01) 1 Get_Attribute Attr = MODULE_TYPE (0x01)

W Control Register 0xc0

R Status Register 0xa0

R Message Read
Area

0x01, 0x01, 0x01, 0x00, 0x01, 0x02, 0x01, 0x00,
0x01, 0x04

ACK ModuleType = ABCC (0x0401)

Map one byte to Read Process Data

W Message Write
Area

0x02, 0x03, 0x01, 0x00, 0x51, 0x04, 0x01, 0x00,
0x04, 0x01, 0x01, 0x00

Network (0x03) 1 Map_ADI_Read_Area ADI = 0x0001, DataType = UINT8 (0x04),
NumElements = 0x01, OrderNum = 0x0001

W Control Register 0xc0

R Status Register 0xa0

W Control Register 0x00

R Status Register 0x60

R Message Read
Area

0x02, 0x03, 0x01, 0x00, 0x11, 0x01, 0x01, 0x00,
0x00

ACK AreaOffset = 0x00

Set Setup Complete

W Message Write
Area

0x03, 0x01, 0x01, 0x00, 0x42, 0x01, 0x05, 0x00,
0x01

Anybus (0x01) 1 Set_Attribute Attr = SETUP_COMPLETE (0x05), Value = TRUE (≠0x00)

W Control Register 0xc0

R Status Register 0xe0

R Message Read
Area

0x03, 0x01, 0x01, 0x00, 0x02, 0x00, 0x05, 0x00 ACK

W Control Register 0x00

R Status Register 0x21 (Anybus State = NW_INIT)

W Control Register 0x80

Trace, D
eviceN

et 41

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

R Status Register 0xa1

W Control Register 0x00

R Status Register 0x21

Accept commands from module and send error responses in return (CTLR_R = 1)

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x01, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = VENDOR_ID (0x01)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x01, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x02, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = DEVICE_TYPE (0x02)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x02, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x03, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = PRODUCT_CODE (0x03)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x03, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x04, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = REVISION (0x04)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x04, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

R/W DPRAM area Data
Destination
Object

Instance
Command/
Response

Information

Trace, D
eviceN

et 42

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x05, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = SERIAL_NUMBER (0x05)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x05, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x06, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = PRODUCT_NAME (0x06)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x06, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x08, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = CONS_INSTANCE (0x08)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x08, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

 0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x07, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = PROD_INSTANCE (0x07)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x07, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

R/W DPRAM area Data
Destination
Object

Instance
Command/
Response

Information

Trace, D
eviceN

et 43

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x09, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = ADDRESS_FROM_NET (0x09)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x09, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x0a, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = BAUD_RATE_FROM_NET (0x0a)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x0a, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x0b, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = ENABLE_APP_CIP_OBJECTS (0x0b)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x0b, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x0c, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = ENABLE_PARAM_OBJECT (0x0c)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x0c, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R/W DPRAM area Data
Destination
Object

Instance
Command/
Response

Information

Trace, D
eviceN

et 44

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

R Message Read
Area

0x06, 0xfc, 0x01, 0x00, 0x41, 0x00, 0x0d, 0x00 DeviceNet (0xfc) 1 Get_Attribute Attr = ENABLE_QUICK_CONNECT (0x0d)

W Message Write
Area

0x06, 0xfc, 0x01, 0x00, 0x81, 0x01, 0x0d, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x06, 0xff, 0x01, 0x00, 0x41, 0x00, 0x02, 0x00 Application (0xff) 1 Get_Attribute Attr = SUP_LANG (0x02)

W Message Write
Area

0x06, 0xff, 0x01, 0x00, 0x81, 0x01, 0x02, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xa1

W Control Register 0x20

R Status Register 0x22 (Anybus State = WAIT_PROCESS)

R/W DPRAM area Data
Destination
Object

Instance
Command/
Response

Information

Doc.Id. HMSI-168-106
Anybus CompactCom Tutorial
Doc.Rev. 1.01

Appendix B

B. Trace, Profibus DP-V1

This appendix holds a transcription of an example communication in parallel mode between a host ap-
plication and an Anybus CompactCom Profibus DP-V1 module. The Data column contains what is ei-
ther written to or read from the specified DPRAM area by the host application. See also the Anybus
CompactCom Software Design Guide and the Network Interface Appendix for Profibus DP-V1.

Trace, Profibus D
P-V1 46

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

R/W DPRAM area Data Destination Object Instance
Command/
Response

Information

W Control Register 0x80 Initial Handshake

R Status Register 0x80

W Control Register 0x00

R Status Register 0x00

W Control Register 0x80

R Status Register 0xa0

Ask for module type

W Message Write
Area

0x01, 0x01, 0x01, 0x00, 0x41, 0x00, 0x01, 0x00 Anybus (0x01) 1 Get_Attribute Attr = MODULE_TYPE (0x01)

W Control Register 0x40

R Status Register 0x60

R Message Read
Area

0x01, 0x01, 0x01, 0x00, 0x01, 0x02, 0x01, 0x00,
0x01, 0x04

ACK ModuleType = ABCC (0x0401)

Map one byte to Read Process Data

W Message Write
Area

0x02, 0x03, 0x01, 0x00, 0x51, 0x04, 0x01, 0x00,
0x04, 0x01, 0x01, 0x00

Network (0x03) 1 Map_ADI_Read_Area ADI = 0x0001, DataType = UINT8 (0x04),
NumElements = 0x01, OrderNum = 0x0001

W Control Register 0xc0

R Status Register 0xa0

W Control Register 0x00

R Status Register 0x60

R Message Read
Area

0x02, 0x03, 0x01, 0x00, 0x11, 0x01, 0x01, 0x00,
0x00

ACK AreaOffset = 0x00

Set Setup Complete

W Message Write
Area

0x03, 0x01, 0x01, 0x00, 0x42, 0x01, 0x05, 0x00,
0x01

Anybus (0x01) 1 Set_Attribute Attr = SETUP_COMPLETE (0x05), Value = TRUE (≠0x00)

W Control Register 0xc0

R Status Register 0xe0

R Message Read
Area

0x03, 0x01, 0x01, 0x00, 0x02, 0x00, 0x05, 0x00 ACK

W Control Register 0x00

R Status Register 0x21 (Anybus State = NW_INIT)

W Control Register 0x80

Trace, Profibus D
P-V1 47

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

R Status Register 0xa1

W Control Register 0x00

R Status Register 0x21

Accept commands from module and send error responses in return (CTLR_R = 1)

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x01, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = IDENT_NUMBER (0x01)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x01, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x01, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x06, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = BUFFER_MODE (0x06)

W Message Write
Area

0x01, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x06, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x03, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = EXPECTED_CFG_DATA (0x03)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x03, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x01, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x05, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = SIZEOF_ID_REL_DIAG (0x05)

W Message Write
Area

0x01, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x05, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

R/W DPRAM area Data Destination Object Instance
Command/
Response

Information

Trace, Profibus D
P-V1 48

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x07, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = ALARM_SETTINGS (0x07)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x07, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x01, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x08, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = MANUFACTURER_ID (0x08)

W Message Write
Area

0x01, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x08, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x09, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = ORDER_ID (0x09)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x09, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x01, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x0a, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = SERIAL_NO (0x0a)

W Message Write
Area

0x01, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x0a, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

R/W DPRAM area Data Destination Object Instance
Command/
Response

Information

Trace, Profibus D
P-V1 49

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x0b, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = HW_REV (0x0b)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x0b, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x01, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x0c, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = SW_REV (0x0c)

W Message Write
Area

0x01, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x0c, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x0e, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = PROFILE_ID (0x0e)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x0e, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x01, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x0f, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = PROFILE_SPEC_TYPE (0x0f)

W Message Write
Area

0x01, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x0f, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R/W DPRAM area Data Destination Object Instance
Command/
Response

Information

Trace, Profibus D
P-V1 50

D
oc.Id. H

M
SI-168-106

Anybus C
om

pactC
om

 Tutorial
D

oc.R
ev. 1.01

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x10, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = IM_VERSION (0x10)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x10, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x01, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x11, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = IM_SUPPORTED (0x11)

W Message Write
Area

0x01, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x11, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xe1

R Message Read
Area

0x00, 0xfd, 0x01, 0x00, 0x41, 0x00, 0x12, 0x00 PROFIBUS DP-V1 (0xfd) 1 Get_Attribute Attr = IM_HEADER (0x12)

W Message Write
Area

0x00, 0xfd, 0x01, 0x00, 0x81, 0x01, 0x12, 0x00,
0x03

NAK Error = UNSUP_OBJ (0x03)

W Control Register 0x60

R Status Register 0x21

W Control Register 0xa0

R Status Register 0xa2 (Anybus State = WAIT_PROCESS)

R/W DPRAM area Data Destination Object Instance
Command/
Response

Information

	Important User Information
	Liability
	Intellectual Property Rights
	Trademark Acknowledgements

	P. About This Document
	P.1 Related Documents
	P.2 Document History
	P.3 Conventions & Terminology
	P.3.1 Definitions

	P.4 Sales and Support

	1. How to use this Document
	2. Introduction to the Anybus CompactCom
	3. Tutorial
	3.1 Introduction
	3.2 Connect the Anybus CompactCom Module
	3.2.1 Host Interface Signals

	3.3 Set Operating Mode
	3.4 Telegrams
	3.5 Parallel Interface Mode
	3.5.1 Initial Handshake
	3.5.2 DPRAM
	3.5.3 Sending Telegrams - Parallel Communication

	3.6 Serial Interface Mode
	3.6.1 Initial Handshake
	3.6.2 Serial Telegram Frame
	3.6.3 Sending Telegrams - Serial Communication

	3.7 Setup continued
	3.7.1 Anybus CompactCom State Machine
	3.7.2 Accessing the Anybus CompactCom
	3.7.3 Mapping ADIs
	3.7.4 Setup Complete

	3.8 Network Initialization
	3.9 Further Configuration and Certification

	4. Resources
	4.1 Categorization of Functionality
	4.1.1 Basic
	4.1.2 Extended
	4.1.3 Advanced

	4.2 Design Guides
	4.2.1 Anybus CompactCom Software Design Guide
	4.2.2 Anybus CompactCom Hardware Design Guide

	4.3 Network Interface Appendices
	4.4 Drivers
	4.5 Starter Kit
	4.6 Drive Profiles

	A. Trace, DeviceNet
	B. Trace, Profibus DP-V1

