
Anybus CompactCom 40
EtherNet/IP IIoT Secure

NETWORK GUIDE
SCM-1202–069 2.6 en-US ENGLISH

Important User Information
Disclaimer
The information in this document is for informational purposes only. Please inform HMS Networks of any
inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any
errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development.
The information in this document shall therefore not be construed as a commitment on the part of HMS Networks
and is subject to change without notice. HMS Networks makes no commitment to update or keep current the
information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data,
examples or illustrations included in this document nor for any damages incurred during installation of the product.
Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product
is used correctly in their specific application and that the application meets all performance and safety requirements
including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances
assume liability or responsibility for any problems that may arise as a result from the use of undocumented features
or functional side effects found outside the documented scope of the product. The effects caused by any direct or
indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability
issues.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Table of Contents Page

1 Preface ... 7
1.1 About this document ..7

1.2 Related Documents ..7

1.3 Document History ..7

1.4 Document Conventions ...8

1.5 Document Specific Conventions..8

1.6 Abbreviations ..9

1.7 Trademarks...9

2 About the Anybus CompactCom 40 EtherNet/IP IIoT Secure... 10
2.1 General .. 10

2.2 Features ... 11

2.3 IIoT – Industrial Internet of Things... 12

2.4 Security .. 12

2.5 Certificates ... 13

3 Initial Setup and Account Configuration.. 14
3.1 Set an IP Address ... 14

3.2 Configure First Administrator Account ... 14

3.3 Install a Device Certificate ... 16

3.4 Protect the IP Configuration... 20

3.5 Install a CA Certificate... 21

3.6 Account Configuration .. 23

4 Basic Operation ... 24
4.1 General Information ... 24

4.2 Network Identity.. 25

4.3 Authentication, Passwords, and User Roles... 26

4.4 Communication Settings.. 26

4.5 Beacon Based DLR (Device Level Ring) ... 28

4.6 Network Data Exchange .. 28

4.7 Web Interface ... 29

4.8 E-mail Client.. 29

4.9 Modular Device Functionality... 29

4.10 File System ... 30

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

5 EtherNet/IP Implementation Details ... 32
5.1 General Information ... 32

5.2 EtherNet/IP & CIP Implementation.. 32

5.3 Using the Assembly Mapping Object (EBh) ... 33

5.4 Socket Interface (Advanced Users Only) ... 35

5.5 Diagnostics ... 36

5.6 QuickConnect .. 36

5.7 CIP Safety ... 36

6 Secure Web Server (HTTPS) .. 37
6.1 General Information ... 37

6.2 Default Web Pages ... 37

6.3 Server Configuration... 42

6.4 Login ... 44

6.5 Logout ... 45

6.6 Cross Site Request Forgery (CSRF) Protection .. 45

7 JSON... 46
7.1 General Information ... 46

7.2 Cross Site Request Forgery (CSRF) Protection .. 47

7.3 Supported JSON functions ... 48

7.4 JSON API .. 49

7.5 Example ... 75

8 File Transfer Protocol (WebDAV) ... 76
8.1 WebDAV Configuration .. 76

8.2 WebDAV .. 76

9 E-mail Client... 79
9.1 General Information ... 79

9.2 How to Send E-mail Messages .. 79

10 OPC UA... 80
10.1 General .. 80

10.2 Configuration .. 80

10.3 CompactCom 40 Device Type Information Model .. 82

10.4 Application Defined Information Model ... 93

10.5 Time .. 97

10.6 Server Endpoints.. 98

10.7 Error Code Translation .. 100

10.8 Stack Configuration .. 101

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

11 MQTT ... 103
11.1 MQTT Configuration ... 104

11.2 Connection Setup... 104

11.3 Publications ... 105

11.4 Stack Configuration .. 110

12 CIP Objects... 111
12.1 General Information ... 111

12.2 Translation of Status Codes.. 112

12.3 Identity Object (01h) .. 113

12.4 Message Router (02h)... 116

12.5 Assembly Object (04h) .. 117

12.6 Connection Manager (06h) .. 120

12.7 Parameter Object (0Fh) ... 124

12.8 DLR Object (47h).. 128

12.9 QoS Object (48h) ... 129

12.10 Base Energy Object (4Eh)... 130

12.11 Power Management Object (53h) ... 132

12.12 ADI Object (A2h) .. 134

12.13 Port Object (F4h) ... 136

12.14 TCP/IP Interface Object (F5h) ... 138

12.15 Ethernet Link Object (F6h) ... 141

13 Anybus Module Objects.. 146
13.1 General Information ... 146

13.2 Anybus Object (01h) ... 147

13.3 Diagnostic Object (02h) ... 149

13.4 Network Object (03h) ... 150

13.5 Network Configuration Object (04h) .. 151

13.6 Socket Interface Object (07h) ... 167

13.7 SMTP Client Object (09h)... 184

13.8 Anybus File System Interface Object (0Ah).. 189

13.9 Network Ethernet Object (0Ch) .. 190

13.10 CIP Port Configuration Object (0Dh) .. 192

13.11 Functional Safety Module Object (11h) .. 194

13.12 Time Object (13h) .. 201

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

14 Host Application Objects .. 203
14.1 General Information ... 203

14.2 MQTT Host Object (E2h).. 204

14.3 OPC UA Object (E3h) .. 207

14.4 Energy Reporting Object (E7h).. 209

14.5 Functional Safety Object (E8h).. 210

14.6 Application File System Interface Object (EAh) .. 212

14.7 CIP Identity Host Object (EDh) .. 213

14.8 Sync Object (EEh) ... 215

14.9 Energy Control Object (F0h) ... 216

14.10 EtherNet/IP Host Object (F8h) .. 222

14.11 Ethernet Host Object (F9h) .. 231

A Categorization of Functionality .. 237
A.1 Basic .. 237

A.2 Extended .. 237

B Compatibility to Standard Anybus CompactCom 40... 238

C Implementation Details .. 239
C.1 SUP-Bit Definition .. 239

C.2 Anybus State Machine .. 239

C.3 Application Watchdog Timeout Handling.. 239

D Secure HICP (Secure Host IP Configuration Protocol) ... 240
D.1 General .. 240

D.2 Operation ... 240

E Installing a CA Certificate in Windows... 241

F Technical Specification.. 244
F.1 Front View .. 244

F.2 Functional Earth (FE) Requirements... 245

F.3 Power Supply .. 245

F.4 Environmental Specification... 245

F.5 EMC Compliance.. 245

G Conformance Test Guide .. 246
G.1 General .. 246

G.2 Suggested Test Tools .. 246

G.3 Statement of Conformance (STC) .. 248

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

H Licensing Information ... 264

This page intentionally left blank

Preface 7 (272)

1 Preface
1.1 About this document

This document is intended to provide a good understanding of the functionality offered by the
Anybus CompactCom 40 EtherNet/IP IIoT Secure. The document describes the features that are
specific to Anybus CompactCom 40 EtherNet/IP IIoT Secure. For general information regarding
Anybus CompactCom, consult the Anybus CompactCom design guides.

The reader of this document is expected to be familiar with high level software design and
communication systems in general. The information in this network guide should normally be
sufficient to implement a design. However if advanced EtherNet/IP specific functionality is to be
used, in-depth knowledge of EtherNet/IP networking internals and/or information from the
official EtherNet/IP specifications may be required. In such cases, the persons responsible for the
implementation of this product should either obtain the EtherNet/IP specification to gain
sufficient knowledge or limit their implementation in such a way that this is not necessary.

For additional related documentation and file downloads, please visit the support website at
www.anybus.com/support.

1.2 Related Documents
Document Author Document ID

Anybus CompactCom 40 Software Design Guide HMS HMSI-216-125

Anybus CompactCom M40 Hardware Design Guide HMS HMSI-216-126

Anybus CompactCom B40 Design Guide HMS HMSI-27-230

Anybus CompactCom Host Application Implementation Guide HMS HMSI-27-334

Using OPC UA Application Defined Information Models HMS SCM-1202-182

CIP specification, Volumes 1 (CIP Common) and 2 (EtherNet/IP) ODVA

OPC UA Specification 1.04 OPC Foundation

1.3 Document History
Version Date Description

1.4 2017-11-28 First release
1.5 2017-12-15 Updated Copyright Appendix

Corrected Network Type ID

1.6 2018-05-07 Added Conformance Test Guide
Updates to CIP objects ADI and QoS
Misc updates

1.7 2018-09-19 Added MQTT functionality
Updated Set_Configuration_Data descriptions in EtherNet/IP Host object

1.8 2018-10-23 Minor update, mainly to MQTT section

1.9 2019-06-10 Rebranding
Minor updates

2.0 2019-10-28 Secure functionality added

2.1 2019-12-03 New screendumps

2.2 2020-05-11 Updated screenshots in Chapter 3, “Initial Setup and Account Configuration”
Expanded and improved OPC UA and MQTT sections
Added instance attribute #7 “Limits” to instance #1, OPC UA Object (E3h)
Added instance attribute #42 to Network Configuration Object (04h)
Updated instance attribute #40, #41, #50, #51, #53, #54, #55 in Network
Configuration Object (04h)

2.3 2021–04–16 Added Time Object (13h)

2.4 2021–05–26 Updated CIP Identity Object

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

http://www.anybus.com/support

Preface 8 (272)

Version Date Description

Updated OPC UA and MQTT sections
Updated SMTP sections

2.5 2021-09-23 Added OPC UA application defined information models
Minor updates

2.6 2021-10-29 Minor updates

1.4 Document Conventions
Numbered lists indicate tasks that should be carried out in sequence:

1. First do this

2. Then do this

Bulleted lists are used for:

• Tasks that can be carried out in any order

• Itemized information

► An action

→ and a result

User interaction elements (buttons etc.) are indicated with bold text.

Program code and script examples

Cross-reference within this document: Document Conventions, p. 8

External link (URL): www.hms-networks.com

WARNING
Instruction that must be followed to avoid a risk of death or serious injury.

Caution
Instruction that must be followed to avoid a risk of personal injury.

Instruction that must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

Additional information which may facilitate installation and/or operation.

1.5 Document Specific Conventions
• The terms “Anybus” or “module” refers to the Anybus CompactCom module.

• The terms “host” or “host application” refer to the device that hosts the Anybus.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the
hexadecimal value.

• A byte always consists of 8 bits.

• The terms “basic” and “extended” are used to classify objects, instances and attributes.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

http://www.hms-networks.com

Preface 9 (272)

1.6 Abbreviations
Abbreviation Meaning

CA Certificate Authority

API assigned packet interval

RPI requested packet interval

T target (in this case the module)

O origin (in this case the master)

1.7 Trademarks
Anybus® is a registered trademark of HMS Networks.

EtherNet/IP is a trademark of ODVA, Inc.

All other trademarks are the property of their respective holders.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

About the Anybus CompactCom 40 EtherNet/IP IIoT Secure 10 (272)

2 About the
Anybus CompactCom 40 EtherNet/IP IIoT Secure

2.1 General
The Anybus CompactCom 40 EtherNet/IP IIoT Secure communication module provides instant
EtherNet/IP conformance tested connectivity via the patented Anybus CompactCom host
interface. Any device that supports this standard can take advantage of the features provided by
the module, allowing seamless network integration regardless of network type. The module
supports both linear and ring network topology.

The modular approach of the Anybus CompactCom 40 platform allows the CIP-object
implementation to be extended to fit specific application requirements. Furthermore, the
Identity Object can be customized, allowing the end product to appear as a vendor-specific
implementation rather than a generic Anybus module.

This product conforms to all aspects of the host interface for Anybus CompactCom 40 modules
defined in the Anybus CompactCom 40 Hardware and Software Design Guides, making it fully
interchangeable with any other device following that specification. Generally, no additional
network related software support is needed, however in order to be able to take full advantage
of advanced network specific functionality, a certain degree of dedicated software support may
be necessary.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

About the Anybus CompactCom 40 EtherNet/IP IIoT Secure 11 (272)

2.2 Features
• Secure Boot

• TLS support for secure data transfer

• Security chip for secure key storage

• Hardware accelerated cryptographic operations

• Hashed password storage

• Secure web server w. customizable content

• Secure file transfer server (WebDAV)

• Two EtherNet/IP ports

• RJ45 connectors

• Supports OPC UA functionality

• Supports MQTT functionality

• Max. read process data: 1448 bytes

• Max. write process data: 1448 bytes

• Max. process data (read + write, in bytes): 2896 bytes

• Beacon Based DLR (Device Level Ring) and linear network topology supported

• Black channel interface, offering a transparent channel supporting CIP Safety

• 10/100 Mbit, full/half duplex operation

• Email client

• JSON functionality

• Customizable Identity Information

• Up to 65535 ADIs

• CIP Parameter Object support

• Expandable CIP-object implementation

• Supports unconnected CIP routing

• Transparent Socket Interface

• Modular Device functionality

• QuickConnect supported

• Multiple IO assembly instances can be created

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

About the Anybus CompactCom 40 EtherNet/IP IIoT Secure 12 (272)

2.3 IIoT – Industrial Internet of Things
IIoT gives an application access to the data of a product over the internet. This is, among other
things, useful for

• uncovering product failures and deficiencies

• discovering how products are used

• ensuring the quality of products faster

To support IIoT, the Anybus CompactCom 40 EtherNet/IP IIoT Secure supports the protocols OPC
UA and MQTT.

See also ...

• OPC UA, p. 80

• MQTT, p. 103

2.4 Security
Anybus CompactCom 40 EtherNet/IP IIoT Secure provides security features for secure network
communication.

In order to secure the network communication the device is equipped with a security chip
providing secure key storage together with a hardware accelerated cryptographic engine. The
embedded web server as well as the OPC UA and the MQTT communication are secured.

The embedded web server features web pages for security configuration such as certificate
installation and user account management. A user can e.g. install its own certificate. This
interface can be used as is, or be modified to fit the host product. All web operations are
implemented using an JSON API providing the possibility for users to make tools directly
accessing this API.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

About the Anybus CompactCom 40 EtherNet/IP IIoT Secure 13 (272)

2.5 Certificates
Certificates are a main component in secure communication. They are used to prove the identity
of the owner of the certificate. A node will trust a certificate if it trusts the Certificate Authority
(CA) that has issued the certificate. Trusted certificates are used to ensure secure communication.

Which certificates to use, depend on the installation. HMS Networks offers a tool that generates
device and CA certificates, that can be used during development.

2.5.1 Initial Device Certificate
The Anybus CompactCom 40 EtherNet/IP IIoT Secure comes with a preinstalled initial device
certificate. This certificate proves that the device is produced by HMS Networks and will also be
used for HTTPS until the device is configured by the end user. Please note that browsers will
issue a security warning as long as this certificate is used.

The initial device certificate holds the following identity information.

countryName (C) SE

stateOrProvinceName (ST) Halland

Locality (L) Halmstad

organizationName (O) HMS Industrial Networks AB

organizationUnitName (OU) Anybus

commonName (CN) (module serial number)

serialNumber (SN) (module serial number)

The certificate is placed in read only storage, and will not be deleted upon factory default reset.

2.5.2 Certificate Authorities
Some protocols, e.g. OPC UA, need to validate the identity of other devices, such as PLCs, that
try to connect to the Anybus CompactCom. The user can install CA certificates that are used to
validate the certificate provided by the client. The certificates are installed from the internal web
pages of the product.

Certificate expire time/date is not validated as Anybus CompactCom does not know time.

2.5.3 Device Certificates
Device certificates are installed by the end users at configuration time and are used by the
various secure protocols to prove the device identity of the Anybus CompactCom 40 EtherNet/IP
IIoT Secure to establish secure communication. The certificates and the corresponding private
keys are installed using the web interface. It is possible to configure for which protocol each
device certificate is to be used.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 14 (272)

3 Initial Setup and Account Configuration
This section describes how to set up an application using the default web pages and the default
configuration of the Anybus CompactCom 40 EtherNet/IP IIoT Secure.

Secure operation is not available until initial setup and account configuration has been
finalized. The steps described in this section have to be followed to ensure secure
operation of the device.

An initial device identity certificate is installed in the Anybus CompactCom 40 EtherNet/IP IIoT
Secure. This is initially used to setup a connection to the web server and enables the user to
access the internal web pages. It is not possible to delete this certificate from the device.

It is recommended to perform this initial configuration offline, with the device connected
directly to your computer. This to ensure that anyone who is not authorized, will gain
access to the device and configure the first account.

3.1 Set an IP Address
To access the web pages of the Anybus CompactCom, an IP address has to be set for the device.
One way to do this is described in Secure HICP (Secure Host IP Configuration Protocol), p. 240. An
IP address can also be set by the host application.

3.2 Configure First Administrator Account
1. Enter the IP address of Anybus CompactCom 40 EtherNet/IP IIoT Secure in a browser. The

web page as shown in the picture will show.

Create the necessary first administrator account by entering a username and a password.

Fig. 1

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 15 (272)

2. Log in to the device using the newly created administrator account.

Fig. 2

3. When logged in using an administrator account, you can for example configure new user
accounts of different types and install CA and device certificates.

Fig. 3

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 16 (272)

3.3 Install a Device Certificate
Follow the steps below to install a device certificate in the Anybus CompactCom.

You may have to install a CA certificate in your browser. See Installing a CA Certificate in
Windows, p. 241 for more information.

1. Create a device certificate, e.g. by using the tool from HMS Networks.

2. Select the Security tab in the column to the left on the start page. When delivered, the
device has an initial device certificate installed. This certificate is not shown in the list, and
can never be removed. Its sole purpose is to make it possible to access the internal web
pages. The device will revert to this certificate if factory default settings are restored or if no
certificate is configured for https.

Add a new device certificate and proceed with the installation.

Fig. 4

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 17 (272)

3. Cut & paste the certificate text and the device certificate private key according to the
instructions on the web page. Make sure that the certificate is issued by someone you trust.
The certificate must be in PEM format.

Fig. 5

If the certificate is to be used by HTTPS, it is important that the subject name “CN”
parameter is set to the device address (IP number or DNS name).

Fig. 6

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 18 (272)

The device certificate is now listed on the security web page.

Fig. 7

Click on the device certificate to view the certificate information.

Fig. 8

4. The installed certificate can be used for HTTPS, MQTT and/or for OPC UA. Select the correct
option for the newly installed certificate. For more information on requirements for OPC UA
certificates please refer to OPC UA Specification 1.04: Part 6 – Mappings, section 6.2
Certificates.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 19 (272)

5. Restart the module by switching the power off and on. The connection is still not trusted,
unless a publicly signed certificate is used, or if you have already installed the CA certificate
used to sign the device certificate in your browser. You may have to restart your browser.

Fig. 9

Fig. 10

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 20 (272)

3.4 Protect the IP Configuration
The Anybus CompactCom 40 EtherNet/IP IIoT Secure supports the Secure HICP protocol used by
the Anybus IPconfig utility for changing settings, e.g. IP address, Subnet mask, and enable/
disable DHCP.

The IP configuration of the Anybus CompactCom 40 EtherNet/IP IIoT Secure can be protected by
setting a password on the internal webpages. If a password is not set, a red triangle will appear.

Fig. 11

It is strongly recommended to password protect this protocol. All users can see the
settings, but a password will protect the possibility to set or change the configuration
using the Anybus IPconfig utility.

Fig. 12

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 21 (272)

3.5 Install a CA Certificate
A CA certificate is normally not needed for HTTPS and for the WebDAV file transfer protocol, but
has to be installed for OPC UA. The certificate must be from a trusted source and it must be in
PEM format. For OPC UA, this must be the CA certificate that issued the Device Certificate used
by the OPC UA client, that the application shall communicate with.

1. Login as admin again.

Fig. 13

2. Copy & paste the certificate as described on the web page. The certificate must be in PEM
format.

Fig. 14

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 22 (272)

3. Restart the Anybus CompactCom.

The installed certificates are listed on the internal web page (Security — Certificates).

Fig. 15

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Initial Setup and Account Configuration 23 (272)

3.6 Account Configuration
If you are logged in as administrator, you can add and configure user accounts.

1. Log in as administrator.

2. Select Accounts and then add an operator or user account.

Fig. 16

Each user account is given a role, where each role is granted different access. The figure
below shows the view that an operator will see. See Authentication, Passwords, and User
Roles, p. 26 for more information.

Fig. 17

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 24 (272)

4 Basic Operation
4.1 General Information
4.1.1 Software Requirements

No additional network support code needs to be written in order to support the Anybus
CompactCom 40 EtherNet/IP IIoT Secure, however due to the nature of the EtherNet/IP
networking system, certain restrictions must be taken into account:

• Certain functionality in the module requires that the command Get_Instance_Number_By_
Order (Application Data Object, FEh) is implemented in the host application.

• Up to 5 diagnostic instances (See Diagnostic Object (02h), p. 149) can be created by the host
application during normal conditions. An additional 6th instance may be created in event of
a major fault. This limit is set by the module, not by the network.

• EtherNet/IP in itself does not impose any specific timing demands when it comes to acyclic
requests (i.e. requests towards instances in the Application Data Object), however it is
generally recommended to process and respond to such requests within a reasonable time
period. The application that sends the request, also decides the timeout, e.g. EIPScan
employs a timeout of 10 seconds.

• The use of advanced CIP-specific functionality may require in-depth knowledge in CIP
networking internals and/or information from the official CIP and EtherNet/IP specifications.
In such cases, the people responsible for the implementation of this product is expected
either to obtain these specifications to gain sufficient knowledge or limit their
implementation is such a way that this is not necessary.

See also...

• Diagnostic Object (02h), p. 149 (Anybus Module Objects)

• Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”

For in depth information regarding the Anybus CompactCom software interface, consult the
Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 25 (272)

4.1.2 Electronic Data Sheet (EDS)
On EtherNet/IP, the characteristics of a device is stored in an ASCII data file with the suffix EDS.
This file is used by configuration tools etc. when setting up the network configuration. HMS
Networks supplies a standard (generic) EDS file, which corresponds to the default settings in the
module. However, due to the flexible nature of the Anybus CompactCom concept, it is possible
to alter the behavior of the product in ways which invalidate the generic EDS file. In such case, a
custom EDS file needs to be created, which in turn invalidates the default identity information
and require re-certification of the product.

Since the module implements the Parameter Object, it is possible for configuration tools such as
RSNetWorx to automatically generate a suitable EDS-file. Note that this functionality requires
that the command Get_Instance_Number_By_Order (Application Data Object, FEh) has been
implemented in the host application.

See also..

• Parameter Object (0Fh), p. 124 (CIP object)

• Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”

HMS Industrial Networks approves use of the standard EDS-file only under the condition
that it matches the actual implementation and that the identity information remains
unchanged.

4.2 Network Identity
By default, the module uses the following identity settings:

Vendor ID: 005Ah (HMS Industrial Networks)

Device Type: 002Bh (Generic Device)

Product Code: 005Eh (Anybus CompactCom 40 EtherNet/IP IIoT Secure)

Product Name: “CompactCom 40 EtherNet/IP(TM)”

Optionally, it is possible to customize the identity of the module by implementing the
corresponding instance attributes in the EtherNet/IP Host Object.

See also...

• Identity Object (01h), p. 113 (CIP object)

• EtherNet/IP Host Object (F8h), p. 222 (Host Application Object)

According to the CIP specification, the combination of Vendor ID and serial number must
be unique. It is not permitted to use a custom serial number in combination with the
HMS Vendor ID (005Ah), nor is it permitted to choose Vendor ID arbitrarily. Failure to
comply to this requirement will induce interoperability problems and/or other unwanted
side effects.

To obtain a Vendor ID, contact the ODVA.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 26 (272)

4.3 Authentication, Passwords, and User Roles
The secure protocols that are implemented in the Anybus CompactCom need to authenticate the
users. Each user is assigned a role, that defines the user’s access rights. The configuration of the
users, their passwords and their roles, is administrated using the internal web interface. Role
access rights are configured per protocol in a separate configuration file for each protocol. The
table below shows the default role access rights. The configuration can be changed when
developing an application.

Role Description

administrator • OPC UA access

• account configuration

• handling of certificates

• firmware update possibility (via WebDAV)

• access system configuration from internal web pages

• get and set ADI data

• access to module and network status and configuration information

operator • OPC UA access

• get and set ADI data

• access to module and network status information

The operator can view the module and network status information, but not set any system
configuration. The operator is not granted any access to the security settings.

user • get ADI data

• access to module and network status information

4.4 Communication Settings
Network related communication settings are grouped in the Network Configuration Object (04h),
and includes:

IP settings These settings must be set properly in order for the module to be able to participate on
the network.

The module supports DHCP, which may be used to retrieve the IP settings from a DHCP-
server automatically. DHCP is enabled by default, but can be disabled if necessary.

Physical Link Settings By default, the module uses auto negotiation to establish the physical link settings,
however it is possible to force a specific setting if necessary.

The parameters in the Network Configuration Object (04h) are available from the host
application and the network through the built in web server, and through the TCP/IP Interface
Object (CIP).

See also...

• Secure Web Server (HTTPS), p. 37

• TCP/IP Interface Object (F5h), p. 138 (CIP object)

• Ethernet Link Object (F6h), p. 141 (CIP object)

• Network Configuration Object (04h), p. 151 (Anybus Module Object)

• Secure HICP (Secure Host IP Configuration Protocol), p. 240

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 27 (272)

4.4.1 Communication Settings in Stand Alone Shift Register Mode
If the Anybus CompactCom is used stand alone, there is no application from which to set the IP
address. The IP address is instead set using the DIP1 switches (IP address byte 3) and the virtual
attributes (Ethernet Host object (F9h), attribute #17), that are written to memory during setup
(IP address byte 0 - 2). A flowchart is shown below.

Start

DIP1 switch settings
(0 - 255)

 255 0

1 - 254

Values stored in
 Network Con�guration
Object instances #3 - #6

 will be used

Ethernet
 Host Object (F9h),

attribute #17
implemented

Yes

No Use default value for
IP address bytes 0 - 2:

192.168.0.X

Use DIP switch settings
for IP address byte 3

End

Use attribute #17 values
for IP address bytes 0 - 2

IP address is stored in Network
Con�guration Object (04h),

 instance #3

Check for DHCP
availability

Yes

No

DHCP will be used for
communication settings,

that will be stored in
Network Con�guration

Object (04h), instances #3 - #6

Values stored in
 Network Con�guration
Object instances #3 - #6

 will be used

Network Con�guration Object (04h)
Instance #4, Subnet mask: 255.255.255.0

Instance #5 Gateway address: 0.0.0.0
Instance 6, DHCP: OFF

Fig. 18

See also ...

• Ethernet Host Object (F9h), p. 231

• Anybus CompactCom M40 Hardware Design Guide

• Network Configuration Object (04h), p. 151

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 28 (272)

4.5 Beacon Based DLR (Device Level Ring)
Device Level Ring (DLR) is a network technology for industrial applications that uses embedded
switch functionality in automation end devices, such as programmable automation controllers
and I/O modules, to enable Ethernet ring network topologies at the device level. DLR technology
adds network resilience to optimize machine operation. Beacon based DLR networks consist of a
ring supervisor and a number of ring nodes, and use “beacons” to detect breaks in the ring.
When a DLR network detects a break in the ring, it provides ways to alternatively route the data
to recover the network. Diagnostics built into DLR products can identify the point of failure, thus
helping to speed maintenance and reduce repair time. The Anybus CompactCom 40 EtherNet/IP
IIoT Secure implements the DLR protocol, and it is enabled by default. The device is able to
process and act on beacon frames sent by ring supervisors, and supports beacon rates down to
100 μs. If needed, the DLR functionality can be disabled. This can be done by setting attribute
#31 (Enable DLR) in the EtherNet/IP Host Object to False. See EtherNet/IP Host Object (F8h), p.
222.

4.6 Network Data Exchange
4.6.1 Application Data

Application Data Instances (ADIs) are represented through the ADI Object (CIP). Each instance
within this objects corresponds directly to an instance in the Application Data Object on the host
application side.

Accessible range of ADIs is 1 to 65535.

See also...

• Parameter Object (0Fh), p. 124 (CIP object)

• ADI Object (A2h), p. 134 (CIP object)

4.6.2 Process Data
Process Data is represented as dedicated instances in the Assembly Object (CIP).

See also...

• Assembly Object (04h), p. 117 (CIP object)

• Connection Manager (06h), p. 120 (CIP object)

4.6.3 Translation of Data Types
The Anybus data types are translated to CIP-standard and vice versa as follows:

Anybus Data Type CIP Data Type Comments

BOOL BOOL Each ADI element of this type occupies one byte.
ENUM USINT
SINT8 SINT
UINT8 USINT
SINT16 INT Each ADI element of this type occupies two bytes.
UINT16 UINT
SINT32 DINT Each ADI element of this type occupies four bytes.
UINT32 UDINT
FLOAT REAL
CHAR SHORT_STRING SHORT_STRING consists of a single-byte length field (which in this case

represents the number of ADI elements) followed by the actual
character data (in this case the actual ADI elements). This means that a
10-character string occupies 11 bytes.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 29 (272)

Anybus Data Type CIP Data Type Comments

SINT64 LINT Each ADI element of this type occupies eight bytes.
UINT64 ULINT
BITS8 BYTE Each ADI element of this type occupies one byte.

BITS16 WORD Each ADI element of this type occupies two bytes.

BITS32 DWORD Each ADI element of this type occupies four bytes.

OCTET USINT
BITS1-7 BYTE Bit fields of size 1 - 7
PAD0-8 BYTE Bit fields of size 0 - 8 used for padding

PAD9-16 BYTE Bit fields of size 9 - 16 used for padding

BOOL1 BOOL

4.7 Web Interface
The web interface can be fully customized to suit a particular application. Dynamic content can
be created by means of JSON. Data and web pages are stored in a FLASH-based file system,
which can be accessed using a file transfer protocol.

See also...

• File System, p. 30

• Secure Web Server (HTTPS), p. 37

• File Transfer Protocol (WebDAV), p. 76

• JSON, p. 46

4.8 E-mail Client
The built-in e-mail client enables the host application to send e-mail messages stored in the file
system, or defined directly within the SMTP Client Object (09h).

See also...

• File System, p. 30

4.9 Modular Device Functionality
Modular devices consist of a backplane with a certain number of slots. The first slot is occupied
by the “coupler” which contains the Anybus CompactCom module. All other slots may be empty
or occupied by modules.

When mapping ADIs to process data the application shall map the process data of each module
in slot order.

A list of modules in a Modular Device is available to the EtherNet/IP network master by a
request to the CIP Identity object.

See also ...

• “Modular Device Object (ECh)” (see Anybus CompactCom 40 Software Design Guide)

• Identity Object (01h), p. 113 (CIP object)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 30 (272)

4.10 File System
By default only the administrator role has access to the file system, and then only to the
\firmware folder. To be able to customize this, the user has to enable admin mode in the
Ethernet Host Object (F9h).

4.10.1 Overview
The Anybus CompactCom 40 EtherNet/IP has an in-built file system, that can be accessed from
the application and from the network. Three directories are predefined:

VFS The virtual file system that e.g. holds the web pages of the module. The virtual file
system is enabled by default in the Anybus File System Interface Object (0Ah).

Application This directory provides access to the application file system through the Application File
System Interface Object (EAh) (optional).

Firmware Firmware updates are stored in this directory.

4.10.2 General Information
The built-in file system hosts 22 MByte of non volatile storage, which can be accessed by the
HTTP and file transfer protocols, the email client, and the host application (through the Anybus
File System Interface Object (0Ah)).

The maximum number of directories and files, that can be stored in the root directory, is 511 if
only short filenames are used (8 bytes name + 3 bytes extension). The number of files that can
be stored in other directories, than the root directory, is unlimited.

The file system uses the following conventions:

• \ (backslash) is used as a path separator

• Names may contain spaces, but must not begin or end with one.

• Valid characters in names are ASCII character numbers less than 127, excluding the
following characters: \ / : * ? “ < > |

• Names cannot be longer than 48 characters

• A path cannot be longer than 126 characters (filename included)

See also ...

• File Transfer Protocol (WebDAV), p. 76

• Secure Web Server (HTTPS), p. 37

• E-mail Client, p. 79

• Anybus File System Interface Object (0Ah), p. 189

• Application File System Interface Object (EAh), p. 212

The file system is located in flash memory. Due to technical reasons, each flash segment
can be erased approximately 100000 times before failure, making it unsuitable for
random access storage.

The following operations will erase one or more flash segments:

• Deleting, moving or renaming a file or directory

• Writing or appending data to an existing file

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Basic Operation 31 (272)

• Formatting the file system

4.10.3 System Files
The file system contains a set of files used for system configuration. These files, known as
“system files”, are regular ASCII files which can be altered using a standard text editor (such as
Notepad in Microsoft Windows). The format of these files are, with some exceptions, based on
the concept of keys, where each keys can be assigned a value, see below.

Example 1:

[Key1]
value of Key1

[Key2]
value of Key2

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

EtherNet/IP Implementation Details 32 (272)

5 EtherNet/IP Implementation Details
5.1 General Information

This chapter covers EtherNet/IP specific details in the Anybus implementation. Note that the use
of such functionality may require in-depth knowledge in EtherNet/IP networking internals and/or
information from the official EtherNet/IP and CIP specifications. In such cases, the people
responsible for the implementation of this product are expected either to obtain these
specifications to gain sufficient knowledge or limit their implementation in such a way that this is
not necessary. The EDS file must be changed to reflect all changes.

5.2 EtherNet/IP & CIP Implementation
By default, the module supports the generic CIP profile. Optionally, it is possible to re-route
requests to unimplemented CIP objects to the host application, thus enabling support for other
profiles etc.

To support a specific profile, perform the following steps:

1. Set up the identity settings in the EtherNet/IP Host Object according to profile requirements.

2. Implement the Assembly Mapping Object in the host application.

3. Set up the Assembly Instance Numbers according to profile requirements.

4. Enable routing of CIP messages to the host application in the EtherNet/IP Host Object.

5. Implement the required CIP objects in the host application.

See also...

• Using the Assembly Mapping Object (EBh), p. 33

• EtherNet/IP Host Object (F8h), p. 222 (Host Application Object), details for the command
Process_CIP_Object_Request.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

EtherNet/IP Implementation Details 33 (272)

5.3 Using the Assembly Mapping Object (EBh)
5.3.1 Introduction

This guide will describe how to map CIP instances to ADI data, using the assembly mapping
object (EBh).

5.3.2 Adding Data - The Application Data Object
According to the Anybus object model, all data that is used in the application must be
represented by application data instances (ADIs). ADIs are small portions of structured data, each
representing only one of three possible different types: variable, array or structure.

See the Application Data Object (FEh) in the Software Design Guide for more information.

Below is an example with 30 ADIs. Instances 1 - 6 and 30 are implemented in the application,
and 7 - 29 are not implemented.

Application Data Object (FEh) Instances

Instance # Implemented Order #

1 Yes 1
2 Yes 2
3 Yes 3
4 Yes 4
5 Yes 5
6 Yes 6
7...29 No -

30 Yes 7

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

EtherNet/IP Implementation Details 34 (272)

5.3.3 Grouping Data - The Assembly Mapping Object
The assembly mapping object makes it possible to create an arbitrary number of process data
sets, called assembly mappings. Each assembly mapping instance represents a different logical
set of process data, that can be chosen by the network and received over a single connection.

Every instance of the assembly mapping object, as seen below, contains an ADI map, referring to
an arbitrary number of ADIs.

The instance numbers can be set freely.

Assembly Mapping Object (EBh) Instances

Instance # Type ADI Map

1 Read 1, 2

2 Read 2, 3

10 Write 3, 4, 30

11 Write 4, 5

30 Read 5, 6

51 Write 6, 30

There are two object instance attributes in the assembly mapping object, called Write PD
Instance List and Read PD Instance List. These two attributes contain references to all read
instances and all write instances, respectively. The example above will automatically generate
the following content in these two attributes.

Name Attribute Values
Write PD Instance List 11 10, 11, 51

Read PD Instance List 12 1, 2, 30

The attributes Write PD Instance List and Read PD Instance List adopts the view of the network, e.g. an
input will produce data on the network and an output will consume data on the network.

Write PD Instance List will contain all assembly mapping object instances with type “Read”. Read PD
Instance List will contain all assembly mapping object instances with type “Write”.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

EtherNet/IP Implementation Details 35 (272)

5.3.4 Configuring CIP Assembly Numbers
The read and write instance list attributes in the assembly mapping object are bound to two
corresponding attributes in the EtherNet/IP host object, according to the following table.

This routes application data to CIP assembly data, by linking CIP instance numbers to assembly
mapping object instances.

The lists are matched index-wise, and must thus be of equal length.

Assembly Mapping Object Attribute Value Value EtherNet/IP Host Object Instance
Attribute

11 - Write PD Instance List 10 <—> 10 7 - Producing Instance Number
11 <—> 22
51 <—> 100

12 - Read PD Instance List 1 <—> 1 8 - Consuming Instance Number
2 <—> 2
30 <—> 150

For conformity with the CIP specification, both the Write_Assembly_Data and the Read_
Assembly_Data services must be implemented.

5.3.5 Going Forward
During the initialization phase, in the NW_INIT state, all write assemblies (e.g. the instances of
the assembly mapping object with type“write”) will be remapped to the write process data area.
For this to happen, the device will issue the Remap_ADI_Write_Area command to the application
data object in the host.

See the appendix about “Runtime Remapping of Process Data” in the Anybus CompactCom 40
Software Design Guide for more information.

When the network has been initialized, the device transitions from NW_INIT to the WAIT_
PROCESS state. When the device receives a forward open request, the producing/consuming
parameters in the request are verified and matched against the EtherNet/IP Host Object instance
numbers (producing/consuming)

If the verification is successful, the read process data is remapped and the device transitions to
the PROCESS_ACTIVE state. The I/O connection will then be established, and data can be
exchanged over the network.

5.4 Socket Interface (Advanced Users Only)
The built in socket interface allows additional protocols to be implemented on top of TCP/IP.

See also..

• Socket Interface Object (07h), p. 167 (Anybus Module Object)

• Message Segmentation, p. 182

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

EtherNet/IP Implementation Details 36 (272)

5.5 Diagnostics
The severity value of all pending events are combined (using logical OR) and copied to the
corresponding bits in the “Status” attribute of the Identity Object (CIP).

See also...

• Identity Object (01h), p. 113 (CIP Object)

• Diagnostic Object (02h), p. 149 (Anybus Module Object)

5.6 QuickConnect
The module supports the QuickConnect functionality. It is enabled in the EtherNet/IP Host Object.
The module fulfills Class A with a startup time of less than 180 ms, with 16 bytes of I/O data
mapped with parallel, SPI or shift register application interface.

See also ...

• EtherNet/IP Host Object (F8h), p. 222 (Host Application Object)

• TCP/IP Interface Object (F5h), p. 138 (CIP object)

5.7 CIP Safety
The Anybus CompactCom 40 EtherNet/IP IIoT Secure supports the CIP safety profile. This profile
makes it possible for a user to send data on a black channel interface, i.e. a safe channel over
EtherNet/IP using an add-on safety module, e.g. the IXXAT Safe T100. For an application to
support CIP safety, the Functional Safety Object (E8h, host application object) has to be
implemented. The Anybus CompactCom serial channel is used for the functional safety
communication. When this channel is used for the host application, a second separate serial
channel is implemented for the functional safety communication. See the Anybus CompactCom
Hardware Design Guide for more information.

See ...

• Functional Safety Module Object (11h), p. 194

• Functional Safety Object (E8h), p. 210

5.7.1 Safety Module Firmware Upgrade
The firmware of the connected safety module can be upgraded through the Anybus
CompactCom. The safety firmware (hiff file) has to be downloaded to the firmware directory in
the Anybus CompactCom. At restart, the Anybus CompactCom detects and validates the
firmware. Firmware upgrade in progress is indicated to the application by attribute #5 (instance
#1) in the Functional Safety Object (E8h), which is set to TRUE during the firmware upgrade. The
MS LED on the module will indicate by flashing red/green during firmware upgrade. The Anybus
CompactCom will need more time to initialize , please do not restart the module during this time.

5.7.2 Reset Request from Network
When a reset request arrives from the network, a delay of 1 s is introduced before the Anybus
CompactCom 40 EtherNet/IP IIoT Secure is reset, if CIP safety is enabled.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 37 (272)

6 Secure Web Server (HTTPS)
6.1 General Information

The built-in web server provides a flexible environment for end-user interaction and
configuration purposes. JSON and client-side scripting allow access to objects and file system
data, enabling the creation of advanced graphical user interfaces.

HTTPS is always enabled to ensure security. When the Anybus CompactCom is delivered, the
initial device identity certificate is enabled/activated for the HTTPS protocol to enable
communication before the device is configured by the end user.

The web pages are stored in the file system, which can be accessed through the file transfer
protocol (WebDAV) server. If necessary, the web server can be completely disabled in the
Ethernet Host Object (F9h). HTTPS is enabled by default and can be disabled in the Ethernet Host
Object (F9h), instance #1, attribute #3.

To be able to modify configuration files and web pages, the user has to enable admin
mode in the Ethernet Host Object (F9h), instance #1, attribute #7..

See also...

• File Transfer Protocol (WebDAV), p. 76

• JSON, p. 46

• Certificates, p. 13

• Ethernet Host Object (F9h), p. 231

6.2 Default Web Pages
The default pages are stored in \vfs. The first time the device is started, or after a factory reset
request to the Anybus Object (01h), they allow for initial setup and configuration. For more
information, see Initial Setup and Account Configuration, p. 14

Depending on the role of the user, the default web pages also may provide access to:

• Account configuration

• Certificate configuration

• Network configuration parameters

• Network status information

• Access to the host application ADIs

The default web pages are built of files stored in a virtual file system accessible through the vfs
folder. These files are read only and cannot be deleted or overwritten. The web server will first
look for a file in the web root folder. If not found it will look for the file in the vfs folder, making it
appear as the files are located in the web root folder. By loading files in the web root folder with
exactly the same names as the default files in the vfs folder, it is possible to customize the web
pages, replacing such as pictures, logos and style sheets. To be able to replace the default web
pages, the user has to enable admin mode in the Ethernet Host Object (F9h)

If a complete customized web system is designed and no files in the vfs folder are to be used, it
is recommended to turn off the virtual file system completely, see the File System Interface
Object.

See also ...

• File System, p. 30

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 38 (272)

• Anybus File System Interface Object (0Ah), p. 189

6.2.1 Network Configuration
The network configuration page provides interfaces for changing TCP/IP settings in the Network
Configuration Object.

Fig. 19

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 39 (272)

Fig. 20

The module needs to be reset for the TCP/IP and SMTP settings to take effect. The Ethernet
Configuration settings will take effect immediately.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 40 (272)

IP Configuration

The module needs a reset for any changes to take effect.

Name Description

DHCP Enable or disable DHCP
Default value: enabled

IP address The TCP/IP settings of the module
Default values: 0.0.0.0 Value ranges: 0.0.0.0 - 255.255.255.255Subnet mask

Gateway

Host name IP address or name
Max 64 characters

Domain name IP address or name
Max 48 characters

DNS 1 Primary and secondary DNS server, used to resolve host name
Default values: 0.0.0.0 Value ranges: 0.0.0.0 - 255.255.255.255DNS 2

Ethernet Configuration

Changes will take effect immediately.

Name Description

Port 1 Ethernet speed/duplex settings
Default value: autoPort 2

SMTP Settings

The module needs a reset before any changes take effect

Name Description

Server IP address or name
Max 64 characters

Port Port number on SMTP server to connect to (1-65535)
Default:
SMTP = 25
SMTP TLS = 465

TLS Enable or disable TLS
User Max 64 characters
Password Max 64 characters
Confirm password

OPC UA Settings

These settings configure instances #40 - #42 of the Network Configuration Object.

Name Description

TCP Port OPC UA TCP Port
Integer within the range 1 - 65535

Discovery Server URL OPC UA Discovery Server URL
0 - 80 characters

SecurityPolicy None Option to enable an Endpoint with SecurityPolicy None and UserIdentityToken with
SecurityPolicy None

MQTT Client Settings

These settings configure instances #50 - #52 and #55 - #57 of the Network Configuration Object.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 41 (272)

Name Description

Broker URL IP address or hostname
0 - 255 characters

TLS Disable or Enable
Client Identifier 0 - 64 characters
Keep Alive (s) Integer within the range 0 - 65535

Base topic 0 - 255 characters

Quality of service Enumeration within the range 0 - 2

MQTT Broker Account Settings

These settings configure instances #53 - #54 of the Network Configuration Object.

Name Description

Broker username 0 - 64 characters
Broker password 0 - 64 characters

6.2.2 Ethernet Statistics Page
The Ethernet statistics web page contains the following information:

Ethernet Link Description

Port 1 Speed: The current link speed.

Duplex: The current duplex configuration.

Port 2 Speed: The current link speed.

Duplex: The current duplex configuration.

Ethernet/IP Statistics Description

Established Class1 Connections Current number of established class1 connections
Established Class3 Connections Current number of established class3 connections
Connection Open Requests Number of received connection open requests

Connection Open Format Rejects Connection open requests rejected due to request format error

Connection Open Resource Rejects Connection open requests rejected due to lack of resources

Connection Open Other Rejects Connection open requests rejected due to other reasons

Connection Close Requests Number of received connection open requests

Connection Close Format Rejects Connection close requests rejected du to request format error

Connection Close Other Rejects Connection close requests rejected due to other reasons

Connection Timeouts Number of connection timeouts

MQTT State and Statistics Description

Broker address Actual value of Network Configuration Object, Instance #50, Broker URL

Connection status State of the connection to the configured broker

Disconnected: MQTT not started

Connecting: Connecting to the broker

Connected: Connected to the broker
Rejected - <return description> Connection rejected by the broker,

description of the received return code

Erroneous broker address The broker address was not found on the
netowrk or of an invalid format

Failed Connecting to the broker failed due to en
internal error or a network error

Unexpected disconnections Number of unexpected disconnections of the broker connection

Connect errors Number of failed connection attempts

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 42 (272)

MQTT State and Statistics Description

Successful publications Number of successful publications

Publication errors too large Number of publications too large to be transmitted to the network

Publication errors other Number of publications that failed to be transmitted to the network

Interface Counters Description

In Octets: Received bytes.

In Ucast Packets: Received unicast packets.

In NUcast packets: Received non unicast packets (broadcast and multicast).

In Discards: Received packets discarded due to no available memory buffers.

In Errors: Received packets discarded due to reception error.

In Unknown Protos: Received packets with unsupported protocol type.

Out Octets: Sent bytes.

Out Ucast packets: Sent unicast packets.

Out NUcast packets: Sent non unicast packets (broadcast and multicast).

Out Discards: Outgoing packets discarded due to no available memory buffers.

Out Errors: Transmission errors.

Media Counters Description

Alignment Errors Frames received that are not an integral number of octets in length.

FCS Errors Frames received that do not pass the FCS check.

Single Collisions Successfully transmitted frames which experienced exactly one collision.

Multiple Collisions Successfully transmitted frames which experienced more than one collision.

SQE Test Errors Number of times SQE test error messages are generated.
(Not provided with current PHY interface.)

Deferred Transmissions Frames for which first transmission attempt is delayed because the medium is
busy.

Late Collisions Number of times a collision is detected later than 512 bit-times into the
transmission of a packet.

Excessive Collisions Frames for which a transmission fails due to excessive collisions.
MAC Receive Errors Frames for which reception of an interface fails due to an internal MAC sublayer

receive error.
MAC Transmit Errors Frames for which transmission fails due to an internal MAC sublayer receive

error.
Carrier Sense Errors Times that the carrier sense condition was lost or never asserted when

attempted to transmit a frame.

Frame Size Too Long Frames received that exceed the maximum permitted frame size.

Frame Size Too Short Frames received that are shorter than lowest permitted frame size.

6.3 Server Configuration
HTTPS is configured in the file http.cfg that is present in the vfs directory. The file can be
overridden by creating http.cfg in the system root.

By default the three roles are configured to have HTTPS access according to this:

Role Description/Default Configuration

administrator • session timeout of 15 minutes (900 seconds)

• full HTTPS access to web and API content

operator • session time out of 15 minutes (900 seconds)

• full HTTPS access to ADI API, meaning that an operator can get and set ADI data

• access to module and network status information

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 43 (272)

Role Description/Default Configuration

The operator can view the module and network status information, but not set any system
configuration. The operator is not granted any access to the security settings.

user • no session timeout

• access to module and network status information

$all Reserved role.
In order for non-authenticated users to access the login page, access is given to non-
authenticated users to access images, stylesheets, some java script functionality, login and
logoff pages as well as the “first run page”.

The default HTTPS configuration is stored in \vfs\http.cfg. It has the following content:

Content Description

[ServerName]
WebServerName

Configures the web server name included in the
HTTP header of the responses from the module.

[FileTypes]
FileType1:ContentType1
FileType2:ContentType2
...
FileTypeN:ContentTypeN

A list of file extensions and their reported content
type.
The default content types are listed in the table
below.

[IndexPage]
\web\index.html

Path to start page that will be returned if the url
is empty.

[LoginPage]
\web\login.html

Path to a web page that will be returned if login is
required for access to a url.

[FirstRunPage]
\web\firstrun.html

Path to a web page that will be returned if login is
required for access to a url, but no accounts are
configured.

[SessionTimeout]
administrator:900
operator:900
user:0

Configures the session timeout per role (seconds).

[Access]
administrator:\web
administrator:\api

Configures the access rights for each role. It is
possible to give access to specific files or folders.
Access to a folder gives access to all contents of
the folder and subfolders.
The default configuration of the device includes
the three roles mentioned here. A custom
configuration may change these roles.

operator:\web\
operator:\api\adi\
operator:\api\module\status\
operator:\api\network\status\

user:\web\
user:\api\adi\status\
user:\api\module\status\
user:\api\network\status\

$all:\web\img\
$all:\web\css\
$all:\web\login.html
$all:\web\logoff.html
$all:\web\firstrun.html
$all:\web\js\csrf.js
$all:\web\js\jquery-1.9.1.js
$all:\api\security\config\addfirstaccount.json

$all is used for content that all shall have access
to, including non-authenticated users.

See also...

• File Transfer Protocol (WebDAV), p. 76

• JSON, p. 46

• Ethernet Host Object (F9h), p. 231

6.3.1 Default Content Types
By default, the following content types are recognized by their file extension:

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 44 (272)

File Extension Reported Content Type

htm, html, shtm text/html

gif image/gif

jpeg, jpg, jpe image/jpeg
png image/x-png

js application/x-javascript

bat, txt, c, h, cpp, hpp text/plain

zip application/x-zip-compressed
exe, com application/octet-stream

wml text/vnd.wap.wml

wmlc application/vnd.wap.wmlc

wbmp image/vnd.wap.wbmp

wmls text/vnd.wap.wmlscript

wmlsc application/vnd.wap.wmlscriptc

xml text/xml

pdf application/pdf
css text/css

6.4 Login
Login to the Anybus CompactCom is done by submitting a form with the following content to
/login.cgi:

Username Name of user to log in. Max 64 ASCII characters.

Password Used to authenticate a user for a specific account. Max 64 ASCII characters

Target Optional.

If access is granted, the client is redirected to this location. Please note that if the user is
not authorized to access “Target”, the user will still be logged in, but without access to
“Target”.

The web server of the Anybus CompactCom will set the following cookies after a successful login:

Cookie Description

wto Contains creation time and user role. Signed by the server and cannot be modified by the client. Must
accompany all requests. (Automatically added by all browsers).

csrf Used to protect from CSRF attacks. The value of this cookie must be included as an HTML parameter
(csrf) in all state-changing

role The role of the user currently logged in. Can be used by the client web pages. (Information to client,
not used by server)
This cookie must be base64 encoded.

user The name of the user currently logged in. Can be used by the client web pages. (Information to client,
not used by server)
This cookie must be base64 encoded.

stmo The session timeout (in seconds) configured for the currently logged in role. Can be used by the client
web pages. (Information to client, not used by server)

sret Session retriggered. The value changes every time the session is used. Can be used by client web
pages to trigger a timer used to know when a web session is going to time out. (Information to client,
not used by server)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Secure Web Server (HTTPS) 45 (272)

6.5 Logout
Logout is done by submitting a form with the following content to /logout.cgi:

Target Optional. The client is redirected to this location.

/logout.cgi deletes all session cookies.

6.6 Cross Site Request Forgery (CSRF) Protection
The Anybus CompactCom web server uses a token based authentication system, where the
authentication token is stored in a cookie (wto). Token based systems are prone to “Cross Site
Request Forgery” (CSRF) attacks. The default web server includes protection against this type of
attacks. If you are to develop custom web pages, see Cross Site Request Forgery (CSRF)
Protection, p. 47 (JSON) for more information.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 46 (272)

7 JSON
7.1 General Information

JSON is an acronym for JavaScript Object Notation and an open standard format for storing and
exchanging data in an organized and intuitive way. In Anybus CompactCom, it is used to transmit
data objects between the webserver in the Anybus CompactCom and a web application. The
object members are unordered and can appear in any order. JavaScripts are used to create
dynamic web pages to present the values. Optionally, a callback may be passed to the GET-
request for JSONP output.

A simple example of how to create a web page using JSON is added at the end of this chapter.

For easier security configuration all JSON functionality is accessed through the following URL:
api/[functionality]/[status/config]/[function].json.

URL Part Description

functionality Categorizes the functionality that the JSON function accesses. The functionality may be split
into multiple parts for sub-functionality.

status/config Indicates if the function is only reading data or also can set data/configuration.

function JSON function

7.1.1 Encoding
JSON requests shall be UTF-8 encoded. The module will interpret JSON requests as UTF-8
encoded, while all other HTTP requests will be interpreted as ISO-8859-1 encoded. All JSON
responses, sent by the module, are UTF-8 encoded, while all other files sent by the web server
are encoded as stored in the file system.

7.1.2 Access

Be careful not to provide JSON API access to unauthorized users.

Account configuration is done in a file called http.cfg in the root directory . The file is described in
the “Web Server” section in this document.

7.1.3 Security
Account configuration, certificate installation and usage configuration can be performed using
the JSON API. All security JSON functions are accessed through the api/security/ URL.

7.1.4 Error Response
If the module fails to parse or process a request, the response will contain an error object with
an Anybus error code:

{
"error" : 02

}

The Anybus error codes are listed in the Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 47 (272)

7.2 Cross Site Request Forgery (CSRF) Protection
The Anybus CompactCom web server uses a token based authentication system, where the
authentication token is stored in a cookie (wto). Token based systems are prone to “Cross Site
Request Forgery” (CSRF) attacks.

In order to protect against CSRF attacks, the web server will always set a cookie named “csrf”
which will be stored in the browser. Each request, submitting data which will have a state
changing effect on the Anybus CompactCom, needs to read the value of the cookie and include it
as a parameter named “csrf” in the request. The Anybus CompactCom module will only accept
the request if the value in the csrf parameter matches the value in the csrf cookie. For a
complete list of which API functions that are state changing see Supported JSON functions, p. 48.

This means that users creating web pages submitting state changing requests must handle this.
This could for example be done by adding a hidden HTML input named “csrf” to every submitted
HTML form. At submission of the HTML form, using Javascript, the value of the csrf input shall be
populated with the data read from the csrf cookie.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 48 (272)

7.3 Supported JSON functions
The table below lists all supported JSON functions in the Anybus CompactCom 40 EtherNet/IP
IIoT Secure. The functions, that are considered state changing, require CSRF protection.

Function State Changing

api/adi/status/info.json No

api/adi/status/data.json No

api/adi/status/metadata.json No

api/adi/status/metadata2.json No

api/adi/status/enum.json No

api/adi/config/update.json Yes

api/module/status/info.json No

api/network/status/ethstatus.json No

api/network/status/ipstatus.json No

api/network/config/ethconf.json Yes

api/network/config/ipconf.json Yes

api/network/config/nwconf.json Yes

api/network/status/ifcounters.json No

api/network/status/mediacounters.json No

api/network/status/nwstats.json No

api/services/config/smtp.json Yes

api/security/status/accounts.json No

api/security/config/addfirstaccount.json Yes

api/security/config/addaccount.json Yes

api/security/config/deleteaccount.json Yes

api/security/status/status.json No

api/security/status/cacerts.json No

api/security/status/devcerts.json No

api/security/status/protocolinfo.json No

api/security/config/installcacert.json Yes

api/security/config/installdevcert.json Yes

api/security/config/deletecacert.json Yes

api/security/config/deletedevcert.json Yes

api/security/config/cfgcertusage.json Yes

api/security/config/shicpconf.json Yes

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 49 (272)

7.4 JSON API
7.4.1 ADI

info.json

GET api/adi/status/info.json[?callback=<function>]

This object holds information about the ADI JSON interface. This data is static during runtime.

Name Data Type Note

dataformat Number 0 = Little endian
1 = Big endian
(Affects value, min and max representations)

numadis Number Total number of ADIs
webversion Number Web/JSON API version

JSON response example:

{
"dataformat": 0,
"numadis": 123,
"webversion": 1

}

data.json

GET api/adi/status/data.json?offset=<offset>&count=<count>
[&callback=<function>]

GET api/adi/status/data.json?inst=<instance>&count=<count>
[&callback=<function>]

These function calls fetch a sorted list of up to <count> ADIs values, starting from <offset> or
<instance>. The returned values may change at any time during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. <count>
number of existing ADI values will be returned. I.e. non-existing ADIs
are skipped.

inst Number Instance number of first requested ADI.
<count> number of ADI values is returned. A null value will be returned
for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description
— Array of Strings Sorted list of string representations of the ADI value attributes

JSON response example (using offset):

[
"FF",
"A201",
"01FAC105"

]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 50 (272)

JSON response example (using inst):

[
"FF",
"A201",
null,
null,
"01FAC105"

]

metadata.json

GET api/adi/status/metadata.json?offset=<offset>&count=<count>
[&callback=<function>]

GET api/adi/status/metadata.json?inst=<instance>&count=<count>
[&callback=<function>]

These function calls fetch a sorted list of metadata objects for up to <count> ADIs, starting from
<offset> or <instance>.

The returned information provided is a transparent representation of the attributes available in
the host Application Data object (FEh). See the Anybus CompactCom 40 Software Design Guide
for more information about the content of each attribute.

The ADI metadata is static during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. Metadata
objects for <count> number of existing ADI will be returned. I.e. non-
existing ADIs are skipped.

inst Number Instance number of first requested ADI.
Metadata objects for <count> number of ADI values are returned. A
null object will be returned for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description

instance Number -

name String May be NULL if no name is present.

numelements Number -

datatype Number -

min String Hex formatted string, see Hex Format Explained, p. 73 for more
information.
May be NULL if no minimum value is present.

max String Hex formatted string, see Hex Format Explained, p. 73 for more
information.
May be NULL of no maximum value is present.

access Number Bit 0: Read access
Bit 1: Write access

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 51 (272)

JSON response example (using offset):

[
{

"instance": 1,
"name": "Temperature threshold",
"numelements": 1,
"datatype": 0,
"min": "00",
"max": "FF",
"access": 0x03

},
{

...
}
]

JSON response example (using inst):

[
{

"instance": 1,
"name": "Temperature threshold",
"numelements": 1,
"datatype": 0,
"min": "00",
"max": "FF",
"access": 0x03

},
null,
null
{

...
}
]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 52 (272)

metadata2.json

GET api/adi/status/metadata2.json?offset=<offset>&count=<count>
[&callback=<function>]

GET api/adi/status/metadata2.json?inst=<instance>&count=<count>
[&callback=<function>]

This is an extended version of the metadata function that provides complete information about
the ADIs. This extended version is needed to describe more complex data types such as
Structures.

The information provided is a transparent representation of the attributes available in the host
Application Data object (FEh). See the Anybus CompactCom 40 Software Design Guide for more
information about the content of each attribute.

The ADI metadata is static during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. Metadata
objects for <count> number of existing ADI will be returned. I.e. non-
existing ADIs are skipped.

inst Number Instance number of first requested ADI.
Metadata objects for <count> number of ADI values are returned. A
null object will be returned for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description

instance Number -

numelements Array of umbers -

datatype Array of Numbers Array of datatypes.
For Structures and Variables, each array element defines the data type
of the corresponding element of the instance value. For Arrays, one
array element defines the data type for all elements of the instance
value.

descriptor Array of descriptors.
For Structures and Variables, each array element defines the descriptor
of the corresponding element of the instance value. For Arrays, one
array element defines the descriptor for all elements of the instance
value.

name May be NULL if no name is present.

min String Hex formatted string, see Hex Format Explained, p. 73 for more
information.
May be NULL if no minimum value is present.

max String Hex formatted string, see Hex Format Explained, p. 73 for more
information.
May be NULL of no maximum value is present.

default String Hex formatted string, see Hex Format Explained, p. 73 for more
information.
May be NULL of no default value is present.

numsubelements Array of Numbers For Structures and Variables each array element defines the number of
subelements of the corresponding element of the instance value.
May be NULL if not present.

elementname Array of Strings Array of names, one for each instance value element.
May be NULL if not present.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 53 (272)

JSON response example (using offset):

[
{

"instance": 1,
"numelements": 1,
"datatype": [0],
"descriptor": [9],
"name": "Temperature threshold",
"max": "FF",
"min": "00",
"default": "00",
"numsubelements": null
"elementname": null

},
{

...
}
]

JSON response example (instance):

[
{

"instance": 1,
"numelements": 1,
"datatype": [0],
"descriptor": [9],
"name": "Temperature threshold",
"max": "FF",
"min": "00",
"default": "00",
"numsubelements": null
"elementname": null

},
null,
null
{

...
}
]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 54 (272)

enum.json

GET api/adi/status/enum.json?inst=<instance>[&value=<element>]
[&callback=<function>]

This function call fetches a list of enumeration strings for a specific instance.

The ADI enum strings are static during runtime.

Request data:

Name Data Type Description

inst Number Instance number of the ADI to get enum string for.

value Number Optional. If given only the enumstring for the requested <value> is
returned.

callback String Optional. A callback function for JSONP output.

Response data:

Name Data Type Description

string String String representation for the corresponding value.

value Number Value corresponding to the string representation.

JSON response example:

[
{

"string": "String for value 1",
"value": 1

},
{

"string": "String for value 2",
"value": 2

},
{

...
}
]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 55 (272)

update.json

POST api/adi/config/update.json

Form data:

inst=<instance>&value=<data>[&elem=<element>][&callback=<function>]

This function updates the value attribute of an ADI.

Request data:

Name Data Type Description

inst Number Instance number of the ADI
value String Value to set.

If the value attribute is a number it shall be hes formatted, see Hex
Format Explained, p. 73 for more information.

elem Number Optional.
If specified only a single element of the ADI value is set. Then <data>
shall only contain the value of the specified <element>.

callback String Optional.
A callback function for JSONP output.

Response data:

Name Data Type Note

result Number 0 = success
The Anybus CompactCom error codes are used. Please see the Anybus
CompactCom 40 Software Design Guide.

{
"result" : 0

}

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 56 (272)

7.4.2 Module
info.json

GET api/module/status/info.json

Response data:

Name Data Type Description

modulename String -

serial String 32 bit hex ASCII

fwver Array of Number (major, minor, build)

uptime Array of Number The uptime is implemented as an array of two 32 bit values: [high, low]
milliseconds (ms)

cpuload Number CPU load in %

fwvertext String Firmware version in text

vendorname String Vender name (Application Object (FFh), instance attribute #8)

hwvertext String Hardware version in text

networktype Number Network type (Network Object (03h), instance attribute #1)

JSON response example:

{
"modulename": "ABCC M40",
"serial": "ABCDEF00",
"fwver": [1, 5, 0],
"uptime": [5, 123456],
"cpuload": 55,
"fwvertext": "1.05.02",
"vendorname": "HMS Industrial Networks",
"hwvertext": "2",
"networktype": 133,

}

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 57 (272)

7.4.3 Network
ethstatus.json

GET api/network/status/ethstatus.json.

Name Data Type Description
mac String 6 byte hex

comm1 Object See object definition in the table below

comm2 Object See object definition in the table below

Comm Object Definition:

Name Data Type Description

link Number 0: No link
1: Link

speed Number 0: 10 Mbit
1: 100 Mbit

duplex Number 0: Half
1: Full

JSON response example:

{
"mac": "003011FF0201",
"comm1": {

"link": 1,
"speed": 1,
"duplex": 1

},
"comm2": {

"link": 1,
"speed": 1,
"duplex": 1

}
}

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 58 (272)

ipstatus.json & ipconf.json

These two functions share the same data format. The function ipconf.json returns the configured
IP settings, and ipstatus.json returns the actual values that are currently used. ipconf.json can
also be used to alter the IP settings.

GET api/network/status/ipstatus.json

or

GET api/network/config/ipconf.json

Name Data Type Note

dhcp Number -

addr String -

subnet String -

gateway String -

dns1 String -

dns2 String -

hostname String -

domainname String -

{
"dhcp": 0,
"addr": "192.168.0.55",
"subnet": "255.255.255.0",
"gateway": "192.168.0.1",
"dns1": "10.10.55.1",
"dns2": "10.10.55.2"
"hostname": "abcc123",
"domainname": "hms.se"

}

To change IP settings, use network/ipconf.json. It accepts any number of arguments from the list
above. Values should be in the same format.

Example:

GET api/network/config/ipconf.json?dhcp=0&addr=10.11.32.2
&hostname=abcc123&domainname=hms.se

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 59 (272)

ethconf.json

GET api/network/config/ethconf.json

Name Data Type Note
mac String -

comm1 Number -

comm2 Number Only present if two Ethernet ports are activated in the module.

The values of “comm1” and “comm2” are read from the Network Configuration object, instances
#7 and #8.

{
"mac": [00, 48, 17, 255, 2, 1],
"comm1": 0,
"comm2": 4

}

The parameters “comm1” and “comm2” are configurable by adding them as arguments to the
GET request:

GET network/ethconf.json?comm1=0&comm2=4

The parameters “comm1” and “comm2” may hold an error object with Anybus error code if the
module fails processing the request:

{
"mac": [00, 48, 17, 255, 2, 1],
"comm1": 0,
"comm2": { error: 14 },

}

The Anybus CompactCom error codes are used. Please see the Anybus CompactCom 40 Software
Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 60 (272)

ifcounters.json

GET api/network/status/ifcounters.json?port=<port>

• Valid values for the argument <port> are 0, 1, and 2.

• Port number 0 option refers to the internal port (CPU port).

• Port number 2 option is only valid if two Ethernet ports are activated in the module.

Name Data Type Description

inoctets Number IN: bytes

inucast Number IN: unicast packets

innucast Number IN: broadcast and multicast packets

indiscards Number IN: discarded packets

inerrors Number IN: errors

inunknown Number IN: unsupported protocol type

outoctets Number OUT: bytes

outucast Number OUT: unicast packets

outnucast Number OUT: broadcast and multicast packets

outdiscards Number OUT: discarded packets

outerrors Number OUT: errors

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 61 (272)

mediacounters.json

GET api/network/status/mediacounters.json?port=<port>

The argument <port> is either 1 or 2.

Port number 2 option is only valid if two Ethernet ports are activated in the module.

Name Data Type Description

align Number Frames received that are not an integral number of octets in
length

fcs Number Frames received that do not pass the FCS check

singlecoll Number Successfully transmitted frames which experienced exactly one
collision

multicoll Number Successfully transmitted frames which experienced more than
one collision

latecoll Number Number of collisions detected later than 512 bit times into the
transmission of a packet

excesscoll Number Frames for which transmissions fail due to excessive collisions
sqetest Number Number of times SQE test error is generated

deferredtrans Number Frames for which the first transmission attempt is delayed
because the medium is busy

macrecerr Number Frames for which reception fails due to an internal MAC
sublayer receive error

mactranserr Number Frames for which transmission fails due to an internal MAC
sublayer transmit error

cserr Number Times that the carrier sense was lost or never asserted when
attempting to transmit a frame

toolong Number Frames received that exceed the maximum permitted frame
size

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 62 (272)

nwstats.json

GET api/network/status/nwstats.json

This object lists available statistics data. The data available depends on the product.

Example output:

[]
or
[{ "identifier": "eipstats", "title": "EtherNet/IP Statistics" }]

Get network specific statistics (<ID> is an “identifier” value returned from the previous
command):

GET api/network/status/nwstats.json?get=<ID>

“eipstats”

[
{ "name": "Established Class1 Connections", "value": 0 },
{ "name": "Established Class3 Connections", "value": 1 }
{ "name": "Connection Open Request", "value": 0 },
{ "name": "Connection Open Format Rejects", "value": 0 },
{ "name": "Connection Open Resource Rejects", "value": 0 },
{ "name": "Connection Open Other Rejects", "value": 0 },
{ "name": "Connection Close Requests", "value": 0 },
{ "name": "Connection Close Format Rejects", "value": 0 },
{ "name": "Connection Other Rejects", "value": 0 },
{ "name": "Connection Timeouts", "value": 0 },

]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 63 (272)

“eitstats”

[
{ "name": "Modbus Connections", "value": 0 },
{ "name": "Connection ACKs", "value": 1 }
{ "name": "Connection NACKs", "value": 0 },
{ "name": "Connection Timeouts", "value": 0 },
{ "name": "Process Active Timeouts", "value": 0 },
{ "name": "Processed messages", "value": 0 },
{ "name": "Incorrect messages", "value": 0 },

]

“bacnetipstats”

[
{ "name": "Unconfirmed server requests received", "value": 0 },
{ "name": "Unconfirmed server requests sent", "value": 1 }
{ "name": "Unconfirmed client requests sent", "value": 0 },

]

“bacnetaplserverstats”

[
{ "name": "Active transactions", "value": 0 },
{ "name": "Max Active transactions", "value": 1 }
{ "name": "Tx segments sent", "value": 0 },
{ "name": "Tx segment ACKs received", "value": 0 },
{ "name": "Tx segment NAKs received", "value": 0 },
{ "name": "Rx segments received", "value": 0 },
{ "name": "Rx segment ACKs sent", "value": 0 },
{ "name": "Duplicate Rx segment ACKs sent", "value": 0 },
{ "name": "Rx segment NAKs sent", "value": 0 },
{ "name": "Confirmed transactions sent", "value": 0 },
{ "name": "Confirmed transactions received", "value": 0 },
{ "name": "Tx segment timeouts", "value": 0 },
{ "name": "Rx segment timeouts", "value": 0 },
{ "name": "Implicit deletes", "value": 0 },
{ "name": "Tx timeout deletes", "value": 0 },
{ "name": "Rx timeout deletes", "value": 0 },
{ "name": "Tx aborts received", "value": 0 },
{ "name": "Rx aborts received", "value": 0 },
{ "name": "Transaction aborts sent", "value": 0 },
{ "name": "Transaction rejects sent", "value": 0 },
{ "name": "Transaction errors sent", "value": 0 },

]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 64 (272)

“bacnetaplclientstats”

[
{ "name": "Active transactions", "value": 0 },
{ "name": "Max Active transactions", "value": 1 }
{ "name": "Tx segments sent", "value": 0 },
{ "name": "Tx segment ACKs received", "value": 0 },
{ "name": "Tx segment NAKs received", "value": 0 },
{ "name": "Rx segments received", "value": 0 },
{ "name": "Rx segment ACKs sent", "value": 0 },
{ "name": "Duplicate Rx segment ACKs sent", "value": 0 },
{ "name": "Rx segment NAKs sent", "value": 0 },
{ "name": "Confirmed transactions sent", "value": 0 },
{ "name": "Confirmed transactions received", "value": 0 },
{ "name": "Tx segment timeouts", "value": 0 },
{ "name": "Rx segment timeouts", "value": 0 },
{ "name": "Implicit deletes", "value": 0 },
{ "name": "Tx timeout deletes", "value": 0 },
{ "name": "Rx timeout deletes", "value": 0 },
{ "name": "Tx aborts received", "value": 0 },
{ "name": "Rx aborts received", "value": 0 },
{ "name": "Transaction aborts sent", "value": 0 },
{ "name": "Transaction rejects sent", "value": 0 },
{ "name": "Transaction errors sent", "value": 0 },

]

“bacnetalarmstats”

[
{ "name": "COV Active subscriptions", "value": 0 },
{ "name": "COV Max active subscriptions", "value": 1 }
{ "name": "COV Lifetime subscriptions", "value": 0 },
{ "name": "COV Confirmed resumes", "value": 0 },
{ "name": "COV Unconfirmed resumes", "value": 0 },
{ "name": "COV Confirmed notifications sent", "value": 0 },
{ "name": "COV Unconfirmed notifications sent", "value": 0 },
{ "name": "COV Confirmed notification errors", "value": 0 },
{ "name": "AE Active events", "value": 0 },
{ "name": "AE Active NC recipients", "value": 0 },
{ "name": "AE Confirmed resumes", "value": 0 },
{ "name": "AE UnConfirmed resumes", "value": 0 },
{ "name": "AE Confirmed notifications sent", "value": 0 },
{ "name": "AE UnConfirmed notifications sent", "value": 0 },
{ "name": "AE Confirmed notification errors", "value": 0 },
{ "name": "AE DAB lookup errors", "value": 0 },

]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 65 (272)

“eplifcounters”

[
{ "name": "In Octets", "value": 22967 },
{ "name": "In Ucast Packets", "value": 121 }
{ "name": "In NUcast Packets", "value": 31 },
{ "name": "In Discards", "value": 0 },
{ "name": "In Errors", "value": 0 },
{ "name": "In Unknown Protos", "value": 0 },
{ "name": "Out Octets", "value": 169323 },
{ "name": "Out Ucast Packets", "value": 168 },
{ "name": "Out NUcast Packets", "value": 16 },
{ "name": "Out Discards", "value": 0 },
{ "name": "Out Errors", "value": 0 },

]

“ectstats”

[
{ "name": "Logical EoE port link", "value": "Yes" },
{ "name": "Invalid frame counter IN port", "value": 1 }
{ "name": "Rx error counter IN port", "value": 1 },
{ "name": "Forwarded error counter IN port", "value": 1 },
{ "name": "Lost link counter IN port", "value": 1 },
{ "name": "Invalid frame counter OUT port", "value": 1 },
{ "name": "Rx error counter OUT port", "value": 1 },
{ "name": "Forwarded error counter OUT port", "value": 1 },
{ "name": "Lost link counter OUT port", "value": 1 },

]

“eoeifcounters”

[
{ "name": "In Octets", "value": 22967 },
{ "name": "In Ucast Packets", "value": 121 }
{ "name": "In NUcast Packets", "value": 31 },
{ "name": "In Discards", "value": 0 },
{ "name": "In Errors", "value": 0 },
{ "name": "In Unknown Protos", "value": 0 },
{ "name": "Out Octets", "value": 169323 },
{ "name": "Out Ucast Packets", "value": 168 },
{ "name": "Out NUcast Packets", "value": 16 },
{ "name": "Out Discards", "value": 0 },
{ "name": "Out Errors", "value": 0 },

]

“pnpof”

[
{ "name" : "Port 1 Temperature (C)", "value" : "41.37" },
{ "name" : "Port 1 Power Budget (dB)", "value" : "23.0" },
{ "name" : "Port 1 Power Budget Status", "value" : "OK" },
{ "name" : "Port 2 Temperature (C)", "value" : "40.57" },
{ "name" : "Port 2 Power Budget (dB)", "value" : "0.0" },
{ "name" : "Port 2 Power Budget Status", "value" : "OK" }

]

nwconf.json

GET api/network/config/nwconf.json

This is a product specific JSON function that can provide network specific configurations. The
function lists available configuration options.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 66 (272)

Response:

The response is a list with identifiers and titles of possible network specific configuration groups.

Example when product does not support any network specific configuration:

[]

Example when product supports OPC UA configurations:

[[{ "identifier": "opcua", "title": "OPC UA Configuration" }]

Example when product supports OPC UA and FOO configurations:

[
{ "identifier": "opcua", "title": "OPC UA Configuration" },
{ "identifier": "foo", "title": "FOO Configuration" },

]

To get current configuration for a specific configuration group use:

GET network/nwconf.json?get=[identifier]

The response is a list of current configurations of “identifier” containing:

name Name of configuration parameter, used to identify the parameter on set requests.

value Configuration value

min Optional: Min value to accept.

max Optional: Max value to accept

type Optional: Indicate the HTML input type preferred to show the value

maxlength Optional: Indicates the max length of value.enumstrings

enumstrings Optional: For enum settings. A list of selectable value strings

Example to get an OPC UA configuration:

GET network/nwconf.json?get=opcua

[
{ "name" : "TCP port", "value" : 4840 },
{ "name" : "Discovery server URL", "value" : "", "type" : "text" }

]

Example to get an MQTT configuration:

GET network/nwconf.json?get=mqtt

[
{"name":"Broker URL","value":"","type":"text","maxlength":64},,
{"name":"Client identifier","value":"","type":"text","maxlength":23},
{"name":"Keep alive time (s)","value":60,"type":"number","min":0,

"max":65535},
{"name":"Broker username","value":"","type":"text","maxlength":16},
{"name":"Broker password","value":"","type":"password",

"maxlength":32},
{"name":"Base topic","value":"","type":"text","maxlength":128},
{"name":"Quality of service","value":0,"enumstrings":

["QoS 0","QoS 1","QoS 2"]}
]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 67 (272)

To set current configuration for a specific configuration group use:

GET network/nwconf.json?set=[identifier]¶m1=value1¶m2=value2…

The response contains:

result The result code is a standard ABCC (ABP) error code (0=Success).

message Optional; Indicates a response message to the user.

Example to set OPC UA TCP Port:

GET network/nwconf.json?set=opcua&TCP port=4841

{ "result" : 0 }

7.4.4 Services
api/services/config/smtp.json

GET api/services/config/smtp.json

Password is not returned when retrieving the settings.

Name Data Type Note
server String Server URL, 64 characters in the format

[<protocol>://]<server address>[:<port>].
See SMTP Server URL format, p. 156 for URL format options.

user String -

[
{ "server": "192.168.0.55"},
{ "user": "test"}

]

Set:

Form data:

[
[server=192.168.0.56]&[user=test2]&[password=secret],

]

7.4.5 Security
This section describes the JSON API for account configuration, certificate installation and usage
configuration.

status.json

GET api/security/status/status.json

This object is used to get general security status information,

Response data:

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 68 (272)

Name Data Type Note

storage:total Integer Number of bytes totally available for security content storage

storage:free Integer Number of bytes currently available for security contents
storage

JSON response example:

{"storage":
{

"total":241664",
"free":151552

},
"device_certificates":

"slots":16,
"free":15

}
}

accounts.json

GET api/security/status/accounts.json

This object is used to receive an array of all configured accounts.

Response data:

Name Data Type Note
username String Account username

role String Account role

JSON response example:

{
"<username1>":{"role" : "account1 role" },
"<username2>":{"role" : "account2 role" },
,,,

"<usernameN>":{"role" : "accountX role" },
}

addfirstaccount.json & addaccount.json

GET api/security/config/addfirstaccount.json?
Username=<username>&Password=<password>&Role=<role>

GET api/security/config/addaccount.json?
Username=<username>&Password=<password>&Role=<role>

The function addfirstcount.json is used from a “first run page” to create the first user account. It
will only be accepted if no previous accounts exist.

The function addaccount.json is used to add a user account.

Request data:

Name Data Type Note

Username String Account username (see Account Configuration)

Password String Account password (see Account Configuration)

role String Account role (see Account Configuration)

JSON success response example:

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 69 (272)

{
"result" : 0

}

JSON failure response example:

Name Data Type Note

result Integer The result of the operation (0 = success)

errordesc String A readable description of the fault. Included in case of error.

{
"result" : x,
"errordesc" : "Failure description"

}

deleteaccount.json

GET api/security/config/deleteaccount.json?Username=<username>

This function deletes a user account.

Request data:

Name Data Type Note

Username String User name of account to delete (see Account Configuration)

JSON success response example:

{
"result" : 0

}

JSON failure response example:

Name Data Type Note

result Integer The result of the operation (0 = success)

errordesc String A readable description of the fault. Included in case of error.

{
"result" : x,
"errordesc" : "Failure description"

}

protocolinfo.json

GET api/security/status/protocolinfo.json

This function is used to get information about number of certificates that can be configured for
each supported security protocol.

JSON response example:

{
"https" : { "max_certs" : 2 },
…

"protocol_x" : { "max_certs" : 1 }
}

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 70 (272)

7.4.6 cacerts.json & devcerts.json
GET api/security/status/cacerts.json
GET api/security/status/devcerts.json

The function cacerts.json gets an array of descriptions of installed CA certificates.

The function devcerts.json gets an array of descriptions of installed device certificates.

Response data:

For properties not existing in the certificate null will be given as value. See “nscerttype” below.

For each certificate in the list, the following attributes are given:

Attribute Name Data Type Description

certificate:version Integer Certificate version

certificate:serial String Certificate serial number

certificate:subject String (comma
separated)

Certificate subject name

certificate:issuer String (comma
separated)

Certificate issuer name

certificate:expires DateString (see
description below)

Date when certificate expires

certificate:issued DateString (see
description below)

Date when certificate was created

certificate:sigalg String Algorithm certificate is signed with

certificate:keytype String Type of the key used by this certificate

certificate:keysize Integer Size of the key (number of bits)

certificate:basicconst String Certificate basic constraints

certificate:subjaltname String (comma
separated)

Subject alternate namesCould be DNS names and/or IP
Numbers

certificate:nscerttype String Netscape certificate type description

certificate:keyusage String Key usage description

certificate:thumbprint String The SHA1 sum of the certificateThis is a 40 byte hexadecimal
formatted string that can be used to identify the certificate.
This thumbprint will internally be used as the filename of the
certificate.

usage:<protocol> Bool (true, false) For each, by the ABCC 40 security module supported secure
protocols, a protocol name attribute is included with boolean
value indicating if the certificate is configured for usage with
the protocol
Note that this attribute is only present for devcerts.json

DateString format: YYYY-MM-DD hh:mm:ss

YYYY four-digit year

MM two-digit month (01=January, etc.)

DD two-digit day of month (01 through 31)

hh two-digit of hour (00 through 23)

mm two-digit of minute (00 through 59)

ss two-digit of second (00 through 59)

JSON response example (cacerts.json):

The hex string at the beginning of the example is the SHA1 thumbprint of the certificate.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 71 (272)

{
"24C7E186CA125AB5C49CA6945E3D37D85B84FACF" :
{

"certificate" :
{

"version" : 3,
"serial" : "C0:78:27:6E:A6:25:46:23",
"subject" : "C=SE, ST=Halland, L=Halmstad, O=HMS,

OU=Dev, CN=HMS-CA",
"issuer" : "C=SE, ST=Halland, L=Halmstad, O=HMS,

OU=Dev, CN=HMS-CA",
"issued" : "2017-01-19 14:43:54",
"expires" : "2027-01-17 14:43:54",
"sigalg" : "RSA with SHA-256",
"keytype" : "RSA",
"keysize" : 2048,
"basicconst": "Subject Type=CA, Path Length Constraint=0",
"subjaltname": "IP=10.10.12.88, DNS=abccmodule.hms.se",
"nscerttype" : null,
"keyusage" : "Key Cert Sign",
"thumbprint" "24C7E186CA125AB5C49CA6945E3D37D85B84FACF",

}
} ,
"F3A5EF014702937F37AC540898F36235E7A435B3" : {

"certificate" : { Certificate description… }
},

…
"A3C72403A85EA577DEB4661772E2D1D4B99904D2" : {

"certificate" : { Last certificate… }
]

JSON response example (devcerts.json):

The hex string at the beginning of the example is the SHA1 thumbprint of the certificate.

{
"F3A5EF014702937F37AC540898F36235E7A435B3" :
{

"certificate" :
[
{

"version" : 3,
"serial" : "02",
"subject" : "C=SE, ST=Halland, L=Halmstad,

O=HMS Industrial Networks AB, OU=BU Anybus,
CN=10.11.20.55",

"issuer" : "C=SE, ST=Halland, L=Halmstad,
O=HMS Industrial Networks AB, OU=BU Anybus,
CN=10.11.20.55",

"issued" : "2019-05-29 06:41:21",
"expires" : "2020-05-28 06:41:21",
"sigalg" : "ECDSA with SHA256",
"keytype" : "EC",
"keysize" : 256,
"basicconst": null,
"subjaltname": "IP=10.11.20.55,",
"nscerttype" : null,
"keyusage" : null,
"thumbprint" "F3A5EF014702937F37AC540898F36235E7A435B3",

}
],

"usage" : { "https" : true }
}

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 72 (272)

}

7.4.7 installcacert.json & installdevcert.json
Install a CA certificate:

POST api/security/config/installcacert.json

Request data:

Name Data Type Note

CaCert String CA certificate in PEM format

Install a device certificate:

POST api/security/config/installdevcert.json – formdata:
DevCert=<Device certificate in PEM format>&DevKey=

<Device certificate private key in PEM format>

Request data:

Name Data Type Note

DevCert String Device certificate in PEM format

DevKey String Device certificate private key in PEM format

Response data:

Name Data Type Note

result Integer The result of the operation (0 = success)

errordesc String A readable description of the fault in case of error.

JSON success response example:

{
"result" : 0

}

JSON error response example:

{
"result" : 21,
"errordesc":"Failed to parse certificate"

}

7.4.8 deletecacert.json & deletedevcert.json
Delete a CA certificate:

GET api/security/config/deletecacert.json?thumbprint=
<SHA1 thumbprint of certificate to delete>

Delete a device certificate:

GET api/security/config/deletedevcert.json?thumbprint=
<SHA1 thumbprint of certificate to delete>

Response data:

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 73 (272)

Name Data Type Note

result Integer The result of the operation (0 = success)

JSON success response example:

{
"result" : 0

}

JSON error response example:

{
"result" : 21,
"errordesc":"Failed to parse certificate"

}

7.4.9 cfgcertusage.json
GET api/security/config/cfgcertusage.json?<DevThumbprint>=<ProtocolName>

This function configures the usage of certificates for specific protocols.

Attribute Name Data Type Description

DevThumbprint 40 octet HEX string The SHA1 thumbprint of the certificate to configure usage for.

Protocolname Shall be one of the
protocol names
provided by
security/certusage.
json.

Name of the protocol to configure usage for.

Response data:

Attribute Name Data Type Description

result Integer The result of the operation (0 = success)

JSON response example:

{
"result":0

}

JSON error response example:

{
"result":12
"errordesc":" Unsupported protocol"

}

7.4.10 Hex Format Explained
The metadata max, min, and default fields and the ADI values are ASCII hex encoded binary data.
If the data type is an integer, the endianness used is determined by the dataformat field found in
adi/info.json.

Examples:

The value 5 encoded as a UINT16, with dataformat = 0 (little endian):

0500

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 74 (272)

The character array “ABC” encoded as CHAR[3] (dataformat is not relevant for CHAR):

414243

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

JSON 75 (272)

7.5 Example
This example shows how to create a web page that fetches Module Name and CPU load from the
module and presents it on the web page. The file, containing this code, has to be stored in the
built-in file system, and the result can be seen in a common browser.

<html>
<head>

<title>Anybus CompactCom</title>

<!-- Imported libs -->
<script type="text/javascript" src="vfs/js/jquery-1.9.1.js">

</script>
<script type="text/javascript" src="vfs/js/tmpl.js"></script>

</head>
<body>

<div id="info-content"></div>
<script type="text/x-tmpl" id="tmpl-info">

From info.json

Module name:
{%=o.modulename%}

CPU Load:
{%=o.cpuload%}%

</script>
<script type="text/javascript">

$.getJSON("/module/info.json", null, function(data){
$("#info-content").html(tmpl("tmpl-info", data));

});
</script>

</body>
</html>

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

File Transfer Protocol (WebDAV) 76 (272)

8 File Transfer Protocol (WebDAV)
WebDAV is an extension to the HTTPS protocol, giving access to the file system of the Anybus
CompactCom. It replaces FTP that was the standard protocol when downloading files in earlier
versions of Anybus CompactCom 40 EtherNet/IP IIoT Secure. Using a separate port number for
WebDAV makes it possible to block WebDAV operations in routers and firewalls, but still letting
web traffic through. WebDAV also offers the possibility to add the Anybus CompactCom as a
network drive in Microsoft Windows.

The following port number is used for WebDAV communication:

• TCP port 4443

WebDAV is enabled by default and can be disabled in the Ethernet Host Object (F9h), instance
#1, attribute #25. If WebDAV is turned off, it is not possible to update the module firmware using
File Download or Firmware Manager.

See also...

• Ethernet Host Object (F9h), p. 231

8.1 WebDAV Configuration
Accounts can be added and removed using the default web pages. Role access capacities are
configured in the file webdav.cfg. By default only the administrator role has access to the file
system, and is configured to have access to \firmware. To change the configuration the Anybus
CompactCom must be set in admin mode.

By default there are three roles, administrator, operator and user. The number of roles and their
capabilities can be defined differently.

The following configuration options can be set in \webdav.cfg:

[HomeDir] Configures locations from system root where each role has its home directory. Once
logged in to WebDAV this directory will be presented as the user’s root directory.

Format: role:path

[SessionTimeout] Session timeout in seconds. If not configured or set to 0, no timeout will be used.
(Optional)

Format: role:timeout

It is recommended not to configure access to system root, as this would also give access to the system
configuration.

The default WebDAV configuration is stored in /vfs/webdav.cfg and has the following content:

[HomeDir]
administrator:\firmware

[SessionTimeout]
administrator:900

8.2 WebDAV
If a trusted certificate is configured for HTTPS, the file system of the Anybus CompactCom 40
EtherNet/IP IIoT Secure can be mapped as a network drive on your PC. See File Transfer Protocol
(WebDAV), p. 76 for more information.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

File Transfer Protocol (WebDAV) 77 (272)

1. Select Map network drive on your PC.

Fig. 21

2. Enter the module IP address (or DNS name) followed by 4443 which is the TCP port number
used for WebDAV.

Fig. 22

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

File Transfer Protocol (WebDAV) 78 (272)

3. The WebDAV client, that is embedded in Windows, demands a certificate that is trusted by
Windows. The file system of a device that is not correctly configured can be accessed by e.g.
WinSCP.

Fig. 23

WinSCP is shown in the figure, but other third party programs, supporting WebDAV, are
available.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

E-mail Client 79 (272)

9 E-mail Client
9.1 General Information

The built-in e-mail client allows the application to send e-mail messages through an SMTP server.
Messages can either be specified directly in the SMTP Client Object (04h), or retrieved from the
file system.

The client supports authentication using the “LOGIN” method. Account settings etc. are stored in
the Network Configuration Object (04h).

Supported protocols are SMTP and SMTPS (SMTP over TLS). To use SMTPS, the root CA
certificate of the SMTP server must be installed in Certificate Authorities under Security >
Certificates.

9.2 How to Send E-mail Messages
To be able to send e-mail messages, the SMTP-account settings must be specified.

This includes:

• A valid SMTP-server URL

• A valid username

• A valid password

To send an e-mail message, perform the following steps:

1. Create a new e-mail instance using the Create command (03h).

2. Specify the sender, recipient, topic and message body in the e-mail instance.

3. Issue the Send Instance Email command (10h) towards the e-mail instance.

4. Optionally, delete the e-mail instance using the Delete command (04h).

Sending a message based on a file in the file system is achieved using the Send Email from File
command. This command is described in the SMTP Client Object (04h).

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 80 (272)

10 OPC UA
10.1 General

The OPC Unified Architecture standard makes it possible to exchange information among devices
from multiple vendors. It is platform independent and connects the industry to IT. You can sit at
your local PC or handheld device and exchange information with any device that is modelled on
OPC UA.

The Anybus CompactCom implements an OPC UA server which models the Anybus CompactCom
as a device in its address space using the OPC UA Device model. The modelled device is of type
CompactCom40DeviceType which is a subtype of the OPC UA DeviceType. It is possible for the
user to change certain parameters e.g. the name of the device and its device type, to make the
application manufacturer specific. See CompactCom 40 Device Type Information Model, p. 82.

It is also possible to model and download an application defined information model based on e.g.
an existing Companion specification. See Application Defined Information Model, p. 93.

The functionality is disabled by default. It has to be enabled during startup of the Anybus
CompactCom. This is done by modifying attribute #1 (OPC UA Model), in the OPC UA Object
(E3h), instance #1. Set the attribute to 1 for the CompactCom40DeviceType and 2 for the
downloaded application defined information model.

See also...

• opcfoundation.org

• OPC UA Object (E3h), p. 207

• “Application Object (FFh)” (see Anybus CompactCom 40 Software Design Guide)

10.2 Configuration
10.2.1 Parameters

If OPC UA is enabled, the Anybus CompactCom will set up a default configuration for the
parameters needed. It is possible to change this configuration, either by setting the values of the
instances in the Network Configuration Object, or by using the internal web page.

The table below lists the parameters that are configurable via the internal web page and the
Network Configuration Object.

Parameter Instance No. (in the Network Configuration Object) Default

OPC UA TCP Port 40 4840
OPC UA Discovery Server URL 41 Empty string

OPC UA SecurityPolicyNone 42 Disabled

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

https://opcfoundation.org/

OPC UA 81 (272)

10.2.2 Access Configuration
The access control configuration is performed in a configuration file, stored in the file system of
the CompactCom. The file is named “opcua.cfg” and has the following default content:

[Access]
administrator
operator
user:r,b

This configuration can be changed by creating an opcua.cfg file in the file system root. Set the
Anybus CompactCom in admin mode in the Ethernet Host Object (F9) to expose the file system
root on WebDAV.

Each line of the Access section configures an access rule with the following format:

<role>:<access rights>:<namespace index>

Fields that have specified default behavior can be omitted.

Field Description

Role Name of a role. Must be present in the user database.

Access rights Comma separated list with access rights. Possible access rights are:
r – Gives read access of the value attribute of variable nodes
w – Gives write access of the value attribute of variable nodes
b – Gives browse access of nodes
No specified access rights implies full access

Namespace index Namespace index of the namespace to apply the access rights on.
No specified namespace implies all namespaces.

Some examples on how the access rules can be formatted:

Example

operator The role operator gets full access to all namespaces

operator:b The role operator gets browse access to all namespaces

operator:b:0 The role operator gets browse access to namespace 0

operator::0 The role operator gets full access to namespace 0

operator:r,b
operator:w:4

The role operator gets read and browse access to all namespaces and
write access to namespace 4

operator:r,w,b
operator:r:4

The role operator gets read, write and browse access to all
namespaces (the second access rule does not affect the access in this
case)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 82 (272)

10.3 CompactCom 40 Device Type Information Model
The CompactCom40DeviceType is a subtype of the DeviceType of the OPC Foundation's Device
Integration (OPC UA DI) model. The CompactCom40 instance of this subtype is organized by the
DeviceSet node, which is a well-known node defined by the OPC UA device integration model.
The CompactCom40DeviceType inherits several mandatory properties from the device type in
the device integration model. These properties present some asset information about the device.
The properties that can be changed from the application are: SerialNumber, Manufacturer,
Model, SoftwareRevision and HardwareRevision. They correspond to certain attributes in the
OPC UA Object (E3h) and the Application Object (FFh) of the Anybus CompactCom 40. The ADIs
are represented as a set of parameters and are modelled as components to the ParameterSet, an
object that is a component of the CompactCom40 device type.

The picture below shows how the device instance CompactCom40 of type
CompactCom40DeviceType is structured. The names of the instance and the subtype can be
changed to reflect the application. The variables on the left are used to identify the device. They
are inherited from the OPC UA DeviceType and are mandatory. The variables of the object
ParameterSet are examples of how ADIs are modelled in the OPC UA address space.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 83 (272)

Fig. 24

Object
"CompactCom40"

CompactCom40DeviceType

Variable
"VariableParameter"

BaseDataVariableType

Variable
"PropertiesParameter"
BaseDataVariableType

Variable
"ArrayParameter"

BaseDataVariableType

Variable
"StringParameter"

BaseDataVariableType

Variable
"BitParameter"
OptionSetType

Variable
"EnumParameter"

MultiStateDiscreteType

Object
"ParameterSet"
BaseObjectType

Variable
"SerialNumber"
PropertyType

Variable
"RevisionCounter"

PropertyType

Variable
"Manufacturer"
PropertyType

Variable
"Model"

PropertyType

Variable
"DeviceManual"
PropertyType

Variable
"DeviceRevision"

PropertyType

Variable
"SoftwareRevision"

PropertyType

Variable
"HardwareRevision"

PropertyType

Variable
"Max"

PropertyType

Variable
"Min"

PropertyType

Variable
"Default"

PropertyType

Variable
"Default"

PropertyType

Variable
"OptionSetValues"

PropertyType

Variable
"EnumStrings"
PropertyType

Object
"CompactCom40DeviceType"

Type Definition for
Object CompactCom 40,
subtype of DeviceType 1

2

3

1

1

3

3

3
1 - HasComponent
2 - HasTypeDefinition
3 - HasProperty
4 - HasSubType

"DeviceSet" from
OPC UA DI specification

"DeviceType" from
OPC UA DI specification

1 4

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 84 (272)

10.3.1 CompactCom 40 Device Type Namespaces
The namespace is part of the node identity used to address a specific node. A namespace is
defined by a naming authority (e.g. an organization, a vendor or the local server) and is
responsible for managing the identifiers of all nodes defined in the namespace.

The namespaces supported by an OPC UA server are presented in the NamespaceArray of the
Server object. When addressing a node in the address space the position (array index) in the
NamespaceArray is used to point out the namespace that the node belongs to.

Index 0 of the NamespaceArray is reserved for the OPC UA namespace and index 1 is reserved
for the local server. Further indexes can contain any namespace supported by the server. As the
Anybus CompactCom implements the OPC UA Device Integration model, the namespace of this
model is present in the NamespaceArray. The Anybus CompactCom also has its own DeviceType
defined and is part of a namespace managed by HMS Networks. The product has two
namespaces, one for its parameters and one for its device representation.

The table below shows the namespaces supported.

Namespace
index

Namespace URI Description

0 http://opcfoundation.org/UA/ OPC UA Foundation

1 urn:<hostname/serialnumber>:anybus:
compactcom40

Local server namespace. Globally-unique logical name for
a server within the scope of the network in which it is
installed. The hostname is used as a component of the URI
if configured. If the serial number of the application is
available, this can be used, otherwise the serial number of
the Anybus CompactCom is used. This namespace string
can be replaced by the OPC UA host object (E3h) for
branding purposes.

2 http://opcfoundation.org/UA/DI/ OPC UA Device Integration (DI)

3 http://hms-networks.com/UA/Anybus/
CompactCom40/

Vendor namespace. The namespace that defines the
device type of the CompactCom module that is a sub-type
of the Device Integration (DI) device type. Default is the
CompactCom 40 device model defined by HMS Networks.
The OPC UA host object (E3h) can configure the
namespace URI for branding purposes.

4 <ProductUri>/parameters The namespace that implements all variable nodes that
represent Application Data Instances in the information
model. It is expected that all instances of a product that
shares the ProductUri has the same parameter set. The
ProductUri portion of the namespace string can be
replaced by the OPC UA host object (E3h) for branding
purposes.

5 <ProductUri>/modules The namespace that implements the module
representation in the information model. It is expected
that all instances of a product that shares the ProductUri
has the same device representation. The ProductUri
portion of the namespace string can be replaced by the
OPC UA host object (E3h) for branding purposes.

6 and up (reserved)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 85 (272)

Vendor Namespace

The vendor namespace contains all types defined by the vendor device model. By default, the
vendor namespace belongs to HMS Networks and defines the CompactCom 40 device model. It
is possible to change the URI from the host application. At the moment there is one node in the
Anybus CompactCom 40 namespace:

Node ID
type

Node ID Browse name Description

Numeric 0x00010000 CompactCom40Type CompactCom40 type definition based on OPC UA DI
DeviceType

Parameters Namespace

The Parameters namespace contains all nodes that models Application Data Instances. The
translation of Application Data instance (ADI) numbers and the instance attributes to nodes are
specified by the table below.

Node ID Description

0x01000000-0x01FFFFFF Node IDs of nodes that models Application Data Instances.
The node IDs have the following encoding: 0x01MMMMNN

• MMMM = ADI number

• NN = ID of a node that models certain information of an ADI

NN: Description

0x00: Value variable nodes of the ADIs
0x01: Max value variable nodes of the ADIs
0x02: Min value variable nodes of the ADIs
0x03: Default value variable nodes of the ADIs
0x04: OptionSetValues property of OptionSetType (only exists forf ADIs with BITS

or BITx data types)

0x05: EnumStrings property of MultiStateDiscreteType (Only exists for ADIs with
ENUM data type)

Modules Namespace

The Modules namespace contains all nodes that models the device representation. The nodes
that model the device are specified by the table below.

Node ID Description

0x01000100 Device instance
0x01000101 SerialNumber property of the device instance

0x01000102 RevisionCounter property of the device instance

0x01000103 Manufacturer property of the device instance

0x01000104 Model property of the device instance

0x01000105 DeviceManual property of the device instance

0x01000106 DeviceRevision property of the device instance

0x01000107 SoftwareRevision of the device instance
0x01000108 HardwareRevision of the device instance
0x01000109 Instance of the DeviceType_ParameterSet of the OPC UA DI namespace. A

component of the device instance

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 86 (272)

10.3.2 Identification Parameters
A number of identification parameters are presented on OPC UA by the Server Object and by the
Device Instance of the OPC UA Device Integration model. Some parameters are only used in
either the Server Object or the Device Object while some are used in both objects. This chapter
specifies the sources of each parameter and what parameters in the Server Object or the Device
Object that are equal.

Parameter Used by/in DataType Source/Default

Product URI Server object/Server
Status/BuildInfo

String Can be configured in the OPC UA Host Object
(E3h).
Default value = “http://hms-networks.com/UA/
Anybus/CompactCom40/[networktype]/
[softwareversion]”
[networktype] = Abbreviation of network
[softwareversion] = Shall equal SoftwareVersion
of this table

ApplicationDescription

Parameters and modules
namespace URIs

Manufacturer name Server object/Server
Status/BuildInfo

String Equals the manufacturer name of the Anybus
CompactCom. The name is provided by the
Anybus CompactCom following the priority
specified for the Application Object (FFh),
instance attribute #8 (Vendor Name).
The user (the host application) can configure
the manufacturer name in the host object of
the industrial network (if applicable) or in the
application host object.

Manufacturer DeviceType LocalizedText

Product name Server object/Server
Status/BuildInfo

String Equals the product name of the Anybus
CompactCom. The name is provided by the
Anybus CompactCom following the priority
specified for the Application Object (FFh),
instance attribute #9 (Product Name).

Application name ApplicationDescription LocalizedText

Software version Server object/Server
Status/BuildInfo

String Equals the software version of the Anybus
CompactCom as a string. The software version is
provided by the Anybus CompactCom following
the priority specified for Application Object
(FFh), instance attribute #10 (Firmware version).
In case the software version isn’t already in
string format it is converted by the Anybus
CompactCom to string format X.YY where X is
major version and YY is minor version.

Software revision Property of the device
instance

Build number Server object/Server
Status/BuildInfo

String Equals the build number of the Anybus
CompactCom.
The build number is provided by the Anybus
CompactCom according to the following:

1. If a network host object is implemented,
the build number specified here is used. If
the network host object is implemented,
but no build number is available for the
firmware version, the build number will
default to 1.

2. If network host object isn’t implemented,
but the Application Object (FFh), attribute
#10 (Firmware version) is, the build
number in this attribute will be used.

3. Anybus CompactCom default value will be
used.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 87 (272)

Parameter Used by/in DataType Source/Default

Application URI ApplicationDescription String Application URI of the server. Can be configured
in the OPC UA Host Object (E3h).
Default value = “urn:<hostname/serialnumber>:
anybus:compactcom40”.
Use host name as a part of URI if available,
otherwise use the serial number.
The Application URI is part of the
ApplicationDescription, the EndpointDescription
and also used as Local server namespace URI.

Server object/ServerArray

Localnamespace URI NamespaceArray

Application type ApplicationDescription Enum Set to 0 = UA_APPLICATIONTYPE_SERVER.

Serial number Property of the device
instance

String Value from Anybus CompactCom. The serial
number is provided by the Anybus CompactCom
following the priority specified for Application
Object (FFh), instance attribute #3 (Serial
number)

Hardware revision Property of the device
instance

String Equals the hardware revision of the Anybus
CompactCom as a string. The hardware revision
is provided by the Anybus CompactCom
following the priority specified for Application
Object (FFh), instance attribute #11 (Hardware
version).

Vendor namespace
URI

Server object/
NamespaceArray

String Vendor namespace URI. This namespace collects
type definitions specific for the product.
Retrieved from OPCUA Host object.
Default value = “http://hms-networks.com/UA/
Anybus/CompactCom40/”.

DeviceType name The DeviceType
instantiated by the Anybus
CompactCom module

LocalizedText The name of the DeviceType. Can be configured
in OPC UA Host Object (E3h).
Default value = “CompactCom40DeviceType”.

Device instance name Device instance LocalizedText The name of the instance of the DeviceType
above that represents the device in the local
namespace. Retrieved from OPC UA Host object.
Default value = “CompactCom40”.

The ApplicationDescription mentioned in the column “Used by/in” in the table above, is used in
the responses to discovery services and in the response to the CreateSessionRequest. See OPC
UA Part 4 for more information.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 88 (272)

10.3.3 Application Data Exchange
An Anybus CompactCom ADI is mapped to a variable node in the OPC UA address space. In the
current implementation only the first 256 defined instances (ADIs) of the Application Data Object
are accessible via OPC UA. All data access is explicit, and no process data access is available.
Struct ADIs are not supported.

Translation of Data Types

An OPC UA variable node has a data type that describes the actual value of the variable and a
variable type reference that points out the variable type. Variable types provide type definitions
for variables. A variable type can for instance define components and properties that are either
mandatory or optional to implement by the variable. The Anybus data types are translated to
OPC UA data types and variable types according to the table below.

Anybus data type OPC UA data type OPC UA variable type Description

BOOL Boolean BaseDataVariableType

SINT8 SByte BaseDataVariableType

SINT16 Int16 BaseDataVariableType

SINT32 Int32 BaseDataVariableType

UINT8 Byte BaseDataVariableType

UINT16 UInt16 BaseDataVariableType

UINT32 UInt32 BaseDataVariableType

CHAR String BaseDataVariableType Array of CHAR will be translated to a
single string

ENUM Byte MultiStateDiscreteType The enum strings of an Enum ADI will
be presented in the property node
EnumStrings of the variable type
MultiStateDiscreteType

BITS8 BitFieldMaskDataType OptionSetType This variable type has a mandatory
property called OptionSetValue, which
value attribute holds a text string array
that describes the value, bit by bit. This
property does not exist in the ADI
implementation in Anybus, but is
generated by the Anybus OPC UA
implementation [“Bit0”, “Bit1”, ...
“Bitn”]

BITS16 BitFieldMaskDataType OptionSetType This variable type has a mandatory
property called OptionSetValue, which
value attribute holds a text string array
that describes the value, bit by bit. This
property does not exist in the ADI
implementation in Anybus, but is
generated by the Anybus OPC UA
implementation [“Bit0”, “Bit1”, ...
“Bitn”]

BITS32 BitFieldMaskDataType OptionSetType This variable type has a mandatory
property called OptionSetValue, which
value attribute holds a text string array
that describes the value, bit by bit. This
property does not exist in the ADI
implementation in Anybus, but is
generated by the Anybus OPC UA
implementation [“Bit0”, “Bit1”, ...
“Bitn”]

OCTET ByteString BaseDataVariableType Struct element of type OCTET with
subelements is translated to a single
ByteString.
Struct with only one element of type
OCTET is translated to a ByteString
variable.

SINT64 Int64 BaseDataVariableType

UINT64 UInt64 BaseDataVariableType

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 89 (272)

Anybus data type OPC UA data type OPC UA variable type Description

FLOAT Float BaseDataVariableType

DOUBLE Double
PADx N/A N/A Not supported in OPC UA. No OPC UA

node is created for an ADI of data type
PADx.

BOOL1 Boolean BaseDataVariableType

BITx BitFieldMaskDataType OptionSetType This variable type has a mandatory
property called OptionSetValue, which
value attribute holds a text string array
that describes the value, bit by bit. This
property does not exist in the ADI
implementation in Anybus, but is
generated by the Anybus OPC UA
implementation [“Bit0”, “Bit1”, ...
“Bitn”]

ADI Variable Node

An ADI is represented as an OPC UA variable node, with the attributes as in the table below.

The max, min and default value attributes of an ADI, if its data type is translated to
BaseDataVariableType, are translated to variable nodes in the OPC UA address space. These
nodes are referenced from the variable node that holds the actual value of the ADI.

Attribute name Data type Value Description

NodeId NodeId See table in Parameters
Namespace, p. 85

Instance number is translated to a
NodeId in the Parameters
namespace.

NodeClass NodeClass VARIABLE (2)

BrowseName QualifiedName Namespace: Local server
namespace
String: “Param”+<ADI
instance number>

The BrowseName attribute is used
to create a path to a certain node.
It is possible to translate a browse
name path to the node ID of the
node.
E.g. “Param1” or “Param105”

DisplayName LocalizedText Equals the value from
Application Data Object,
Instance attribute #1 (Name)

Description LocalizedText Null

WriteMask UInt32 0 It is not possible to write any
attribute

UserWriteMask UInt32 0 It is not possible to write any
attribute

Value Defined by DataType
attribute

Equals the value from
Application Data Object,
Instance attribute #5 (Value)

DataType NodeId Node ID of the data type For ADI classes variable and array,
this is the node ID of the data
type, according to the translation
in Translation of Data Types, p. 88

ValueRank Int32 1 or -1 The ValueRank is set to 1 for
arrays (one dimension) and -1 for
variables and structures (scalar)

ArrayDimensions Uint32 Null or a single entry array The ArrayDimensions is null for
variables and structures.
If the ADI is an array the
ArrayDimensions is an array with
one entry. The value of this single
entry is equal to the ADI attribute
3, Number of elements.

AccessLevel Byte Bit 0: Get access bit of the
ADI descriptor
Bit 1: Write access bit of the
ADI descriptor

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 90 (272)

Attribute name Data type Value Description

All other bits set to 0.
UserAccessLevel Byte Bit 0 & 1: Access rights from

the configuration file of the
current user
All other bits set to 0.

MinimumSamplingInterval Duration 0 The server monitors the item
continuously

Historizing Boolean False Collecting data for the history of
the variable is not supported

A variable node representing an ADI has the references in the table below.

References Number Description

HasProperty 0..3 Only valid for ADI data types translated to BaseDataVariableType.
Possible properties of an ADI variable node:

• Max value

• Min value

• Default value

The properties are present if the ADI implements the corresponding attribute.
They are presented through referencing another variable node, see Max, Min and
Default Value Variable Node, p. 90.

HasProperty 1 Only valid for ADI data types translated to OptionSetType.
The following property is referenced:

• OptionSetValues (see description in table in Translation of Data Types, p. 88)

HasProperty 1 Only valid for ADI data types translated to MultiStateDiscreteType.
The following property is referenced:

• EnumStrings (see description in table in Translation of Data Types, p. 88)

HasTypeDefinition 1 For an ADI of class variable or array the reference points to the the variable type
specified per data type in Translation of Data Types, p. 88.

Max, Min and Default Value Variable Node

The max, min and default value attributes of an ADI, if its data type is translated to
BaseDataVariableType, are translated to variable nodes in the OPC UA address space. These
nodes are referenced from the variable node that holds the actual value of the ADI.

The variable node representing the max, min or default value of an ADI has the attributes in the
table below.

Attribute name Data type Value Description

NodeId NodeId See table in Parameters
Namespace, p. 85

NodeClass NodeClass VARIABLE (2)

BrowseName QualifiedName Namespace: Local server
namespace
String: “Max”, “Min” or
“Default”

The browse name are used to
create paths to certain nodes. It is
possible to translate a browse
name path to the node’s node ID.
Select string depending on which
value the node represent.

DisplayName LocalizedText “Max”, “Min” or “Default”

Description LocalizedText “Max”, “Min” or “Default”

WriteMask UInt32 0 It is not possible to write any
attribute

UserWriteMask UInt32 0 It is not possible to write any
attribute

Value Defined by DataType
attribute

Use the value from
Application Data Object,
attribute 6,7, or 8.

ADI attribute 6, 7 or 8 (Max value,
Min value or Default value)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 91 (272)

Attribute name Data type Value Description

DataType NodeId Equals the data type of the
variable node representing
the ADI an that has the
HasComponent reference to
this node.

ValueRank Int32 -1 The ValueRank is set to -1 for all
ADI classes (arrays only have 1
max, min or default value).

ArrayDimensions UINT32[] Null The ArrayDimensions is null for all
ADI classes (arrays only have 1
max, min or default value)

AccessLevel Byte 0x01 It is possible to read the current
value.

UserAccessLevel Byte Bit 0: access rights from the
configuration file of the
current user
All other bits set to 0

MinimumSamplingInterval Duration 0 The server monitors the item
continuously

Historizing Boolean False Collecting data for the history of
the variable is not supported

A variable node representing the max, min or default value of an ADI uses the references in the
table below.

References Number Description

HasTypeDefinition 1 This reference points to the PropertyType variable type.

Language Support

The name attribute of an ADI can be multilingual.

OPC UA has a LocalizedText data type that can present a text together with a language code. It is
a structured type containing a locale id and a string. The OPC UA simple data type LocaleId is
used to present a particular language. It uses two letter ISO 639 codes.

The active language is set by the host application in the Anybus Object (01h, attribute #9). The
setting is transferred to OPC UA in the data type LocaleId.

Anybus language OPC UA LocaleId
English (0x00) “en”

Deutsch (0x01) “de”

Español (0x02) “es”

Italiano (0x03) “it”

Français (0x04) “fr”

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 92 (272)

Data Mapping Example

This section gives an example of how a number of ADIs of different types are mapped into the
OPC UA information model, see also figure in section CompactCom 40 Device Type Information
Model, p. 82.

ADI Name Descriptor Num
Elements

Data type Value Max Min Default

1 Variable-
Parameter

Get, Set 1 UINT16 100 Not
implement-
ed

Not
implement-
ed

Not
implement-
ed

2 Variable-
Properties

Get 1 UINT16 90 100 10 15

3 ArrayPara-
meter

Get 10 UINT8 [0, 0, 253,
1, 73, 42,
3, 143, 10,
0]

Not
implement-
ed

Not
implement-
ed

10

4 StringPara-
meter

Get 11 CHAR [“S”, “t”,
“r”, “i”,
“n”, “g”,
“V”, “a”,
“l”, “u”, “e”
]

Not
implement-
ed

Not
implement-
ed

Not
implement-
ed

100 BitParame-
ter

Get 1 BIT3 0x05 N/A N/A N/A

101 EnumPara-
meter

Get 1 ENUM 3 N/A N/A N/A

OPC UA Variable nodes
NodeId 0x01000100 0x01000200 0x01000300 0x01000400 0x01006400 0x01006500

NodeClass Variable Variable Variable Variable Variable Variable
BrowseName Param1 Param2 Param3 Param4 Param100 Param101
DisplayName VariablePara-

meter
VariableProper-
ties

ArrayParame-
ter

StringParame-
ter

BitParameter EnumParame-
ter

Description Null Null Null Null Null Null

WriteMask 0 0 0 0 0 0

UserWriteMask 0 0 0 0 0 0
DataType UInt16 UInt16 UInt8 String BitFieldMask-

DataType
Byte

ValueRank -1 -1 1 -1 -1 -1
ArrayDimen-
sions

Null Null [10] Null Null Null

Value 100 10 [0, 0, 253, 1,
73, 42, 3, 143,
10, 0]

“StringValue” 0x0700000005-
000000

3

AccessLevel 0x03 0x01 0x01 0x01 0x01 0x01
MinimumSam-
plingInterval

0 0 0 0 0 0

Historizing False False False False False False

HasTypeDefini-
tion reference

BaseDataVaria-
bleType

BaseDataVaria-
bleType

BaseDataVaria-
bleType

BaseDataVaria-
bleType

OptionSetType MultiStateDis-
creteType

HasProperty
references

None To max, min,
default
variable nodes:
* 0x01000201
(NodeId max
value)
* 0x01000202
(NodeId min
value)
* 0x01000203
(NodeId
default value)

To default
variable node:
* 0x01000203
(NodeId
default value)

None To
OptionSetVal-
ues node:
* 0x01006404

To EnumStrings
node:
* 0x01006505

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 93 (272)

10.4 Application Defined Information Model
This model enables the Anybus CompactCom to present an application defined model created in
an OPC UA modeler tool. The application defined information model can be completely custom
or based on existing companion specifications that define profiles of devices according to OPC
UA standards. Variable nodes of the application defined information model can be mapped to
ADIs of the host application.

The information model is defined by a Nodeset2 XML file that can be generated by an OPC UA
Modeler Tool. The finished Nodeset2 file is converted by a tool from HMS, the Anybus OPC UA
NodeSet Encoder, to a binary file (binarynodeset.hiff, and this filename must not be changed),
that is downloaded to the root of the file system of the Anybus CompactCom 40 IIoT Secure.

Variable nodes can either be tied to ADIs in the host application or be statically modeled in the
information model. For nodes tied to ADIs, a separate namespace must be created. The Anybus
OPC UA NodeSet Encoder will along with the binary file generate an ADI list as C source code,
customized for the information model. This ADI list can be directly used in the CompactCom Host
Application Example Code.

See also...

• Using OPC UA Application Defined Information Models with Anybus CompactCom IIoT
Secure application note

10.4.1 Application Defined Namespaces
The application defined namespaces contain the information model designed for the specific
application. The namespaces can be device specific or be defined by Companion specifications,
organizations and vendors.

Namespace
Index

Namespace

0 OPC Foundation namespace

1 Local server namespace

2–N Application defined namespaces

M
(M ⊂ 2-N)

Parameters namespace, see Parameters Namespace, p. 85.
If mapping an OPC UA variable to an ADI, this namespace must be included in the information
model. The namespace URI of this namespace shall be set to urn:compactcom40:parameters.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 94 (272)

NodeClasses

The NodeClasses table describes the supported node classes and any limitations when using
them in an application defined information model namespace. No multilingual support (except
variable nodes mapped to ADIs) is available.

NodeClass Considerations
OBJECT The EventNotifier attribute must be set to 0 (no event support)

VARIABLE Variables tied to ADIs must be modeled in the Parameters namespace, see Parameters Namespace, p.
85.
Other variables can be modeled in any namespace.
Variables tied to ADIs can only use data types (no structured data types) from the OPC Foundation
namespace (namespace 0).

METHOD A call to a method will result in an error response.

OBJECT_TYPE

VARIABLE_TYPE The value attribute of this node class defines the default value of any variable node of this type. The
host application must be aware of this default value and use it for any ADI that maps to a variable
node of this type.

REFERENCE_
TYPE
DATA_TYPE The following data types are not supported:

• Built-in types and all simple types derived of them:

– Guid

– XmlElement

– ExpandedNodeId

– StatusCode

– ExtensionObject

– DataValue

– Variant

– DiagnosticInfo

– Decimal

• Structured data types with optional fields

• Data types derived from Union data type

VIEW The EventNotifier attribute must be set to 0 (no event support).
Use of view nodes in the Browse service of the view service set is not supported.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 95 (272)

10.4.2 Identification Parameters
A number of identification parameters are presented on OPC UA by the Server Object and in
service responses. This section specifies the source of each parameter.

Parameter Used by/in DataType Source/Default

Product URI Server object/Server
Status/BuildInfo

String Can be configured in the OPC UA Host Object
(E3h).
Default value = “http://hms-networks.com/UA/
Anybus/CompactCom40/[networktype]/
[softwareversion]”
[networktype] = Abbreviation of network
[softwareversion] = Shall equal SoftwareVersion
of this table

ApplicationDescription

Parameters namespace
URI

Manufacturer name Server object/Server
Status/BuildInfo

String Equals the manufacturer name of the Anybus
CompactCom. The name is provided by the
Anybus CompactCom following the priority
specified for the Application Object (FFh),
instance attribute #8 (Vendor Name).
The user (the host application) can configure
the manufacturer name in the host object of
the industrial network (if applicable) or in the
application host object.

Product name Server object/Server
Status/BuildInfo

String Equals the product name of the Anybus
CompactCom. The name is provided by the
Anybus CompactCom following the priority
specified for the Application Object (FFh),
instance attribute #9 (Product Name).

Application name ApplicationDescription LocalizedText

Software version Server object/Server
Status/BuildInfo

String Equals the software version of the Anybus
CompactCom as a string. The software version is
provided by the Anybus CompactCom following
the priority specified for Application Object
(FFh), instance attribute #10 (Firmware version).
In case the software version isn’t already in
string format it is converted by the Anybus
CompactCom to string format X.YY where X is
major version and YY is minor version.

Build number Server object/Server
Status/BuildInfo

String Equals the build number of the Anybus
CompactCom.
The build number is provided by the Anybus
CompactCom according to the following:

1. If a network host object is implemented,
the build number specified here is used. If
the network host object is implemented,
but no build number is available for the
firmware version, the build number will
default to 1.

2. If network host object isn’t implemented,
but the Application Object (FFh), attribute
#10 (Firmware version) is, the build
number in this attribute will be used.

3. Anybus CompactCom default value will be
used.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 96 (272)

Parameter Used by/in DataType Source/Default

Application URI ApplicationDescription String Application URI of the server. Can be configured
in the OPC UA Host Object (E3h).
Default value = “urn:<hostname/serialnumber>:
anybus:compactcom40”.
Use host name as a part of URI if available,
otherwise use the serial number.
The Application URI is part of the
ApplicationDescription, the EndpointDescription
and also used as Local server namespace URI.

Server object/ServerArray

Localnamespace URI NamespaceArray

Application type ApplicationDescription Enum Set to 0 = UA_APPLICATIONTYPE_SERVER.

The ApplicationDescription mentioned in the column “Used by/in” in the table above, is used in
the responses to discovery services and in the response to the CreateSessionRequest. See OPC
UA Part 4 for more information.

10.4.3 Application Data
ADI Variable Node

An application defined information model must specify variable nodes tied to ADIs completely.
However, some attributes will be manipulated by the CompactCom module to contain values
that matches the ADI setup of the host application and configured access rights. The table below
specifies this behavior per attribute.

Node Attribute Description

NodeId Instance number is translated to a NodeId in the Parameters namespace.
This attribute is static and will not be manipulated by the CompactCom.

NodeClass This attribute is static and will not be manipulated by the CompactCom.

BrowseName This attribute is static and will not be manipulated by the CompactCom.

DisplayName This attribute will be manipulated by the CompactCom.

Description This attribute is static and will not be manipulated by the CompactCom.

WriteMask Only supported for the value attribute by the Anybus CompactCom.
Other node attributes should be configured according to the application.
This attribute is static and will not be manipulated by the CompactCom.

UserWriteMask Only supported for the value attribute by the Anybus CompactCom.
Other node attributes should be configured according to the application.
This attribute is static and will not be manipulated by the CompactCom.

Value This attribute will be manipulated by the CompactCom.

DataType Can be set to any OPC UA type that origins from an OPC UA built-in type that translates to the
data type of the ADI that the variable points to.
Only types of OPC Foundation namespace (namespace 0) is supported.
This attribute is static and will not be manipulated by the CompactCom.

ValueRank The ValueRank is set to 1 for arrays (one dimension) and -1 for variables and structures (scalar)
This attribute will be manipulated by the CompactCom.

ArrayDimensions The ArrayDimensions is null for variables and structures.
If the ADI is an array the ArrayDimensions is an array with one entry. The value of this single
entry is equal to the ADI attribute 3, Number of elements.
This attribute will be manipulated by the CompactCom.

AccessLevel This attribute will be manipulated by the CompactCom.

UserAccessLevel This attribute will be manipulated by the CompactCom.

MinimumSamplin-
gInterval

Not supported by the Anybus CompactCom.

Historizing The attributes should be configured according to the application.
This attribute is static and will not be manipulated by the CompactCom.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 97 (272)

Translation of Supported Data Types

Anybus data type OPC UA data type OPC UA variable type Description

BOOL/BOOL1 Boolean BaseDataVariableType

SINT8 SByte BaseDataVariableType

SINT16 Int16 BaseDataVariableType

SINT32 Int32 BaseDataVariableType

UINT8 Byte BaseDataVariableType

UINT16 UInt16 BaseDataVariableType

UINT32 UInt32 BaseDataVariableType

CHAR String BaseDataVariableType Array of CHAR will be translated to a
single string

SINT64 Int64 BaseDataVariableType

UINT64 UInt64 BaseDataVariableType

FLOAT Float BaseDataVariableType

DOUBLE Double BaseDataVariableType

DateTime BaseDataVariableType A DateTime value shall be encoded as a
64-bit signed integer which
represents the number of 100
nanosecond intervals since January 1,
1601 (UTC).

Struct of:
UINT32
UINT16
UINT16
OCTET[8]

Guid BaseDataVariableType A 16-byte value that can be used as a
globally unique identifier.

OCTET ByteString BaseDataVariableType

UINT32 StatusCode BaseDataVariableType

CHAR LocalizedText BaseDataVariableType

Anybus Data Types Without Matching OPC UA Built-in Type

Some Anybus data types do not have an equivalent OPC UA built-in type. These Anybus data
types have either no translation defined or translates to a simple type that match the data type
well.

Anybus data type Translation description

BITx Translated to BitFieldMaskDataType which is a subtype of Uint64
BITS8/BITS16/BITS32

Enum Translated to Byte.

10.5 Time
An OPC UA server needs a mechanism for knowing the current UTC time and facilities to convert
to and from local time. The Anybus CompactCom will fetch the time from the network by
cyclically sending a request to a OPC UA Discovery Server. The server will be polled every 60
seconds with a timeout of 5 seconds. To configure the address of the Discovery Server, set
Network Configuration Object (04h), instance #41, attribute #5 with the URL of the Discovery
Server.

If the application is to pass the conformance test for OPC UA, a Discovery Server must be
configured in the Network Configuration Object (04h), instance #41.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 98 (272)

10.6 Server Endpoints
An OPC UA server offers one or several endpoints which clients can connect to. An endpoint
specifies a SecurityPolicy and a message security mode to be used when connecting. It also
presents identity information and what UserIdentityTokens that are available to use for
authentication. If required by the SecurityPolicy it also provides the server certificate. This
section specifies what SecurityPolicies the Anybus CompactCom shall support, what
UserIdentityToken it will offer for clients to use for authentication and the endpoints it will
provide.

10.6.1 SecurityPolicies
OPC UA specifies a set of security policies. A SecurityPolicy specifies a set of algorithms for
encryption and signing of data to be used when communicating. A device can support one or
multiple policies and the client and the server negotiate which policy to use when connecting.

The Anybus CompactCom supports the SecurityPolicies listed in the table below.

SecurityPolicy Security Policy URI

SecurityPolicy – None http://opcfoundation.org/UA/SecurityPolicy#None

SecurityPolicy [A] – Aes128-Sha256-RsaOaep http://opcfoundation.org/UA/SecurityPolicy#Aes128_
Sha256_RsaOaep

SecurityPolicy [B] – Basic256Sha256 http://opcfoundation.org/UA/
SecurityPolicy#Basic256Sha256

10.6.2 UserIdentityTokens
OPC UA specifies a set of UserIdentityTokens to provide different methods of authentication. The
CompactCom module only supports the UserNameIdentityToken. Access will be granted to user
accounts assigned to roles that are configured to have OPC UA access, see Configuration, p. 80.

The Anybus CompactCom supports the UserIdentityTokens listed in the table below.

PolicyId UserTokenType SecurityPolicy

Username_Null UserName SecurityPolicy specified to NULL will make the UserIdentityToken to
inherit the SecurityPolicy of the endpoint.

Username_None UserName SecurityPolicy None

Username_
Basic256Sha256

UserName SecurityPolicy [B] – Basic256Sha256

Username_Aes128_
Sha256_RsaOaep

UserName SecurityPolicy [A] – Aes128-Sha256-RsaOaep

Which UserIdentityTokens that are enabled on an endpoint depends on the security mechanisms
that the endpoint uses.

10.6.3 Endpoints
The Anybus CompactCom implements the Endpoints listed in the table below.

Endpoint # SecurityPolicy Message security mode Security level UserIdentityTokens

1 SecurityPolicyNone None 0 Username_Basic256Sha256,
Username_Aes128_Sha256_
RsaOaep
(Username_None)

2 SecurityPolicy [B] –
Basic256Sha256

Sign 2 Username_Null
(Username_None)

2 SecurityPolicy [B] –
Basic256Sha256

SignAndEncrypt 4 Username_None

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 99 (272)

Endpoint # SecurityPolicy Message security mode Security level UserIdentityTokens

3 SecurityPolicy [A] –
Aes128-Sha256-
RsaOaep

Sign 1 Username_Null
(Username_None)

4 SecurityPolicy [A] –
Aes128-Sha256-
RsaOaep

SignAndEncrypt 3 Username_None

Endpoints with SecurityPolicyNone and the UserIdentityToken “Username_None” on all
endpoints are disabled by default and can only be enabled by an administrator from the internal
web pages or from the Network Configuration object (04h). By enabling the UserIdentityToken
“Username_None” it is possible to connect to the CompactCom module without configuring any
certificates and private keys.

Endpoints with SecurityPolicy other than None are disabled if no device certificate is installed for
OPC UA. How to install device and CA certificates are described in Initial Setup and Account
Configuration, p. 14.

Endpoints implementing SecurityPolicy other than None and message security mode Sign offer
the UserIdentityToken “Username_Null” for session authentication. UserIdentityTokens without
any SecurityPolicy specified used on a secure channel with a SecurityPolicy other than None,
inherits the SecurityPolicy from the secure channel.

Endpoints implementing SecurityPolicy other than None and message security mode
SignAndEncrypt offer the UserIdentityToken “Username_None” for session authentication. The
secure channel encrypts all data, hence there is no need to also encrypt the authentication
credentials.

If the application is to pass the conformance test for OPC UA, the UserIdentityToken
“Username_None” must be disabled (does not apply to endpoints with message security
mode SignAndEncrypt) or some external security mechanism must be applied to encrypt
the authentication credentials.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 100 (272)

10.7 Error Code Translation
The Anybus CompactCom error codes are translated to OPC UA status codes as described in the
table below.

Anybus error code # OPC UA status code Comment

0x02 Invalid message format 0x80020000 BadInternalError

0x03 Unsupported object N/A N/A Not possible to define a
generic translation. Depends
on the context of the request.

0x04 Unsupported instance 0x80340000 BadNodeIdUnknown Not possible to define a
generic translation. Depends
on the context of the request.

0x05 Unsupported command 0x803D0000 BadNotSupported

0x06 Invalid CmdExt[0] N/A N/A Not possible to define a
generic translation. Depends
on what CmdExt[0] contains.

0x07 Invalid CmdExt[1] N/A N/A Not possible to define a
generic translation. Depends
on what CmdExt[1] contains.

0x08 Attribute not set-able 0x803B0000 BadNotWritable
0x09 Attribute not get-able 0x803A0000 BadNotReadable

0x0A Too much data 0x80740000 BadTypeMismatch

0x0B Not enough data 0x80740000 BadTypeMismatch

0x0C Out of range 0x803C0000 BadOutOfRange

0x0D Invalid state 0x80AF0000 BadInvalidState
0x0E Out of resources 0x80030000 BadOutOfMemory

0x0F Segmentation failure 0x80020000 BadInternalError

0x10 Segmentation buffer
overflow

0x80020000 BadInternalError

0x11 Value too high 0x803C0000 BadOutOfRange

0x12 Value to low 0x803C0000 BadOutOfRange

0x13 Attribute controlled 0x801F0000 BadUserAccessDenied
0x14 Message channel too small 0x80020000 BadInternalError

0x15 General error 0x80010000 BadUnexpectedError

0x16 Protected access 0x801F0000 BadUserAccessDenied
0xFF Object specific N/A N/A Not possible to define a

generic translation. Depends
on what Anybus object that
is accessed.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 101 (272)

10.7.1 Error Code Translation when Accessing the Application Data Object
When accessing nodes translated to ADIs, the error codes are translated to OPC UA status codes
according to the table below.

Anybus error code # OPC UA status code Comment

0x03 Unsupported object 0x80340000 BadNodeIdUnknown If the Application Data object
is not implemented, no
nodes representing ADIs will
be implemented.

0x04 Unsupported instance 0x80340000 BadNodeIdUnknown If the instance doesn’t exist,
no node exist.

0x06 Invalid CmdExt[0] 0x80340000 BadNodeIdUnknown Every attribute of an
Application Data Instance is
represented by a node on
OPC UA

0x07 Invalid CmdExt[1] 0x80340000 BadNodeIdUnknown Every attribute of an
Application Data Instance is
represented by a node on
OPC UA

0xFF Object specific 0x80020000 BadInternalError The translation of ADIs to
OPC UA variable nodes does
not use any object specific
services and therefore
doesn’t expect any object
specific error codes.

10.8 Stack Configuration
This section specifies the configuration of the OPC UA stack, implemented in Anybus
CompactCom. The configuration defines the capabilities of the stack implementation.

10.8.1 Connection Configuration
The connection configuration is set according to the table below:

Configuration Parameter Value Description/Comment

TCP send buffer size 8196 bytes Minimum requirement from OPC UA

TCP receive buffer size 8196 bytes Minimum requirement from OPC UA

Max message size 25576 bytes -

Number of TCP connections 4 One TCP connection per secure channel plus one to provide a
better error message to clients when out of sessions

Number of secure channels 3 One secure channel supported per session plus one more to
provide a better error message to clients when out of sessions

TCP connection lifetime 2 min If not attached to a secure channel the TCP connection can be
overtaken after 2 minutes of inactivity

Security token lifetime 5 min Minimum lifetime required

Number of sessions 2 Minimum requirement of the Micro Embedded Device Server
profile

Max session timeout 5 min -

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

OPC UA 102 (272)

10.8.2 Data Subscription Configuration
The data subscription configuration is set according to the table below:

Configuration Parameter Value Description/Comment

maxSubscriptions 10 -

publishingInterval Min 1000 ms Configurable via the OPC UA Host Object (E3h). See OPC UA Object
(E3h), p. 207

publishingInterval Max 86400000 ms 24h

lifeTimeCount Min 3 -

lifeTimeCount Max 15000 -

keepAliveCount Min 1 -

keepAliveCount Max 100 -

maxNotificationsPerPublish 10
maxRetransmissionQueueSize 20 The sequence number can be used to detect a missing response

maxMonitoredItems 100
(Default 8)

Configurable via the OPC UA Host Object (E3h). See OPC UA Object
(E3h), p. 207

samplingInterval Min 1000 ms Configurable via the OPC UA Host Object (E3h). See OPC UA Object
(E3h), p. 207

samplingInterval Max 86400000 ms 24h

queueSize Min 1 -

queueSize Max 1 -

maxPublishReqPerSession 10 -

10.8.3 Resource Configuration
The resource configuration is set according to the table below:

Configuration Parameter Value Description/Comment

MinSupportedSampleRate 0 Part of the ServerCapabilitiesType.

MaxBrowseContinuationPoints 5 Part of the ServerCapabilitiesType.

MaxNodesPerRead 100 Part of the OperationLimitsType.

MaxNodesPerBrowse 20 Part of OperationLimitsType.

MaxNodesPerRegisterNodes 1 Part of OperationLimitsType.

MaxNodesPerTranslateBrowse-
PathsToNodeIds

20 Part of OperationLimitsType.

MaxMonitoredItemsPerCall 100 100 MonitoredItems per subscription are supported.

MaxReferencesPerBrowseRes-
ponse

30

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

MQTT 103 (272)

11 MQTT
MQTT is a publish-subscribe messaging protocol that runs on top of TCP/IP. It was first
developed to transmit data from field devices on remote locations over unreliable satellite links
with limited bandwidth. This initial use case has shaped the protocol to offer a limited number of
features and only adds a small overhead to the data to be transmitted. This resource constrained
protocol has proved useful when pushing data (e.g. diagnostics) from devices to IT systems. All
devices that produce or consume data are clients. The clients connect to a common broker
device to either publish data, subscribe for data or both. The MQTT message flow is shown in the
figure below.

Publisher Broker Subscriber

publish(topic, data)

publish(topic, data)

subscribe(topic)

Fig. 25

Data is tagged with a topic string. The topic is used as a unique identifier to route the
publications to its subscribers when they are published by a certain device to the broker.

See also....

• mqtt.org

• Network Configuration Object (04h) (Anybus Module Object)

• MQTT Host Object (E2h) (Host Application Object)

• Application Object (FFh), command Get_Data_Notification (13h) in Anybus CompactCom 40
Software Design Guide

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

https://mqtt.org/

MQTT 104 (272)

11.1 MQTT Configuration
The MQTT functionality of the Anybus CompactCom is disabled by default. Implement the
attribute #1 (MQTT mode) in the MQTT host object (E2h), instance #1, to enable it.

The MQTT host object provides the possibility to configure the Last will message and to provide
publication options per publication.

The Network Configuration object (04h) offers a set of instances to configure the connection to
the MQTT broker and also a base topic used for publications. These instances, which also are
available via the internal web page, are summarized in the table below.

Parameter Instance No. (in
Network Configuration
Object)

Default

Broker URL 50 Empty string

Client Identifier 51 Empty string

Keep Alive (s) 52 60

Broker Username 53 Empty string

Broker Password 54 Empty string

Base Topic 55 Empty string

Quality of service 56 0

Secure MQTT 57 Disable

11.2 Connection Setup
The Anybus CompactCom connects automatically to an MQTT broker if the following
requirements are fulfilled:

• MQTT is enabled by the MQTT host object (E2h)

• A valid broker URL is configured in the Network Configuration instance #50

• The Anybus CompactCom is assigned a valid IP address on the network

If a connection attempt fails or an existing connection is disconnected, a new connection
attempt will be performed in 10 seconds except if any of the following connection errors occur:

• Erroneous broker address

• Connection rejected by broker

• Bad server certificate

If Secure MQTT is enabled in the Network Configuration Object, instance #57, the server identity
and server certificate of the MQTT broker will be verified against the CA certificates installed in
the Anybus CompactCom CA store. If the MQTT broker requests mutual authentication during
the TLS handshake the device certificate enabled for MQTT will be sent to the broker. If there is
no device certificate enabled for MQTT, the TLS handshake will fail. How to install device and CA
certificates is described in Initial Setup and Account Configuration, p. 14.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

MQTT 105 (272)

11.3 Publications
To publish data on MQTT, the generic Get_Data_Notification command of the Application host
object (FFh) shall be used. The command makes it possible to publish either a single ADI value,
the values of ADIs that belong to an Assembly Mapping instance, or vendor specific data that is
published transparently from the host application. The Get_Publish_Configuration command of
the MQTT host object (E2h) gives the possibility to customize some options of the MQTT publish
packet per publication. Once the Anybus CompactCom has successfully set up a connection to
the configured broker it will be possible to publish data. The publish sequence is described below.

1. The Anybus CompactCom sends a Get_Data_Notification request to the Application host
object once a connection to a broker is active. If the host application has data to publish it
can respond to it immediately. If there is currently no data available, the host application
can choose to either keep the request to be able to respond immediately when data is
available or respond with error code 17h (no data available). In the later case, the Anybus
CompactCom will enter a poll mode and periodically poll the host application by sending the
request again.

2. When the application has data to publish, e.g. if data is changed or if someone pushes a
button, it responds to the Get_Data_Notification request from the Anybus CompactCom
that has been kept from Step 1, or waits for the next request. The response includes the
dataset to publish to the broker. The dataset is either a single ADI value, the values of ADIs
that belong to an Assembly Mapping instance, or vendor specific data that is published
transparently from the host application. Optionally, a timestamp can be included.

3. The Anybus CompactCom then sends a Get_Publish_Configuration request to the MQTT
host object (E2h) to retrieve any defined publication options for this publication.

4. The application responds with its publication configuration or with an error code, if default
options are wanted.

5. Depending on dataset, the Anybus CompactCom requests more information from the
application.

6. The Anybus CompactCom encodes the dataset using JSON, if the dataset is either a single
ADI value or the values of ADIs that belong to an Assembly Mapping instance. Vendor
specific data is not encoded and is published transparently.

7. The Anybus CompactCom builds the MQTT message and publishes it to the MQTT broker. If
the retain bit is set, the message will be saved in the MQTT broker for future subscribers to
collect.

The figure below shows an example of a publishing sequence with the numbers from the
sequence above included. The order of 3 and 5 may be different depending on the Anybus
CompactCom implementation.

When the Anybus CompactCom has published a message to the broker, it repeats the sequence
and sends a new Get_Data_Notification request. This sequence is repeated as long as the Anybus
CompactCom is connected to the broker.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

MQTT 106 (272)

Host Anybus
CompactCom MQTT Broker

Get_Data_Notification (rsp)

Publish

Data to publish
available

Get_Publish_Configuration

Request for metadata,
if needed

Metadata, if needed

Encode data

Get_Publish_Configuration (rsp)

2

3

4

5

6

7

Get_Data_Notification (req)1

Fig. 26

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

MQTT 107 (272)

11.3.1 Topic
All data is tagged with a topic string. The topic is a unique identifier used to route publications to
its subscribers when they are published by a certain device to the broker.

The topic is either set by the host application, by responding to the Get_Publish_Configuration
command that is sent to the MQTT Host Object (E2h), or generated by the Anybus CompactCom
with help of metadata of the ADIs that are being published.

The generated topic string has the following format:

<base topic>/<dataset type>/<dataset identifier>

Each entry of the generated topic format can consist of several levels separated by “/” characters.
The base topic level is retrieved from the Network Configuration Object (04h), instance #55. The
other topic levels are specific to each dataset, according to the table below.

Dataset Dataset Type Dataset Identifier

Single ADI “Parameter” ADI name as given by attribute #1 of the ADI instance in the
Application Data Object (FEh). If this attribute is not implemented,
the default value will be used.
Max 32 characters
Default value: “Param<ADI number>”

Assembly mapping
instance

“Assembly” Assembly mapping instance name as given by attribute #13 of the
assembly mapping instance in the Assembly Mapping Object (EBh).
If this attribute is not implemented, the default value will be used.
Max 32 characters
Default value: “Asm<assembly mapping instance number>”

Transparent network
payload

“Transparent” The dataset identifier in decimal format without leading zeroes.
Vendor specific.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

MQTT 108 (272)

11.3.2 Dataset Encoding
The Anybus CompactCom encodes the different datasets using JSON, see examples below.

Vendor specific datasets are sent transparently, and not encoded.

Data Type Translation

Anybus data types are translated to JSON data types according to the table below.

Anybus Data Type JSON Data Type

BOOL Boolean

SINT8/16/32/64 Number

UINT8/16/32/64 Number

FLOAT Number
CHAR String

OCTET String
A hexadecimal string representation of the octet value.
E.g: 0xFF is translated to “FF”.

ENUM Object , see below

BOOL1 Boolean

BITSx / BITx JSON Array of Number where each bit is encoded to a Number of either 0 or 1. The
array starts with the most significant bit.

PADx Data type is ignored and will not be published.

The ENUM data type is encoded as a JSON object:

{
"EnumValue" : <ADI value encoded as a Number>,
"EnumStr" : <Enum string of the ADI value encoded as a String>

}

ADI variables of data type PADx will be ignored and not published.

ADI variables with more than one subelement, are encoded if the data type of the ADI is CHAR or
OCTET. These are encoded and published as a single string. ADI variables with subelements of
other types will be ignored and not published.

An ADI with an array of the data type CHAR will be published as a single string, while other
arrays will be published as arrays.

Anybus Data Type JSON Encoding with Example Values

UINT16 10

Array of UINT16 [0, 1, 2, 3, 4]

BOOL True

OCTET string “EDDAEBFE”

Array of OCTET [“ED”, “DA”, “EB”, “FE”]

ENUM {
“EnumValue” : 2,
“EnumStr” : “Two”,
}

BIT2 [1,0]

Array of BIT2 [[1,0], [1,1], [0,0]]

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

MQTT 109 (272)

JSON Encoding of Single ADI Datasets

Single ADI Datasets are encoded as follows:

{
"<ADI name>" : {

"Value" : <ADI value>
},

"Timestamp" : <Timestamp of the dataset>
}

Example of JSON encoding of a single ADI:

{
"Single ADI" : {

"Value" : true
},

"Timestamp" : 1526643062
}

Example of JSON encoding of a variable ADI:

{
"Variable ADI" : {

"Value" : "String value"
},

"Timestamp" : 1526643062
}

Example of JSON encoding of an array ADI with 3 elements:

{
"Array ADI" : {

"Value" : [1, 2, 3]
},

"Timestamp" : 1526643062
}

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

MQTT 110 (272)

JSON Encoding of Assembly Mapping Datasets

Assembly Mapping Datasets are encode as follows:

{
"<Assembly mapping instance name>" : {

"<ADI #1 name>" : { "Value" : <ADI value> },
...
<ADI #N name>" : { "Value" : <ADI value> },

},
"Timestamp" : <Timestamp of the dataset>

}

Example of JSON encoding of an Assembly Mapping instance:

{
"Example Assembly" : {

"Variable ADI": { "Value" : "String value" },
"Array ADI" : { "Value" : [1, 2, 3] },

},
"Timestamp" : 1526643062

}

11.4 Stack Configuration
This section specifies the configuration of the MQTT stack, implemented in Anybus CompactCom.
The configuration defines the capabilities of the stack implementation.

Parameter
MQTT version 3.1.1

Clean session support Yes

Retain bit support Yes

QoS level support Yes

Maximum payload 32768 bytes

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 111 (272)

12 CIP Objects
12.1 General Information

This chapter specifies the CIP-object implementation in the module. These objects can be
accessed from the network, but not directly by the host application.

Mandatory objects

• Identity Object (01h), p. 113

• Message Router (02h), p. 116

• Assembly Object (04h), p. 117

• Connection Manager (06h), p. 120

• QoS Object (48h), p. 129

• TCP/IP Interface Object (F5h), p. 138

• Ethernet Link Object (F6h), p. 141

CIP Energy Objects:

• Base Energy Object (4Eh), p. 130

• Power Management Object (53h), p. 132

Optional Objects:

• Port Object (F4h), p. 136 (Optional)

• Parameter Object (0Fh), p. 124

• DLR Object (47h), p. 128

Vendor Specific Objects:

• ADI Object (A2h), p. 134

It is possible to implement additional CIP-objects in the host application using the CIP forwarding
functionality, see EtherNet/IP Host Object (F8h), p. 222 and commend details for Process_CIP_
Object_Request.

Unconnected CIP routing is supported, which means that a message can be sent to a device
without first setting up a connection.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 112 (272)

12.2 Translation of Status Codes
If an error occurs when an object is requested from the application, an error code is returned.
These Anybus CompactCom error codes are translated to CIP status codes according to the table
below.

Anybus CompactCom 40 Error Code CIP Status Code

Value Error Value Status

00h Reserved 1Eh Embedded service error
01h Reserved 1Eh Embedded service error
02h Invalid message format 1Eh Embedded service error

03h Unsupported object 05h Path destination unknown

04h Unsupported instance 05h Path destination unknown

05h Unsupported Command 08h Service not supported

06h Invalid CmdExt(0) 14h Depending on Anybus CompactCom Service returning this
reply, e.g. attribute not supported

07h Invalid CmdExt(1) - Depending on Anybus CompactCom Service returning this
reply

08h Attribute not settable 0Eh Attribute not settable
09h Attribute not gettable 2Ch Attribute not gettable

0Ah Too Much Data 15h Too much data
0Bh Not Enough Data 13h Not enough data

0Ch Out of range 09h Invalid attribute value

0Dh Invalid state 0Ch Object state conflict

0Eh Out of resources 02h Resource unavailable
0Fh Segmentation failure 1Eh Embedded service error

10h Segmentation buffer overflow 23h Buffer overflow

11h Value too high 09h Invalid attribute value

12h Value too low 09h Invalid attribute value
13h Attribute controlled 0Fh A permission/privilege check failed

14h Message channel too small 11h Reply data too large

FFh Object Specific Error 1Fh Vendor specific error. No additional error codes will be
sent on EtherNet/IP

Other - 1Eh Embedded service error

For further information about the Anybus CompactCom error codes, please consult the Anybus
CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 113 (272)

12.3 Identity Object (01h)
Category
Extended

Object Description
The Identity Object provides identification of and general information about the module.

The object supports multiple instances. Instance 1, which is the only mandatory instance, describes the whole
product. It is used by applications to determine what nodes are on the network and to match an EDS file with
a product on the network. The other (optional) instances describe different parts of the product, e.g. the
software.

If modular device functionality is enabled, a list of the modules in the slots can be retrieved and made
available to the network master by sending a get request to class attribute 100.

Instance attributes 1 - 7 can be customized by implementing the EtherNet/IP Host Object.

Additional identity instances can be registered by implementing the CIP Identity Host Object (host application
object).

See also

• EtherNet/IP Host Object (F8h), p. 222

• CIP Identity Host Object (EDh), p. 213

Supported Services

Class: Get_Attribute_Single

Get_Attribute_All

Instance: Get_Attribute_Single

Set_Attribute_Single

Get_Attribute_All

Get_Attribute_List

Set_Attribute_List

Reset

Class Attributes
Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

2 Max instance Get UINT Maximum instance number
3 Number of

instances
Get UINT Number of instances

100 Module ID List Get Array of UINT32 If modular device functionality is enabled, a request to this attribute will
generate a Get_List request to the Modular Device Object in the host
application.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 114 (272)

Instance Attributes
Attributes #1–4 and #6–7 can be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 222

Name Access Type Value/Description

1 Vendor ID Get UINT 005Ah (HMS Industrial Networks)

2 Device Type Get UINT 002Bh (Generic Device)

3 Product Code Get UINT 0037h (Anybus CompactCom 40 EtherNet/IP)

4 Revision Get Struct of:
USINT
USINT

Major and minor firmware revision

5 Status Get WORD See Device Status table below
6 Serial Number Get UDINT Unique serial number (assigned by HMS)

7 Product Name Get SHORT_STRING “Anybus CompactCom 40 EtherNet/IP (TM)”

11 Active
language

Set Struct of:
USINT
USINT
USINT

Requests sent to this instance are forwarded to the Application Object. If the
request is accepted, the module will update the language accordingly.

30 Supported
Language List 2

Get Struct of:
UINT
Array of:
USINT
USINT
USINT

List of languages supported by the host application. The list is read from the
Application Object and translated to CIP standard. By default the only
supported language is English. The application has to implement the
corresponding attributes in the application object to enable more languages.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 115 (272)

Device Status
bit(s) Name

0 Module Owned
1 (reserved)

2 Configured
This bit shows if the product has other settings than "out-of-box". The value is set to true if the configured attribute in the
Application Object is set and/or the module’s NV storage is changed from default.

3 (reserved)

4... 7 Extended Device Status:
Value: Meaning:

0000b Unknown
0010b Faulted I/O Connection

0011b No I/O connection established

0100b Non volatile configuration bad

0101b Major fault

0110b Connection in Run mode
0111b Connection in Idle mode
(other) (reserved)

8 Set for minor recoverable faults. See Diagnostic Object (02h), p. 149

9 Set for minor unrecoverable faults. See Diagnostic Object (02h), p. 149

10 Set for major recoverable faults. See Diagnostic Object (02h), p. 149

11 Set for major unrecoverable faults. See Diagnostic Object (02h), p. 149

12... 15 (reserved)

Service Details: Reset

This service is not supported if safety is enabled in the Functional Safety Object (E8h).

The module forwards reset requests from the network to the host application. For more information about
network reset handling, consult the general Anybus CompactCom 40 Software Design Guide.

There are two types of network reset requests on EtherNet/IP:

Type 0: Power Cycling Reset This service emulates a power cycling of the module, and corresponds to Anybus reset type 0 (Power
cycling). For further information, consult the general Anybus CompactCom 40 Software Design Guide.

Type 1: Out of box reset This service sets a “out of box” configuration and performs a reset, and corresponds to Anybus reset
type 2 (Power cycling + factory default). For further information, consult the general Anybus
CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 116 (272)

12.4 Message Router (02h)
Category
Extended

Object Description
The Message Router Object provides a messaging connection point through which a client may address a
service to any object class or instance residing in the physical module.

In the Anybus CompactCom module it is used internally to direct object requests.

Supported Services

Class: -

Instance: -

Class Attributes
-

Instance Attributes
-

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 117 (272)

12.5 Assembly Object (04h)
Category
Extended

Object Description
The Assembly object uses static assemblies and holds the Process Data sent/received by the host application. It
allows data to and from each object to be sent or received over a single connection. The default assembly
instance IDs used are in the vendor specific range.

It is possible for the application to create and support up to six consuming and six producing instances if the
Assembly Mapping Object is implemented.

The terms “input” and “output” are defined from the network’s point of view. An input will produce data on
the network and an output will consume data from the network.

See also

• EtherNet/IP Host Object (F8h), p. 222

• Assembly Mapping Object (see Anybus CompactCom 40 Software Design Guide)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

2 Max instance Get UINT Maximum instance number

Instance 03h Attributes (Heartbeat, Input-Only)
This instance is used as heartbeat for Input-Only connections. The data size of the Heartbeat instance in the
Forward_Open-request should be 0 bytes, however other values are also permitted.

Name Access Type Value/Description

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 118 (272)

Instance 04h Attributes (Heartbeat, Listen-Only)
This instance is used as heartbeat for listen-only connections. The data size of the Heartbeat instance in the
Forward_Open-request should be 0 bytes, however other values are also permitted.

Name Access Type Value/Description

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Instance 05h Attributes (Configuration Data)
Configuration Data that is sent through the service Forward_Open will be written to this instance.

Name Access Type Value/Description

3 Data Set N/A - (Configuration data written to the application when the forward open
command has the configuration data included)- (The data size of this attribute
is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

See command details for Set_Configuration_Data nad Get_Contfiguration_Data in the EtherNet/IP Host Object
(F8h), p. 222.

Instance 06h Attributes (Heartbeat, Input-Only Extended)
This instance is used as heartbeat for input-only extended connections, and does not carry any attributes. The
state of connections made to this instance does not affect the state of the Anybus CompactCom module, i.e. if
the connection times out, the module does not switch to the Error state. The data size of the Heartbeat
instance in the Forward_Open-request should be 0 bytes, however other values are also permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

Instance 07h Attributes (Heartbeat, Listen-Only Extended)
This instance is used as heartbeat for listen-only extended connections, and does not carry any attributes. The
state of connections made to this instance does not affect the state of the Anybus CompactCom 40 module, i.e.
if the connection times out, the module does not switch to the Error state. The data size of the Heartbeat
instance in the Forward_Open-request should be 0 bytes, however other values are also permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description

3 Data Set N/A - (The data size of this attribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 119 (272)

Instance 64h Attributes (Producing Instance)
The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description

3 Produced Data Get Array of BYTE This data corresponds to the Write Process Data.

4 Size Get UINT Number of bytes in attribute 3

See also...

Network Data Exchange, p. 28

EtherNet/IP Host Object (F8h), p. 222(Instance attribute #7)

Instance 96h Attributes (Consuming Instance)
The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description

3 Produced Data Set Array of BYTE This data corresponds to the Read Process Data.

4 Size Get UINT Number of bytes in attribute 3

See also...

Network Data Exchange, p. 28

EtherNet/IP Host Object (F8h), p. 222 (Instance attribute #8)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 120 (272)

12.6 Connection Manager (06h)
Category
Extended

Object Description
This object is used for connection and connectionless communications, including establishing connections
across multiple subnets.

Supported Services

Class: -

Instance: Get Attribute All

Get Attribute Single

Set Attribute Single

Large_Forward_Open

Forward_Open

Forward_Close

Unconnected Send (when unconnected routing is enabled)

Class Attributes
(No supported class attributes)

Instance Attributes
Name Access Type Value/Description

1 Open Requests Set UINT Number of Forward Open service requests received.

2 Open Format
Rejects

Set UINT Number of Forward Open service requests which were rejected due to bad
format.

3 Open Resource
Rejects

Set UINT Number of Forward Open service requests which were rejected due to lack of
resources.

4 Open Other
Rejects

Set UINT Number of Forward Open service requests which were rejected for reasons
other than bad format or lack of resources.

5 Close Requests Set UINT Number of Forward Close service requests received.

6 Close Format
Rejects

Set UINT Number of Forward Close service requests which were rejected due to bad
format.

7 Close Other
Rejects

Set UINT Number of Forward Close service requests which were rejected for reasons
other than bad format.

8 Connection
Timeouts

Set UINT Total number of connection timeouts that have occurred in connections
controlled by this Connection Manager.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 121 (272)

Class 0 Connection Details
General

Class 0 connections are only supported for safety connections. The Anybus CompactCom device will act as a
transparent bridge for safety connections, meaning that open and close requests for safety connections and
safety I/O data will be forwarded to the safety module. Class 0 connections use UDP transport.

Total number of supported
class 0 connections:

2

Max input connection size: 241 bytes

(Including the Mode Byte, Actual, Complement and Time stamp sections.)

Max output connection size: 239 bytes

(Including the Mode Byte, Actual, Complement and Time stamp sections.)

Supported RPI (Requested
Packet Interval):

1... 20000 ms

Class 1 Connection Details
General

Class 1 connections are used to transfer I/O data, and can be established to instances in the Assembly Object.
Each Class 1 connection will establish two data transports; one consuming and one producing. The heartbeat
instances can be used for connections that shall only access inputs. Class 1 connections use UDP transport. Null
forward open is supported.

Total number of supported
class 1 connections:

4

Max input connection size: 1448 bytes with Large_Forward_Open, 509 bytes with Forward_Open

Max output connection size: 1448 bytes with Large_Forward_Open, 505 bytes with Forward_Open

Supported RPI (Requested
Packet Interval):

1... 3200ms

T→O Connection type: Point-to-point, Multicast, Null

O→-T Connection type: Point-to-point, Null

Supported trigger types: Cyclic, CoS (Change of State)

Supported priorities: Low, High, Scheduled, Urgent

T Target, in this case the module

O Origin, in this case the master

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 122 (272)

Connection Types

• Exclusive-Owner connection

This type of connection controls the outputs of the Anybus module and does not depend on other
connections.

Max. no. of Exclusive-Owner
connections:

1

Connection point O →T: Assembly Object, instance 96h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Input-Only connection

This type of connection is used to read data from the Anybus module without controlling the outputs. It
does not depend on other connections.

Max. no. of Input-Only connections: Up to 4

(Shared with Exclusive-Owner and Listen-Only connections)

Connection point O →T: Assembly Object, instance 03h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

Please not that if an Exclusive-Owner connection has been opened towards the module and times out,
the Input-Only connection times out as well. If the Exclusive-Owner connection is properly closed, the
Input-Only connection remains unaffected.

• Input-Only Extended connection

This connections functionality is the same as the standard Input-Only connection. However when this
connection times out it does not affect the state of the application.

Connection point O →T: Assembly Object, instance 06h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Listen-Only connection

This type of connection requires another connection in order to exist. If that connection (Exclusive-Owner
or Input-Only) is closed, the Listen-Only connection will be closed as well.

Max. no. of Input-Only connections: Up to 4

(Shared with Exclusive-Owner and Input-Only connections)

Connection point O →T: Assembly Object, instance 04h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Listen-Only Extended connection

This connections functionality is the same as the standard Listen-Only connection. However when this
connection times out it does not affect the state of the application.

Connection point O →T: Assembly Object, instance 07h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Redundant-Owner connection

This connection type is not supported by the module.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 123 (272)

Class 3 Connection Details
General

Class 3 connections are used to establish connections towards the message router. Thereafter, the connection
is used for explicit messaging. Class 3 connections use TCP transport.

No. of simultaneous Class 3 connections: 6

Supported RPI (Requested Packet
Interval):

100... 10000 ms

T→O Connection type: Point-to-point

O→-T Connection type: Point-to-point

Supported trigger type: Application

Supported connection size: 1526 bytes

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 124 (272)

12.7 Parameter Object (0Fh)
Category
Extended

Object Description
The Parameter Object provides an interface to the configuration data of the module. It can provide all the
information necessary to define and describe each of the module configuration parameters, as well as a full
description of each parameter, including minimum and maximum values and a text string describing the
parameter. Configuration tools, such as RSNetworx, can extract information about the Application Data
Instances (ADIs) and present them with their actual name and range to the user.

Since this process may be somewhat time consuming, especially when using the serial host interface, it is
possible to disable support for this functionality in the EtherNet/IP Host Object.

Each parameter is represented by one instance. Instance numbers start at 1, and are incremented by one, with
no gaps in the list. Due to limitations imposed by the CIP standard, ADIs containing multiple elements (i.e.
arrays etc.) cannot be represented through this object. In such cases, default values will be returned.

See also

• ADI Object (A2h), p. 134 (CIP Object)

• EtherNet/IP Host Object (F8h), p. 222 (Host Application Object)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Get_Attributes_All

Get_Enum_String

Class Attributes
Name Access Type Value

1 Revision Get UINT 0001h (Object revision)

2 Max instance Get UINT Maximum created instance number = class attribute 3 in the Application Data
Object (see Anybus CompactCom 40 Software Design Guide)

8 Parameter
Class
Descriptor

Get WORD Default: 0000 0000 0000 1011b
Bit:
0
1
2
3

Contents:
Supports parameter instances
Supports full attributes
Must do non-volatile storage save command
Parameters are stored in non-volatile storage

9 Configuration
Assembly
Instance

Get UINT 0000h (Application does not support configuration data)
0005h (If the application supports configuration data, unless the configuration
instance number has been changed using attribute 15 in the EtherNet/IP Host
Object.)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 125 (272)

Instance Attributes
Name Access Type Value/Description

1 Parameter
Value

Get/Set Specified in
attributes 4, 5 & 6.

Actual value of parameter
This attribute is read-only if bit 4 of Attribute #4 is true

2 Link Path Size Get USINT 0007h (Size of link path in bytes)

3 Link Path Get Packed EPATH 20 A2 25 nn nn 30 05h
(Path to the object from where this parameter’s value is retrieved, in this case
the ADI Object)

4 Descriptor Get WORD Bit:
0
1
2
3
4
5
6

Contents:
Supports Settable Path (N/A)
Supports Enumerated Strings
Supports Scaling (N/A)
Supports Scaling Links (N/A)
Read only Parameter
Monitor Parameter (N/A)
Supports Extended Precision Scaling (N/A)

5 Data Type Get USINT Data type code

6 Data Size Get USINT Number of bytes in parameter value

7 Parameter
Name String

Get SHORT_STRING Name of the parameter, truncated to 16 chars

8 Units String Get SHORT_STRING “” (default string)

9 Help String Get SHORT_STRING

10 Minimum
Value

Get (Data type) Minimum value of parameter
The Data Type is defined in attribute 5.

11 Maximum
Value

Get (Data type) Maximum value of parameter
The Data Type is defined in attribute 5.

12 Default Value Get (Data type) Default value of parameter
The Data Type is defined in attribute 5.

13 Scaling
Multiplier

Get UINT 0001h

14 Scaling Divisor Get UINT

15 Scaling Base Get UINT

16 Scaling Offset Get INT 0000h

17 Multiplier Link Get UINT

18 Divisor Link Get UINT
19 Base Link Get UINT
20 Offset Link Get UINT
21 Decimal

Precision
Get USINT 00h

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 126 (272)

Default Values
Name Value Comments
1 Parameter Value 0 -

2 Link Path Size 0 Size of link path in bytes.

3 Link Path - NULL Path
4 Descriptor 0010h Read only Parameter

5 Data type C6h USINT

6 Data size 1 -

7 Parameter Name String “Reserved” -

8 Units String “” -

9 Help String “” -

10 Minimum value N/A 0

11 Maximum value N/A 0

12 Default value N/A 0

13 Scaling Multiplier N/A 1

14 Scaling Divisor N/A 1

15 Scaling Base N/A 1

16 Scaling Offset N/A 0

17 Multiplier Link N/A 0

18 Divisor Link N/A 0

19 Base Link N/A 0

20 Offset Link N/A 0

21 Decimal Precision N/A 0

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 127 (272)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 128 (272)

12.8 DLR Object (47h)
Category
Extended

Object Description
The Device Level Ring (DLR) Object provides the status information interface for the DLR protocol. This
protocol enables the use of an Ethernet ring topology, and the DLR Object provides the CIP application-level
interface to the protocol.

This object is not available if DLR is disabled in the EtherNet/IP Host Object, see Ethernet Host Object (F9h), p.
231

.

Supported Services

Class: Get_Attribute_Single

Get_Attributes_All

Instance: Get_Attribute_Single

Class Attributes
Name Access Type Value

1 Revision Get UINT 0003h (Object revision)

Instance Attributes
Attributes #1–4 and #6–7 an be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 222

Name Access Type Value/Description

1 Network
Topology

Get USINT Bit:
0
1

Contents:
“Linear”
“Ring”

2 Network Status Get USINT Bit:
0
1
2
3
4

Contents:
“Normal” (N/A)
“Ring Fault”
“Unexpected Loop Detected”
“Partial Network Fault”
“Rapid Fault/Restore Cycle”

10 Active
Supervisor
Address

Get Struct of: UDINT
Array of:
6 USINTs

This attribute holds the IP address (IPv4) and/or the Ethernet Mac address of
the active ring supervisor.

12 Capability Flags Get DWORD 82h (Beacon-based ring node, Flush_Table frame capable)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 129 (272)

12.9 QoS Object (48h)
Category
Extended

Object Description
Quality of Service (QoS) is a general term that is applied to mechanisms used to treat traffic streams with
different relative priorities or other delivery characteristics. Standard QoS mechanisms include IEEE 802.1D/Q
(Ethernet frame priority) and Differentiated Services (DiffServ) in the TCP/IP protocol suite.

The QoS Object provides a means to configure certain QoS related behaviors in EtherNet/IP devices.

The object is required for devices that support sending EtherNet/IP messages with nonzero DiffServ code
points (DSCP), or sending EtherNet/IP messages in 802.1Q tagged frames.

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value

1 Revision Get UINT 0001h (Object revision)

Instance Attributes
Attributes #1–4 and #6–7 an be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 222

Name Access Type Value/Description

1 802.1Q Tag
Enable

Set USINT Enables or disables sending 802.1Q frames.

Value:
0
1

Contents:
Disabled (Default)
Enabled

4 DSCP Urgent Set USINT CIP transport class 1 messages with priority Urgent
Default: 55

5 DSCP
Scheduled

Set USINT CIP transport class 1 messages with priority Scheduled
Default: 47

6 DSCP High Set USINT CIP transport class 1 messages with priority High
Default: 43

7 DSCP Low Set USINT CIP transport class 1 messages with priority Low
Default: 31

8 DSCP Explicit Set USINT CIP UCMM and CIP class 3
Default: 27

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 130 (272)

12.10 Base Energy Object (4Eh)
Category
Extended

Object Description
The Base Energy Object acts as an “Energy Supervisor” for CIP Energy implementations. It is responsible for
providing a time base for energy values, provides energy mode services, and can provide aggregation services
for aggregating energy values up through the various levels of an industrial facility. It also provides a standard
format for reporting energy metering results. The object is energy type independent and allows energy type
specific data and functionality to be integrated into an energy system in a standard way. The Anybus
CompactCom 40 EtherNet/IP IIoT Secure supports one instance of the Base Energy Object. For instance, an
electric power monitor may count metering pulse output transitions of a separate metering device. The count
of such transitions, represented by a Base Energy Object instance, would reflect the energy consumption
measured by the separate metering device.

An instance of the Base Energy Object may exist as a stand-alone instance, or it may exist in conjunction with
an Electrical and/or Non-Electrical Energy Object instance (These objects are not implemented in the Anybus
CompactCom 40 EtherNet/IP IIoT Secure). If an instance of any of these objects is implemented in a device, it
must be associated with a Base Energy Object instance in the device.

For this object to be able to access the network, the Energy Reporting Object (E7h) must be implemented in
the host application, see Energy Reporting Object (E7h), p. 209.

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Class Attributes
Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 131 (272)

Instance Attributes
Attributes #1–4 and #6–7 an be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 222

Name Access Type Value/Description

1 Energy/
Resource Type

Get UINT Type of energy managed by this instance
Always 0 (Generic)

2 Base Energy
Object
Capabilities

Get UINT Always 0 (Energy measured)

3 Energy
Accuracy

Get UINT Specifies the accuracy of power and energy metering results, either in 0.01
percent of reading (default) or 0.01 of other units specified in attribute #4. If 0,
unknown.

4 Energy
Accuracy Basis

Get UINT Always 0 (Percent of reading)

7 Consumed
Energy
Odometer

Get ODOMETER The value of the consumed energy.

8 Generated
Energy
Odometer

Get ODOMETER The value of the generated energy.

12 Energy Type
Specific Object
Path

Get Struct of:
UINT (Path size)
padded EPATH
(Path)

NULL path

• Depending on whether the instance reports consumed or generated energy, either attribute #7 or
attribute #8 is required.

• The struct data type ODOMETER makes it possible to represent very large values, for more information
please consult the CIP specification Volume 1 (CIP Common).

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 132 (272)

12.11 Power Management Object (53h)
Category
Extended

Object Description
The Power Management Object provides standardized attributes and services to support the control of devices
into and out of paused or sleep states. The Energy Control Object (F0h) has to be implemented for this object
to gain access to the network.

See also ..

• Energy Control Object (F0h) (Anybus CompactCom 40 Software Design Guide)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Power_Management

Set_Pass_Code

Clear_Pass_Code

Class Attributes
Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 133 (272)

Instance Attributes
Name Access Type Value/Description

1 Power
Management
Command

Get DWORD Collection of bit fields comprising the most recent power management request.

2 Power
Management
Status

Get DWORD Collection of bit fields providing Power Management status information.

3 Client Path Get Struct of: Specifies the EPATH from this instance (server) to its current owner (client).

UINT (Path Size) Size of path (in words

Padded EPATH
(Path)

4 Number of
Power
Management
Modes

Get UINT Number of Power Management Mode array entries in attribute 5.

5 Power
Management
Nodes

Get Array of: Array of low power modes

Struct of: Modes (Array of mode structures)

USINT Minimum Pause Units (Specifies the unit of Minimum Pause Time)

UINT Minimum Pause Time
USINT Resume Units (Specifies the unit of Resume Time)

UINT Resume Time (Required time to transition from the paused stated to the
owned state.

REAL Power Level (Power in kW for this mode)

BOOL Availability (Specifies whether this mode can be entered given the current
device state)

6 Sleeping State
Support

Get BOOL 0 (Sleeping state not supported)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 134 (272)

12.12 ADI Object (A2h)
Category
Extended

Object Description
This object maps instances in the Application Data Object to EtherNet/IP. All requests to this object will be
translated into explicit object requests towards the Application Data Object in the host application; the
response is then translated back to CIP-format and sent to the originator of the request.

The ADI Object can be disabled using attribute 30 in the EtherNet/IP Host Object (F8h). This attribute can also
be used to change the ADI Object number.

See also ..

• Application Data Object (see Anybus CompactCom 40 Software Design Guide)

• Parameter Object (0Fh), p. 124 (CIP Object)

• EtherNet/IP Host Object (F8h), p. 222

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

2 Max Instance Get UINT Equals attribute #4 in the Application Data Object

3 Number of
instances

Get UINT Equals attribute #3 in the Application Data Object

For information about the Application Data Object, please consult the Anybus CompactCom 40 Software
Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 135 (272)

Instance Attributes
Each instance corresponds to an instance within the Application Data Object (for more information, please
consult the general Anybus CompactCom 40 Software Design Guide).

Name Access Type Value/Description

1 Name Get SHORT_STRING Parameter name (Including length)

2 ABCC Data
type

Get Array of USINT Data type of instance value

3 No. of
Elements

Get USINT Number of elements of the specified data type

4 Descriptor Get Array of USINT Bit field describing the access rights for this instance

Bit:
0
1
2
3
4
5
6

Meaning:
1 = Get Access
1 = Set Access
(reserved, set to 0)
1 = Write process data mapping possible
1 = Read process data mapping possible
1 = NVS parameter
1 = Data notification enabled

5 Value Get/Set Determined by
attributes #2, #3
and #9

Instance value

6 Max Value Get The maximum permitted parameter value.

7 Min Value Get The minimum permitted parameter value.

8 Default Value Get The default parameter value.

9 Number of
subelements

Get Array of UINT Number of subelements in the ADI. Default value is 1 unless implemented in
the application.
The size of the array depends on attribute #3.

Attributes #5–8 are converted to/from CIP standard by the module

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 136 (272)

12.13 Port Object (F4h)
Category
Extended

Object Description
The Port Object describes the CIP ports present on the device. Each routable CIP port is described in a separate
instance. Non-routable ports may be described. Devices with a single CIP port are not required to support this
object.

The object exists only if enabled in the EtherNet/IP Host Object (Instance Attribute #17).

See also ..

• EtherNet/IP Host Object (F8h), p. 222 (Anybus Module Object)

• CIP Port Configuration Object (0Dh), p. 192 (Host Application Object)

Supported Services

Class: Get_Attributes_All

Get_Attribute_Single

Instance: Get_Attributes_All

Get_Attribute_Single

Class Attributes
Name Access Type Value

1 Revision Get UINT 0002h (Object revision)

2 Max Instance Get UINT Max. instance number
3 Number of

Instances
Get UINT Number of ports currently created.

8 Entry Port Get UINT Returns the instance of the Port Object that describes the port through which
this request entered the device.

9 Port Instance
Info

Get Array of: Array of structures containing instance attributes 1 and 2 from each instance.
The array is indexed by instance number, up to the maximum number of
instances. The value at index 1 (offset 0) and any non-instantiated instances will
be zero.

Struct of:
UINT (Type)
UINT (Number)

Enumerates the type of port (see instance attribute #1)
CIP port number associated with this port (see instance attribute #2)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 137 (272)

Instance Attributes (Instance #1)
Name Access Type Value/Description

1 Port Type Get UINT 0h (default)
4h (if the application registers a port)

2 Port Number Get UINT 2h
3 Link Object Get Struct of:

UINT
Padded EPATH

-
2h (Path Length)
20 F5 24 01h (Link Path)

4 Port Name Get SHORT_STRING “EtherNet/IP”

5 Port Type
Name

Get SHORT_STRING “”

6 Port
Description

Get SHORT_STRING “”

7 Node Address Get Padded EPATH -

10 Port Routing
Capabilities

Get UDINT 1h (Routing of incoming Unconnected Messaging supported)

See also...

CIP Port Configuration Object (0Dh), p. 192

Instance Attributes (Instances #2... #8)
Name Access Type Value/Description

1 Port Type Get UINT Enumerates the type of port

2 Port Number Get UINT CIP port number associated with this port

3 Link Object Get Struct of:
UINT
Padded EPATH

-
Path length (number of 16-bit words)
Logical path segments which identify the object for this port. The path must
consist of one logical class segment and one logical instance segment. The
maximum size is 12 bytes.

4 Port Name Get SHORT_STRING Name of port, e.g. “Port A”. Max. 64 characters.

5 Port Type
Name

Get SHORT_STRING “”

6 Port
Description

Get SHORT_STRING “”

7 Node Address Get Padded EPATH Node number of this device on port. The range within this data type is
restricted to a Port Segment.

8 Port Node
Range

Get Struct of:
UINT (Min.)
UINT (Max.)

-
Min. node number on port
Max. node number on port

10 Port Routing
Capabilities

Get UDINT 1h (Routing of incoming Unconnected Messaging supported)

See also...

CIP Port Configuration Object (0Dh), p. 192 , “Instance Attributes.”.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 138 (272)

12.14 TCP/IP Interface Object (F5h)
Category
Extended

Object Description
This object provides the mechanism to configure the TCP/IP network interface of the module. It groups the
TCP/IP-related settings in one instance for each TCP/IP capable communications interface.

See also ..

• Communication Settings, p. 26

• Network Configuration Object (04h), p. 151 (Anybus Module Object)

Supported Services

Class: Get_Attribute_All

Get_Attribute_Single

Instance: Get_Attribute_All

Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value

1 Revision Get UINT 0004h (Object revision)

2 Max instance Get UINT 1 (Maximum instance number)

3 Number of
instances

Get UINT 1 (Number of instances)

6 Maximum ID
Number Class
Attributes

Get UINT 7 (The attribute number of the last implemented class attribute)

7 Maximum ID
Number
Instance
Attributes

Get UINT 13 (The attribute number of the last implemented instance attribute)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 139 (272)

Instance Attributes
Name Access Type Value Comments

1 Status Get DWORD - Bit: Meaning:
(reserved, set to 0)

0–3 When set to h, attribute #5 contains valid
configuration from DHCP or non-volatile storage.
When set to 2h, attribute #5 contains valid
configuration from hardware settings. Remaining
values are reserved for future use.

4 Multicast pending if set to 1.

5 Interface configuration pending if set to 1. A new
configuration will be loaded at the next reset.

6 AcdStatus. Set to 1 if an address conflict is
detected. Address conflict detection is enabled/
disabled in attribute #10.

7 AcdFault
8–31 (reserved, set to 0)

2 Configuration
Capability

Get DWORD - Bit: Meaning:

0-1: Always 0. For more information, consult the CIP
specifications.

2: If set to 1, the device is capable of acting as a
DHCP client. The bit is set to 0 if attribute #24
(Enable DHCP Client) is disabled in the Ethernet
Host Object (F9h), p. 231

3: Always 0. For more information, consult the CIP
specifications.

4: The ‘Configuration Settable’-bit reflects the value
of instance attribute #9 in the "EtherNet/IP Host
Object (F8h)" on page 161.

5: The module is hardware configurable when this
bit is set to 1. The bit will be set if any of the
address attributes is set in the Network
Configuration Object (04h) during setup or if
attribute #6 (Hardware configurable address) in
the Application Object (FFh) is set.

6: Always 0. For more information, consult the CIP
specifications.

7: If set to 1, the device is capable of detecting
address conflicts. The bit is set to 0 if address
conflict detection is disabled in the Ethernet Host
Object, see page 231

8 - 31: (reserved, set to 0)

3 Configuration
Control

Get/Set DWORD - Value: Meaning

0: Configuration from non-volatile memory

2: Configuration from DHCP

4 Physical Link
Object

Get Struct of: - -

UINT (Path size) 0002h -

Padded EPATH 20 F6 24 03h Path to Ethernet Link Object, Instance #3

5 Interface
Configuration

Get/Set Struct of: -

UDINT (IP) IP address

UDINT (Mask) Subnet mask

UDINT (GW) Default gateway

UDINT (DNS1) Primary DNS

UDINT (DNS2) Secondary DNS

STRING
(Domain)

Default domain

6 Host Name Get/Set STRING - Host name of Anybus module

8 TTL Value Get/Set USINT 1 TTL value for EtherNet/IP multicast packets

9 Mcast Config Set Struct of: IP multicast configuration.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 140 (272)

Name Access Type Value Comments

Alloc Control USINT 0 Value: Meaning:

0: Use default allocation algorithm to generate
multicast addresses

1: Allocate multicast addresses according to the
values in the “Num Mcast”- and “Mcast Start
Addr”-fields.

(reserved) USINT 0 Set to zero. Do not change.

Num Mcast UINT -1 Number of multicast addresses to allocate for EtherNet/IP

Mcast Start
Addr

UDINT - Starting multicast address from which to begin allocation

10 SelectAcd Set Bool 1 Value: Meaning:

0: Disable ACD
1: Enable ACD (Default).

If ACD (address conflict detection) is enabled, bit
6 in attribute #1 will be set if an ACD conflict is
detected. The Network Status LED will also
indicate a detected conflict, see Front View, p.
244 .

11 LastConflictDe-
tected

Set Struct of: ACD Diagnostic parameters Related to the last conflict
detected.

AcdActiviity USINT - State of ACD activity when last conflict detected.

RemoteMAC ARRAY of 6 USINT - MAC address of remote node form the ARP PDU
in which a conflict was detected.

ArpPdu ARRAY of 28
USINT

- Copy of the raw ARP PDU in which a conflict was
detected.

12 EIP
QuickConnect

Set Bool 0 Value: Meaning:

0: Disable EIP QuickConnect (Default)

1: Enable EIP QuickConnect
If EIP QuickConnect is enabled, the QuickConnect
feature will direct EtherNet/IP target devices to
quickly power up and join an EtherNet/IP
network.

13 Encapsulation
inactivity
timeout

Set UINT 0 - 3600 Number of seconds of inactivity before a TCP connection is
closed.
0: Disabled

• Support for configuring network settings (attributes #3 and #5) from the network can be disabled by
implementing attribute #9 in the EtherNet/IP Host Object, see EtherNet/IP Host Object (F8h), p. 222

• Attributes #10 and #11 will not be available if ACD is disabled using attribute #11 in the Ethernet Host
Object (F9h).

• Attribute #12:

– If the module is configured to use EIP QuickConnect functionality, the EDS file has to be changed. As
the EDS file is changed, the identity of the module has to be changed and the module will require
certification.

– This attribute exists if attribute #26 in the EtherNet/IP Host Object is implemented, see EtherNet/IP
Host Object (F8h), p. 222.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 141 (272)

12.15 Ethernet Link Object (F6h)
Category
Extended

Object Description
This object maintains link specific counters and status information for an IEEE 802.3 communications interface.
Exactly one instance for each communications interface on the module is supported. Instances for internally
accessible interfaces can also be supported.

See also ..

• Communication Settings, p. 26

• Network Configuration Object (04h), p. 151 (Anybus Module Object)

Supported Services

Class: Get_Attributes_All

Get_Attribute_Single

Instance: Get_Attributes_All

Get_Attribute_Single

Set_Attribute_Single

Get_And_Clear

Class Attributes
By default, three instances (port 1, port 2 and the internal port) are implemented, meaning that two ports are
activated.

If port 2 is inactivated in the Port 2 State attribute of the Ethernet Host Object (F9h), only one instance (port 1)
should be implemented.

Name Access Type Value

1 Revision Get UINT 0004h (Object revision)

2 Max Instance Get UINT 1 or 3 (Maximum instance number)

3 Number of
Instances

Get UINT 1 or 3 (Number of instances)

6 Maximum ID
Number Class
Attributes

Get UINT 7 (The attribute number of the last implemented class attribute.)

7 Maximum ID
Number
Instance
Attributes

Get UINT 11 (The attribute number of the last implemented instance attribute.)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 142 (272)

Instance Attributes
Name Access Type Value Comments

1 Interface
Speed

Get UDINT 10 or 100 Actual Ethernet interface speed.

2 Interface Flags Get DWORD - See table “Interface Flags” below.

3 Physical
Address

Get Array of 6 USINTs (MAC ID) Physical network address, i.e. assigned MAC address.

4 Interface
Counters

Get Struct of:

In Octets UDINT N/A Octets received on the interface

In Ucast
Packets

UDINT N/A Unicast packets received on the interface

In NUcast
Packets

UDINT N/A Nonunicast packets received on the interface

In Discards UDINT N/A Inbound packets with unknown protocol

In Errors UDINT N/A Inbound packets that contain errors (does not include In
discards)

In Unknown
Protos

UDINT N/A Inbound packets with unknown protocol

Out Octets UDINT N/A Octets sent on the interface

Out Ucast
Packets

UDINT N/A Unicast packets sent on the interface

Out NUcast
Packets

UDINT N/A Nonunicast packets sent on the interface

Out Discards UDINT N/A Outbound packets with unknown protocol

Out Errors UDINT N/A Outbound packets that contain errors (does not include
Out discards)

5 Media
Counters

Get Struct of: Media specific counters

Alignment
Errors

UDINT N/A Frames received that are not an integral number of octets
in length

FCS Errors UDINT N/A Frames received that do not pass the FCS check

Single
Collisions

UDINT N/A Successfully transmitted frames that have experienced
exactly one collision

Multiple
Collisions

UDINT N/A Successfully transmitted frames that have experienced
more than one collision

SQE Test Errors UDINT 0 The number of times the SQE test error message is
generated(Counter not provided with current PHY
interface)

Deferred
Transmissions

UDINT N/A Frames for which the first transmission attempt is delayed
because the medium is busy

Late Collisions UDINT N/A The number of times a collision is detected later than 512
bit-times into the transmission of a packet

Excessive
Collisions

UDINT N/A Frames for which a transmission fails due to excessive
collisions

MAC Transmit
Errors

UDINT N/A Frames for which a transmission fails due to an internal
MAC sublayer receive error

Carrier Sense
Errors

UDINT N/A The number of times that the carrier sense condition was
lost or never asserted when attempting to transmit a frame

Frame Too
Long

UDINT N/A Frames received that exceed the maximum permitted
frame size

MAC Receive
Errors

UDINT N/A Frames for which reception on an interface fails due to an
internal MAC sublayer receive error

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 143 (272)

Name Access Type Value Comments

6 Interface
Control

Get/Set Struct of:

Control Bits WORD - Interface control bits
Forced
Interface
Speed

UINT - Speed at which the interface shall be forced to operate.
Returns ‘Object state Conflict’ if auto-negotiation is
enabled

7 Interface Type Get USINT - See table “Interface State” below.

8 Interface State Get USINT - See table “Interface Type” below.

9 Admin State Get/Set USINT - See table “Admin State” below.

10 Interface Label Get SHORT_STRING — See table “Interface Label” below.

11 Interface
Capability

Get Struct of: - Indication of the capabilities of the interface

Capability Bits DWORD - Interface capabilities, other than speed/duplex
See table “Interface Capability” below.

Speed/Duplex
Options

Struct of: - Indicates speed/duplex pairs supported in the Interface
Control Attribute

USINT - Speed/duplex array count

Array of Struct of: - Speed/duplex array

UINT - Interface speed

USINT - Interface Duplex Mode
0 = half duplex
1 = full duplex
2 - 255 = Reserved

• Support for attribute #6 can be disabled by implementing attribute #9 in the EtherNet/IP Host Object
(F8h). see EtherNet/IP Host Object (F8h), p. 222

• Support for attribute #9 can be disabled by implementing the port state attributes (#12 or #13) in the
Ethernet Host object (F9h) see Ethernet Host Object (F9h), p. 231

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 144 (272)

Interface Flags

Bit Name Description

0 Link status Indicates whether or not the Ethernet 802.3 communications interface is connected to an
active network.
Value: Meaning:

0 Inactive link
1 Active link

1 Half/full duplex Indicates the duplex mode currently in use.

Value:
0
1

Meaning:
Half duplex
Full duplex

2 - 4 Negotiation Status Indicates the status of link auto-negotiation.

Value: Meaning:

0 Auto-negotiation in progress.

1 Auto-negotiation and speed detection failed (using default values)
(Recommended default values are 10 Mbps, half duplex)

2 Auto negotiation failed but detected speed (using default duplex value)

3 Successfully negotiated speed and duplex.

4 Auto-negotiation not attempted. Forced speed and duplex.

5 Manual Setting requires Reset Value: Meaning:

0 Interface can activate changes to link parameters during runtime

1 Reset is required in order for changes to have effect

6 Local Hardware Fault Value: Meaning:

0 No local hardware fault detected
1 Local hardware fault detected

7-31 (reserved) Set to 0.

Interface State

This attribute indicates the current operational state of the interface.

Value Description

0 Unknown interface state.
1 The interface is enabled and is ready to send and receive data.

2 The interface is disabled.
3 The interface is testing.

Admin State

This attribute controls the administrative setting of the interface state.

Value Description

0 (reserved)

1 Enable the interface.
2 Disable the interface.
3-255 (reserved)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

CIP Objects 145 (272)

Interface Label

This attribute is configurable via the EtherNet/IP Host Object, see page 222

Instance Value
1 Port 1
2 Port 2
3 Internal

Interface Type

Instance Value Description

1 2 Twisted-pair

2 2 Twisted-pair

3 1 Internal interface

Interface Capability

Bit Name Description Implementation

0 Manual setting
requires reset

Indicates whether or not the device requires a reset to apply
changes made to the Interface Control attribute (#6).

Return 0

0 Indicates that the device automatically applies changes
made to the Interface Control attribute (#6) and,
therefore, does not require a reset in order for changes to
take effect. This bit shall have this value when the
Interface Control attribute (#6) is not implemented.

1 1 = Indicates that the device does not automatically apply
changes made to the Interface Control attribute (#6) and,
therefore, will require a reset in order for changes to take
effect.
Note: this bit shall also be replicated in the Interface Flags
attribute (#2), in order to retain backwards compatibility
with previous object revisions.

1 Auto-negotiate 0 Indicates that the interface does not support link auto-
negotiation

0 for internal interface, 1 for external
interfaces

1 Indicates that the interface supports link auto-negotiation

2 Auto-MDIX 0 Indicates that the interface does not support auto MDIX
operation

0 for internal interface, 1 for external
interfaces

1 Indicates that the interface supports auto MDIX operation

3 Manual speed/
duplex

0 Indicates that the interface does not support manual
setting of speed/duplex. The Interface Control attribute
(#6) shall not be supported.

0 for internal interface, 1 for external
interfaces

1 Indicates that the interface supports manual setting of
speed/duplex via the Interface Control attribute (#6)

4 - 31 Reserved Shall be set to 0 Return 0

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 146 (272)

13 Anybus Module Objects
13.1 General Information

This chapter specifies the Anybus Module Object implementation and how they correspond to
the functionality in the Anybus CompactCom 40 EtherNet/IP IIoT Secure.

Standard Objects:

• Anybus Object (01h), p. 147

• Diagnostic Object (02h), p. 149

• Network Object (03h), p. 150

• Network Configuration Object (04h), p. 151

Network Specific Objects:

• Socket Interface Object (07h), p. 167

• SMTP Client Object (09h), p. 184

• Anybus File System Interface Object (0Ah), p. 189

• Network Ethernet Object (0Ch), p. 190

• CIP Port Configuration Object (0Dh), p. 192

• Functional Safety Module Object (11h), p. 194

• Time Object (13h), p. 201

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 147 (272)

13.2 Anybus Object (01h)
Category
Basic

Object Description
This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Reset

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Module type Get UINT16 0403h (Standard Anybus CompactCom 40)

2... 11 - - - Consult the general Anybus CompactCom 40 Software Design
Guide for further information.

12 LED colors Get struct of: Value: Color:
UINT8 (LED1A) 01h Green

UINT8 (LED1B) 02h Red

UINT8 (LED2A) 01h Green

UINT8 (LED2B) 02h Red

13... 16 - - - Consult the general Anybus CompactCom 40 Software Design
Guide for further information.

Extended

Name Access Type Value

17 Virtual attributes Get/Set - Consult the general Anybus CompactCom 40 Software Design
Guide for further information.18 Black list/White list Get/Set

19 Network time Get UINT64 0 (Not supported)

Command Details: Reset
Details

Command Code 05h

Valid for: Object Instance

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 148 (272)

Description

This command is sent from the host application to the Anybus object (instance 0). A power-on reset is a
request to make the module ready for a power-on reset from the host application. A power-on + factory
default reset is a request a to return the module to the application specific out-of-box state and then make the
module ready for a power-on reset from the host application.

A power-on reset shuts down the network and then sets the module in the EXCEPTION state waiting for the
host to perform the power-on reset. Note that this command does not clear or reset any functionality stored in
non-volatile memory. No command data shall be supplied together with this reset type of reset command.

A power-on + factory default request shuts down the network, resets the functionality specified by the bit field
in the command data, reports the result in the response data and then sets the module in EXCEPTION state
waiting for the host application to perform the power-on reset.

If a power-on + factory default reset is successful the response bit field indicates what was reset successfully.

• Command details:

Field Contents

CMDExt[0] (reserved)

CMDExt[1] 00h: Power-on reset (actual power-on or simulated)

01h: (reserved)

02h: Power-on + Factory default reset

Data[0-3] Bitmask specifying what to reset to factory default state (UINT32)

Bit(s): Description:

0: Network configuration parameters

1: Anybus file system

2: All existing configuration like user created accounts and stored certificates

3-23 (reserved)

24-31 Reserved or used for network specific functionality, see the respective network guides

• Response details:

Field Contents

Data[0-3] Bitmask specifying what the Anybus CompactCom was supported to reset. See command data for bit
specification.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 149 (272)

13.3 Diagnostic Object (02h)
Category
Basic

Object Description
This object provides a standardized way of handling host application events & diagnostics, and is

thoroughly described in the general Anybus CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Create

Delete

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1... 4 - - - Consult the general Anybus CompactCom 40 Software Design Guide
for further information.

11 Max no. of instances Get UINT16 5+1 (Of the maximum number of instances there should always be
one instance reserved for an event of severity level ‘Major,
unrecoverable’, to force the module into the ‘EXCEPTION’-state.)

12 Supported functionality Get BITS32 Bit 0: “0” (Latching events are not supported)
Bit 1 - 31: reserved (shall be “0”)

Instance Attributes (Instance #1)
Extended

Name Access Data Type Value

1 Severity Get UINT8 Consult the general Anybus CompactCom 40 Software Design Guide
for further information.2 Event Code Get UINT8

3 - - - Not implemented in product

4 Slot Get UINT16 Consult the general Anybus CompactCom 40 Software Design Guide
for further information.5 ADI Get UINT16

6 Element Get UINT8
7 Bit Get UINT8

Attributes #2 and #4–7 can not be represented on the network and are ignored by the module.

In this implementation, the severity level of all instances are combined (using logical OR) and represented on
the network through the CIP Identity Object.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 150 (272)

13.4 Network Object (03h)
Category
Basic

Object Description
For more information regarding this object, consult the general Anybus CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Map_ADI_Write_Area

Map_ADI_Read_Area

Map_ADI_Write_Ext_Area

Map_ADI_Read_Ext_Area

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Network type Get UINT16 00ABh (EtherNet/IP Beacon Based 2–port + IIoT)

2 Network type string Get Array of CHAR “Ethernet/IP(TM)”

3 Data format Get ENUM 00h (LSB first)

4 Parameter data support Get BOOL True

5 Write process data size Get UINT16 Current write process data size (in bytes)
Updated on every successful Map_ADI_Write_Area. (Consult the
general Anybus CompactCom 40 Software Design Guide for further
information.)

6 Read process data size Get UINT16 Current read process data size (in bytes)
Updated on every successful Map_ADI_Read_Area. (Consult the
general Anybus CompactCom 40 Software Design Guide for further
information.)

7 Exception Information Get UINT8 Additional information available if the module has entered the
EXCEPTION state.
Value:
00h
01h
02h

Meaning:
No information available
Invalid assembly instance mapping
Missing MAC address (Only valid for Anybus IP)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 151 (272)

13.5 Network Configuration Object (04h)
Category
Extended

Object Description
This object holds network specific configuration parameters that may be set by the end user. A reset command
(factory default) issued towards this object will result in all instances being set to their default values.

If the settings in this object do not match the configuration used, the Module Status LED will flash red to
indicate a minor error.

As soon as the used combination of IP address, Subnet mask and Gateway is changed, the module informs the
application by writing the new set to instance #1, attribute #16 in the Ethernet Host Object (F9h).

The object is described in further detail in the Anybus CompactCom 40 Software Design Guide.

See also...

• Communication Settings, p. 26

• TCP/IP Interface Object (F5h), p. 138 (CIP-object)

• Ethernet Link Object (F6h), p. 141

• Ethernet Host Object (F9h), p. 231

Supported Commands

Object: Get_Attribute

Reset

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Object Attributes (Instance #0)
Name Access Data Type Value Description

3 Number of instances Get UINT16 25 Supported number of instances

4 Highest instance
number

Get UINT16 56 Highest instance number

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 152 (272)

Instance Attributes (Instance #3, IP Address)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “IP address”
(Multilingual, see page 166)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #4, Subnet Mask)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Subnet mask”
(Multilingual, see page 166)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #5, Gateway Address)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Gateway”
(Multilingual, see page 166)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 153 (272)

Instance Attributes (Instance #6, DHCP Enable)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “DHCP”
(Multilingual, see page 166)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
(Multilingual, see page 166)

Value String Meaning

00h “Disable” DHCP disabled
01h “Enable” DHCP enabled (default)

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value String Meaning

00h “Disable” DHCP disabled
01h “Enable” DHCP enabled

Instance Attributes (Instance #7 Ethernet Communication Settings 1)
Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “Comm 1”
(Multilingual, see page 166)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value String Meaning
(Multilingual, see page 166)

00h “Auto” Auto negotiation (default)

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value String Meaning

(Multilingual, see page 166)

00h “Auto” Auto negotiation

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 154 (272)

Instance Attributes (Instance #8 Ethernet Communication Settings 2)
Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “Comm 2”
(Multilingual, see page 166)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value String Meaning
(Multilingual, see page 166)

00h “Auto” Auto negotiation (default)

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value String Meaning

(Multilingual, see page 166)

00h “Auto” Auto negotiation

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

Instance Attributes (Instance #9, DNS1)
This instance holds the address to the primary DNS server. Changes are valid after reset.

Name Access Data Type Description

1 Name Get Array of CHAR “DNS1”
(Multilingual, see page 166)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 155 (272)

Instance Attributes (Instance #10, DNS2)
This instance holds the address to the secondary DNS server. Changes are valid after reset.

Name Access Data Type Description

1 Name Get Array of CHAR “DNS2”
(Multilingual, see page 166)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #11, Host name)
This instance holds the host name of the module. Changes are valid after reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Host name”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Host name, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Host name, 64 characters

Instance Attributes (Instance #12, Domain name)
This instance holds the domain name. Changes are valid after reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Host name”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 30h (48 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Domain name, 48 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Domain name, 48 characters

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 156 (272)

Instance Attributes (Instance #13, SMTP Server)
This instance holds the SMTP server URL.

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP server”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR SMTP server URL, 64 characters in the format [<protocol>://]<server
address>[:<port>].
See SMTP Server URL format, p. 156 for URL format options.
If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP server URL, 64 characters.

Changes are valid after reset.

SMTP Server URL format

The URL of the SMTP server has the following components:

Protocol Optional. If not specified, non-encrypted SMTP will be used.
Specifies the protocol to use when communicating with the server. The available protocols are:

• smtp — Standard, non-encrypted SMTP.

• smtps — Secure SMTP. A TLS connection will be used when communicating with the server.

Server
address

Mandatory.
Sets the IP address or host name of the SMTP server. If host name is used, a valid DNS server must also be configured.

Port Optional. If not specified, the SMTP default port 25 will be used.
Specifies the port to connect to for the SMTP server.

These examples are in valid SMTP server URL format:

smtp.server.com Connects to smtp.server.com using SMTP on port 25.

smtp://smtp.server.com:1025 Connects to smtp.server.com using SMTP on port 1025.

smtps://smtp.server.com:465 Connects to smtp.server.com using SMTPS (SMTP over TLS) on port 465.

Instance Attributes (Instance #14, SMTP User)
This instance holds the username for the SMTP account. Changes are valid after reset.

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP user”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
SMTP account username, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP account username, 64 characters

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 157 (272)

Instance Attributes (Instance #15, SMTP Password)
This instance holds the password for the SMTP account. Changes are valid after reset.

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP Pswd”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
SMTP account password, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP account password, 64 characters

Instance Attributes (Instance #16, MDI 1 Settings)
This instance holds the settings for MDI/MDIX 1. Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “MDI 1”

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

5 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto”
“MDI”
“MDIX”

Instance Attributes (Instance #17, MDI 2 Settings)
This instance holds the settings for MDI/MDIX 2. Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “MDI 2”

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

5 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto”
“MDI”
“MDIX”

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 158 (272)

Instance Attributes (Instances #18 and #19)
These instances are reserved for future attributes.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 159 (272)

Instance Attributes (Instance #20, QuickConnect)
This instance enables or disables the QuickConnect functionality from the application. Changes are valid after
reset or power cycle. The value of the QuickConnect attribute (#12) in the TCP/IP Interface object (F5h), will
change immediately.

This instance has no effect unless QuickConnect is enabled in the EtherNet/IP host object. If QuickConnect is
disabled in the EtherNet/IP host object the application is advised to hide this instance to the end-user.

See also...

• TCP/IP Interface Object (F5h), p. 138

• EtherNet/IP Host Object (F8h), p. 222

Name Access Data Type Description

1 Name Get Array of CHAR “QuickConnect”

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 bit 0: 1 = Read access
bit 1: 1 = Write access
bit 2: 1 = Shared access

5 Value Get/Set ENUM If read, the actual value will be received. If written, the written value is
reflected in attribute #6 until a reset.
Value:
00h
01h

Meaning:
Disable (default)
Enable

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value:
00h
01h

Meaning:
Disable
Enable

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 160 (272)

Instance Attributes (Instance #40, OPC UA TCP Port)
This instance holds the TCP port address for OPC UA communication.

If this value is changed by the host application during runtime, a reset is required in order for changes to have
effect.

Name Access Data Type Description

1 Name Get Array of CHAR “OPC Port”
(Multilingual, see page 166)

2 Data type Get UINT8 05h (= UINT16)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 bit 0: 1 = Read access
bit 1: 1 = Write access
bit 2: 1 = Shared access

5 Value Get/Set UINT16 Actual OPC UA TCP port
Range: 1 - 65535 (Default: 4840)
If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.

6 Configured value Get UINT16 The configured value that will be used after restart

Instance Attributes (Instance #41, OPC UA Discovery Server)
This instance holds the URL of the OPC UA Discovery server used by the Anybus CompactCom.

Name Access Data Type Description

1 Name Get Array of CHAR “OPC DS URL”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 80 (Max Discovery server URL length is 80 characters.)

4 Descriptor Get UINT8 bit 0: 1 = Read access
bit 1: 1 = Write access
bit 2: 1 = Shared access

5 Value Get/Set CHAR[80] Actual OPC UA Discovery Server
Format: “opc.tcp://<hostname/ip-address>[:<port>]”. The port is
optional to have in the URL, if left out the default value is used: 4840.
Value set to this attribute will be used on the next connection
attempt towards the discovery server.
If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a restart.

6 Configured value Get CHAR[80] The configured value that will be used after restart

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 161 (272)

Instance Attributes (Instance #42, OPC UA SecurityPolicyNone)
This instance provides the possibility to enable an endpoint with SecurityPolicyNone as a first step. In a second
step, it is also possible to enable the UserIdentityTokenPolicy Username_None on all endpoints. In the first
step all data will be transmitted in clear text, except protected login credentials. This mode is suitable when
debugging the network. In the second step it is possible to connect to the OPC UA server, completely without
certificates. However, the login credentials are transmitted in clear text in this mode and it should only be used
during development or fault investigation of a device, on a network that cannot be monitored by external
parties.

For more information, see Endpoints, p. 98.

If the application is to pass the conformance test for OPC UA, this setting must be protected by
administrator rights and must be disabled by default. Value 2 (Endpoint + UserIdentityToken) is not
conformant.

Name Access Data Type Description

1 Name Get Array of CHAR “OPC Unsecure”
(Multilingual, see page 166)

2 Data type Get UINT8 08h

3 Number of elements Get UINT8 One data element
4 Descriptor Get UINT8 bit 0: 1 = Read access

bit 1: 1 = Write access
bit 2: 1 = Shared access

5 Value Get/Set ENUM Actual OPC UA “Enable unsecure endpoint” setting
0 = “Disable” (Unsecure endpoint disabled)
1 = “Endpoint” (Unsecure endpoint enabled)
2 = “EndP+UserId” (Unsecure endpoint with Username_None
UserTokePolicy enabled)
(Multilingual, see page 166)
Value set to this attribute will be used after next restart. If read, the
actual value will be received. If written, the written value is reflected
in attribute #6 until a restart.

6 Configured value Get ENUM Default value: 0
Configured OPC UA “Enable unsecure endpoint” setting

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 162 (272)

Instance Attributes (Instance #50, MQTT Broker URL)
This instance holds the MQTT Broker URL.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT Broker”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 255 (Max broker URL length is 255 characters)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set CHAR[64] Actual MQTT broker URL
Format: “<hostname/ip-address>[:<port>]”. The port is optional to
have in the URL, if left out the default value is used: 1883 (TLS
disabled) or 8883 (TLS enabled).
Value set to this attribute will be used in the next connection attempt.

6 Configured value Get CHAR[64] Configured MQTT broker URL

Instance Attributes (Instance #51, MQTT Client Identifier)
This instance holds the MQTT Client Identifier.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT ClientID”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 64 (Max Client Identifier length is 64 characters)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set CHAR[23] Actual Client Identifier
The ID must be unique at least within each network, and must only
contain numbers and/or letters [0-9, a-z, A-Z].
Value set to this attribute will be used in the next connection attempt.

6 Configured value Get CHAR[23] Configured MQTT client identifier.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 163 (272)

Instance Attributes (Instance #52, MQTT Keep Alive)
This instance holds the MQTT Keep Alive value. This value defines the max allowed time between two
messages, for the broker to keep the connection to a client alive.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT KA Time”
(Multilingual, see page 166)

2 Data type Get UINT8 05h (= UINT16)

3 Number of elements Get UINT8 1
4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set UINT16 Actual keep alive value (s). Default: 60.
Value set to this attribute will be used in the next connection attempt.

6 Configured value Get UINT16 Configured keep alive value.

Instance Attributes (Instance #53, MQTT Username)
This instance holds the MQTT username used when connecting to the broker.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT Username”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 64 (Max username length is 64 characters)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Actual MQTT username
Value set to this attribute will be used in the next connection attempt.
If the username is of zero length no username will be included in the
connection packet of MQTT.

6 Configured value Get Array of CHAR Configured MQTT username.

Instance Attributes (Instance #54, MQTT Password)
This instance holds the MQTT password.

If the MQTT username is not set or of zero length, the MQTT password will not be used.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT Password”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 64 (Max password length is 64 characters)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Actual MQTT password
Value set to this attribute will be used in the next connection attempt.
If the MQTT username is of zero length the MQTT password will not
be included in the connection packet of MQTT.

6 Configured value Get Array of CHAR Configured MQTT password.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 164 (272)

Instance Attributes (Instance #55, MQTT Base Topic)
This instance configures the base topic level of datasets, that the host application have not specified a custom
topic for.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT Topic”
(Multilingual, see page 166)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 255 (Max base topic length is 255 characters)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Actual MQTT base topic level
The value set to this attribute will be used in the next PUBLISH packet.

6 Configured value Get Array of CHAR Configured MQTT base topic level
This attribute always has the same value as attribute #5.

Instance Attributes (Instance #56, MQTT QoS)
This instance configures the MQTT QoS level.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT QoS”
(Multilingual, see page 166)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 1
4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Actual MQTT QoS level

0: “QoS 0” (default)

1: “QoS 1”

2: “QoS 2”

The value set to this attribute will be used in the next PUBLISH packet.

6 Configured value Get ENUM Configured MQTT QoS level
This attribute always has the same value as attribute #5.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 165 (272)

Instance Attributes (Instance #57, MQTT TLS)
This instance enables or disables TLS for the MQTT protocol.

Name Access Data Type Description

1 Name Get Array of CHAR “MQTT TLS”
(Multilingual, see page 166)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 1
4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Actual setting for TLS

0: “Disable” (MQTT over TCP) (default)

1: “Enable” (MQTT over TLS)

Value set to this attribute will be used after next restart.
6 Configured value Get ENUM Configured setting for TLS

Default Value: 0

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 166 (272)

Multilingual Strings
The instance names and enumeration strings in this object are multilingual, and are translated based on the
current language settings as follows:

Instance English German Spanish Italian French

3 IP address IP-Adresse Dirección IP Indirizzo IP Adresse IP
4 Subnet mask Subnetzmaske Masac. subred Sottorete Sous-réseau
5 Gateway Gateway Pasarela Gateway Passerelle

6 DHCP DHCP DHCP DHCP DHCP
Enable Einschalten Activado Abilitato Activé
Disable Ausschalten Desactivado Disabilitato Désactivé

7 Comm 1 Komm 1 Comu 1 Connessione 1 Comm 1
Auto Auto Auto Auto Auto
10 HDX 10 HDX 10 HDX 10 HDX 10 HDX
10 FDX 10 FDX 10 FDX 10 FDX 10 FDX
100 HDX 100 HDX 100 HDX 100 HDX 100 HDX
100 FDX 100FDX 100 FDX 100 FDX 100 FDX

8 Comm 2 Komm 2 Comu 2 Connessione 2 Comm 2
Auto Auto Auto Auto Auto
10 HDX 10 HDX 10 HDX 10 HDX 10 HDX
10 FDX 10 FDX 10 FDX 10 FDX 10 FDX
100 HDX 100 HDX 100 HDX 100 HDX 100 HDX
100 FDX 100FDX 100 FDX 100 FDX 100 FDX

9 DNS1 DNS 1 DNS Primaria DNS1 DNS1
10 DNS2 DNS 2 DNS Secundia. DNS2 DNS2
11 Host name Host name Nombre Host Nome Host Nom hôte
12 Domain name Domain name Nobre Domain Nome Dominio Dom Domaine
13 SMTP Server SMTP Server Servidor SMTP Server SMTP SMTP serveur
14 SMTP User SMTP User Usuario SMTP Utente SMTP SMTP utilisa.
15 SMTP Pswd SMTP PSWD Clave SMTP Password SMTP SMTP mt passe

40 OPC Port OPC Port OPC Puerto OPC Porta OPC Port
41 OPC DS URL OPC DS URL OPC DS URL OPC DS URL OPC DS URL
42 OPC Unsecure OPC Unsicher OPC NoSegura OPC NonSicur OPC NonSécur

Disable Ausschalten Desactivado Disabilitato Désactivé
Endpoint Endpoint Endpoint Endpoint Endpoint

EndP+UserId EndP+UserId EndP+UserId EndP+UserId EndP+UserId
50 MQTT Broker MQTT Broker Broker MQTT Broker MQTT Serveur MQTT

51 MQTT ClientID MQTT ClientID ClientID MQTT ClientID MQTT Clientid MQTT

52 MQTT KA Time MQTT KA Time Tpo. KA MQTT Tempo KA
MQTT

Tps KA MQTT

53 MQTT
Username

MQTT Benutzer Usuario MQTT Utente MQTT Utilisa. MQTT

54 MQTT Password MQTT Password Clave MQTT Password MQTT Mt passe MQTT

55 MQTT Topic MQTT Topic Mt passe MQTT Topic MQTT Sujet MQTT

56 MQTT QoS MQTT QoS QoS MQTT QoS MQTT QDS MQTT

57 MQTT TLS MQTT TLS TLS MQTT TLS MQTT TLS MQTT

Enable Einschalten Activado Abilitato Activé
Disable Ausschalten Desactivado Disabilitato Désactivé

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 167 (272)

13.6 Socket Interface Object (07h)
Category
Extended

Object Description
This object provides direct access to the TCP/IP stack socket interface, enabling custom protocols to be
implemented over TCP/UDP.

Note that some of the commands used when accessing this object may require segmentation. A message will
be segmented if the amount of data sent or received is larger than the message channel can handle. For more
information, see Message Segmentation, p. 182.

The use of functionality provided by this object should only be attempted by users who are already familiar with socket
interface programming and who fully understands the concepts involved in TCP/IP programming.

Supported Commands

Object: Get_Attribute

Create (See below)

Delete (See below)

DNS_Lookup (See below)

Instance: Get_Attribute

Set_Attribute

Bind (See below)

Shutdown (See below)

Listen (See below)

Accept (See below)

Connect (See below)

Receive (See below)

Receive_From (See below)

Send (See below)

Send_To (See below)

P_Add_membership (See below)

IP_Drop_membership (See below)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Socket interface”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of opened sockets

4 Highest instance no. Get UINT16 Highest created instance number

11 Max. no. of instances Get UINT16 0008h (8 instances): BACnet/IP

0014h (20 instances): All other industrial Ethernet
networks

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 168 (272)

Instance Attributes (Sockets #1...Max. no. of instances)
Extended

Name Access Data Type Description

1 Socket Type Get UINT8 Value: Socket Type

00h SOCK_STREAM, NONBLOCKING (TCP)

01h SOCK_STREAM, BLOCKING (TCP)

02h SOCK_DGRAM, NONBLOCKING (UDP)

03h SOCK_DGRAM, BLOCKING (UDP)

2 Port Get UINT16 Local port that the socket is bound to

3 Host IP Get UINT32 Host IP address, or 0 (zero) if not connected

4 Host port Get UINT16 Host port number, or 0 (zero) if not connected

5 TCP State Get UINT8 State (TCP sockets only):

Value State/Description

00h CLOSED Closed
01h LISTEN Listening for connection

02h SYN_SENT Active, have sent and received SYN

03h SYN_RECEIVED Have sent and received SYN

04h ESTABLISHED Established.
05h CLOSE_WAIT Received FIN, waiting for close

06h FIN_WAIT_1 Have closed, sent FIN

07h CLOSING Closed exchanged FIN; await FIN ACK

08h LAST_ACK Have FIN and close; await FIN ACK

09h FIN_WAIT_2 Have closed, FIN is acknowledged

Ah TIME_WAIT Quiet wait after close

6 TCP RX bytes Get UINT16 Number of bytes in RX buffers (TCP sockets only)

7 TCP TX bytes Get UINT16 Number of bytes in TX buffers (TCP sockets only)

8 Reuse address Get/Set BOOL Socket can reuse local address
Value
1
0

Meaning
Enabled
Disabled (default)

9 Keep alive Get/Set BOOL Protocol probes idle connection (TCP sockets only).
If the Keep alive attribute is set, the connection will be probed for the
first time after it has been idle for 120 minutes. If a probe attempt
fails, the connection will continue to be probed at intervals of 75s.
The connection is terminated after 8 failed probe attempts.

Value
1
0

Meaning
Enabled
Disabled (default)

10 IP Multicast TTL Get/Set UINT8 IP Multicast TTL value (UDP sockets only).
Default = 1.

11 IP Multicast Loop Get/Set BOOL IP multicast loop back (UDP sockets only)
Must belong to group in order to get the loop backed message

Value
1
0

Meaning
Enabled (default)
Disabled

12 (reserved)

13 TCP No Delay Get/Set BOOL Don’t delay send to coalesce packets (TCP).

Value
1
0

Meaning
Delay (default)
Don’t delay (turn off Nagle’s algorithm on socket)

14 TCP Connect
Timeout

Get/Set UINT16 TCP Connect timeout in seconds (default = 75s)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 169 (272)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object Instance

Description

This command creates a socket.

This command is only allowed in WAIT_PROCESS, IDLE and PROCESS_ACTIVE states.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:
00h
01h
02h
03h

Socket Type:
SOCK_STREAM, NON-BLOCKING (TCP)
SOCK_STREAM, BLOCKING (TCP)
SOCK_DGRAM, NON-BLOCKING (UDP)
SOCK_DGRAM, BLOCKING (UDP)

• Response Details

Field Contents Comments
Data[0] Instance number (low) Instance number of the created socket.

Data[1] Instance number (high)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 170 (272)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object Instance

Description

This command deletes a previously created socket and closes the connection (if connected).

• If the socket is of TCP-type and a connection is established, the connection is terminated with the RST-flag.

• To gracefully terminate a TCP-connection, it is recommended to use the ‘Shutdown’-command (see
below) before deleting the socket, causing the connection to be closed with the FIN-flag instead.

• Command Details

Field Contents Comments

CmdExt[0] Instance number to delete (low) Instance number of socket that shall be deleted.

CmdExt[1] Instance number to delete (high)

• Response Details

(no data)

Command Details: Bind
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command binds a socket to a local port.

• Command Details

Field Contents Comments

CmdExt[0] Requested port number (low) Set to 0 (zero) to request binding to any free port.

CmdExt[1] Requested port number (high)

• Response Details

Field Contents Comments

CmdExt[0] Bound port number (low) Actual port that the socket was bound to.

CmdExt[1] Bound port number (high)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 171 (272)

Command Details: Shutdown
Category

Extended

Details

Command Code 11h

Valid for: Instance

Description

This command closes a TCP-connection using the FIN-flag. Note that the response does not indicate if the
connection actually shut down, which means that this command cannot be used to poll non-blocking sockets,
nor will it block for blocking sockets.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:
00h
01h
02h

Mode:
Shutdown receive channel
Shutdown send channel
Shutdown both receive- and send channel

• Response Details

(no data)

The recommended sequence to gracefully shut down a TCP connection is described below.

Application initiates shutdown:

1. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send channel,
note that the receive channel will still be operational.

2. Receive data on socket until error message Object specific error (EPIPE (13)) is received, indicating that
the host closed the receive channel. If host does not close the receive channel use a timeout and progress
to step 3.

3. Delete the socket instance. If step 2 timed out, RST-flag will be sent to terminate the socket.

Host initiates shutdown:

1. Receive data on socket, if zero bytes received it indicates that the host closed the receive channel of the
socket.

2. Try to send any unsent data to the host.

3. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send channel.

4. Delete the socket instance.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 172 (272)

Command Details: Listen
Category

Extended

Details

Command Code 12h

Valid for: Instance

Description

This command puts a TCP socket in listening state.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] (reserved)

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 173 (272)

Command Details: Accept
Category

Extended

Details

Command Code 13h

Valid for: Instance

Description

This command accepts incoming connections on a listening TCP socket. A new socket instance is created for
each accepted connection. The new socket is connected with the host and the response returns its instance
number.

NONBLOCKING mode This command must be issued repeatedly (polled) for incoming connections. If no incoming
connection request exists, the module will respond with error code 0006h (EWOULDBLOCK).

BLOCKING mode This command will block until a connection request has been detected.

This command will only be accepted if there is a free instance to use for accepted connections. For blocking
connections, this command will reserve an instance.

• Command Details

(no data)

• Response Details

Field Contents

Data[0] Instance number for the connected socket (low byte)

Data[1] Instance number for the connected socket (high byte)

Data[2] Host IP address byte 4

Data[3] Host IP address byte 3

Data[4] Host IP address byte 2

Data[5] Host IP address byte 1

Data[6] Host port number (low byte)

Data[7] Host port number (high byte)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 174 (272)

Command Details: Connect
Category

Extended

Details

Command Code 14h

Valid for: Instance

Description

For SOCK-DGRAM-sockets, this command specifies the peer with which the socket is to be associated (to which
datagrams are sent and the only address from which datagrams are received).

For SOCK_STREAM-sockets, this command attempts to establish a connection to a host.

SOCK_STREAM-sockets may connect successfully only once, while SOCK_DGRAM-sockets may use this service
multiple times to change their association. SOCK-DGRAM-sockets may dissolve their association by connecting
to IP address 0.0.0.0, port 0 (zero).

NON-BLOCKING mode: This command must be issued repeatedly (polled) until a connection is connected, rejected or timed
out. The command will return error code 22 (EINPROGRESS) on poll requests while attempting to
connect.

BLOCKING mode: This command will block until a connection has been established or the connection request is
cancelled due to a timeout or a connection error.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Host IP address byte 4

Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 175 (272)

Command Details: Receive
Category

Extended

Details

Command Code 15h

Valid for: Instance

Description

This command receives data from a connected socket. Message segmentation may be used to receive up to
1472 bytes (for more information, see Message Segmentation, p. 182).

For SOCK-DGRAM-sockets, the module will return the requested amount of data from the next received
datagram. If the datagram is smaller than requested, the entire datagram will be returned in the response
message. If the datagram is larger than requested, the excess bytes will be discarded.

For SOCK_STREAM-sockets, the module will return the requested number of bytes from the received data
stream. If the actual data size is less than requested, all available data will be returned.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

If the module responds successfully with 0 (zero) bytes of data, it means that the host has closed the
connection. The send channel may however still be valid and must be closed using Shutdown and/or Delete.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 182

Data[0] Receive data size (low) Only used in the first segment

Data[1] Receive data size (high)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p. 182).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 182

Data[0...n] Received data -

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 176 (272)

Command Details: Receive_From
Category

Extended

Details

Command Code 16h

Valid for: Instance

Description

This command receives data from an unconnected SOCK_DGRAM-socket. Message segmentation may be used
to receive up to 1472 bytes (For more information, see Message Segmentation, p. 182).

The module will return the requested amount of data from the next received datagram. If the datagram is
smaller than requested, the entire datagram will be returned in the response message. If the datagram is
larger than requested, the excess bytes will be discarded.

The response message contains the IP address and port number of the sender.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 182

Data[0] Receive data size (low byte) Only used in the first segment

Data[1] Receive data size (high byte)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p. 182).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 182

Data[0] Host IP address byte 4 The host address/port information is only included in the first
segment. All data thereafter will start at Data[0]Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

Data[6...n] Received data

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 177 (272)

Command Details: Send
Category

Extended

Details

Command Code 17h

Valid for: Instance

Description

This command sends data on a connected socket. Message segmentation may be used to send up to 1472
bytes (For more information, see Message Segmentation, p. 182).

NON-BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will respond with error
code 0006h (EWOULDBLOCK)

BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will block until there is.

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 182).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control (For more information, see Message Segmentation, p. 182)

Data[0...n] Data to send -

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low) Only valid in the last segment

Data[1] Number of sent bytes (high)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 178 (272)

Command Details: Send_To
Category

Extended

Details

Command Code 18h

Valid for: Instance

Description

This command sends data to a specified host on an unconnected SOCK-DGRAM-socket. Message segmentation
may be used to send up to 1472 bytes (For more information, see appendix For more information, see
Message Segmentation, p. 182).

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 182).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control For more information, see Message Segmentation, p. 182

Data[0] Host IP address byte 4 The host address/port information shall only be included in
the first segment. All data thereafter must start at Data[0]Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

Data[6...n] Data to send

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low byte) Only valid in the last segment

Data[1] Number of sent bytes (high byte)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 179 (272)

Command Details: IP_Add_Membership
Category

Extended

Details

Command Code 19h

Valid for: Instance

Description

This command assigns the socket an IP multicast group membership. The module always joins the “All hosts
group” automatically, however this command may be used to specify up to 20 additional memberships.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Group IP address byte 4

Data[1] Group IP address byte 3

Data[2] Group IP address byte 2

Data[3] Group IP address byte 1

• Response Details

(no data)

Command Details: IP_Drop_Membership
Category

Extended

Details

Command Code 1Ah

Valid for: Instance

Description

This command removes the socket from an IP multicast group membership.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Group IP address byte 4

Data[1] Group IP address byte 3

Data[2] Group IP address byte 2

Data[3] Group IP address byte 1

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 180 (272)

• Response Details

(no data)

Command Details: DNS_Lookup
Category

Extended

Details

Command Code 1Bh

Valid for: Object

Description

This command resolves the given host name and returns the IP address.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0... N] Host name Host name to resolve

• Response Details (Success)

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] IP address byte 4 IP address of the specified host

Data[1] IP address byte 3

Data[2] IP address byte 2

Data[3] IP address byte 1

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 181 (272)

Socket Interface Error Codes (Object Specific)
The following object-specific error codes may be returned by the module when using the socket interface
object.

Error Code Name Meaning

1 ENOBUFS No internal buffers available
2 ETIMEDOUT A timeout event occurred
3 EISCONN Socket already connected

4 EOPNOTSUPP Service not supported

5 ECONNABORTED Connection was aborted
6 EWOULDBLOCK Socket cannot block because unblocking socket type

7 ECONNREFUSED Connection refused
8 ECONNRESET Connection reset
9 ENOTCONN Socket is not connected
10 EALREADY Socket is already in requested mode

11 EINVAL Invalid service data
12 EMSGSIZE Invalid message size

13 EPIPE Error in pipe

14 EDESTADDRREQ Destination address required

15 ESHUTDOWN Socket has already been shutdown

16 (reserved) -

17 EHAVEOOB Out of band data available
18 ENOMEM No internal memory available

19 EADDRNOTAVAIL Address is not available
20 EADDRINUSE Address already in use

21 (reserved) -

22 EINPROGRESS Service already in progress

28 ETOOMANYREFS Too many references

101 Command aborted If a command is blocking on a socket, and that socket is closed using the Delete
command, this error code will be returned to the blocking command.

102 DNS name error Failed to resolve the host name (name error response from DNS server.

103 DNS timeout Timeout when performing a DNS lookup.

104 DNS command failed Other DNS error.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 182 (272)

Message Segmentation
General

Category: Extended

The maximum message size supported by the Anybus CompactCom 40 is normally 1524 bytes. In some
applications a maximum message size of 255 bytes is supported, e.g. if an Anybus CompactCom 40 is to
replace an Anybus CompactCom 30 without any changes to the application. The maximum socket message size
is 1472. To ensure support for socket interface messages larger than 255 bytes a segmentation protocol is used.

The segmentation bits have to be set for all socket interface messages, in the commands where segmentation can be
used, whether the messages have to be segmented or not.

The segmentation protocol is implemented in the message layer and must not be confused with the
fragmentation protocol used on the serial host interface. Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

The module supports 1 (one) segmented message per instance

Command Segmentation

When a command message is segmented, the command initiator sends the same command header multiple
times. For each message, the data field is exchanged with the next data segment.

Command segmentation is used for the following commands (Socket Interface Object specific commands):

• Send

• Send To

When issuing a segmented command, the following rules apply:

• When issuing the first segment, FS must be set.

• When issuing subsequent segments, both FS and LS must be cleared.

• When issuing the last segment, the LF-bit must be set.

• For single segment commands (i.e. size less or equal to the message channel size), both FS and LS must be
set.

• The last response message contains the actual result of the operation.

• The command initiator may at any time abort the operation by issuing a message with AB set.

• If a segmentation error is detected during transmission, an error message is returned, and the current
segmentation message is discarded. Note however that this only applies to the current segment;
previously transmitted segments are still valid.

Segmentation Control Bits (Command)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero)

Segmentation Control Bits (Response)

Bit Contents Meaning

0... 7 (reserved) Ignore

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 183 (272)

Response Segmentation

When a response is segmented, the command initiator requests the next segment by sending the same
command multiple times. For each response, the data field is exchanged with the next data segment.

Response segmentation is used for responses to the following commands (Socket Interface Object specific
commands):

• Receive

• Receive From

When receiving a segmented response, the following rules apply:

• In the first segment, FS is set.

• In all subsequent segment, both FS and LS are cleared.

• In the last segment, LS is set.

• For single segment responses (i.e. size less or equal to the message channel size), both FS and LS are set.

• The command initiator may at any time abort the operation by issuing a message with AB set.

Segmentation Control bits (Command)

Bit Contents Meaning

0 (reserved) (set to zero)
1
2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero)

Segmentation Control bits (Response)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2...7 (reserved) Set to 0 (zero)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 184 (272)

13.7 SMTP Client Object (09h)
Category
Extended

Object Description
This object groups functions related to the SMTP client.

Supported Commands

Object: Get_Attribute

Create

Delete

Send e-mail from file (see below)

Instance: Get_Attribute

Set_Attribute

Send e-mail (see below)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “SMTP Client”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0006h
12 Success count Get UINT16 Reflects the no. of successfully sent messages

13 Error count Get UINT16 Reflects the no. of messages that could not be delivered

Instance Attributes (Instance #1)
Instances are created dynamically by the application.

Name Access Data Type Description

1 From Get/Set Array of CHAR e.g. “someone@somewhere.com”

2 To Get/Set Array of CHAR e.g.“ someone.else@anywhere.net”

3 Subject Get/Set Array of CHAR e.g. “Important notice”

4 Message Get/Set Array of CHAR e.g.“Shut down the system”

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 185 (272)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object

Description

This command creates an e-mail instance.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Instance number low byte

Data[1] high byte

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 186 (272)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object

Description

This command deletes an e-mail instance.

• Command Details

Field Contents Comments

CmdExt[0] E-mail instance number low byte

CmdExt[1] high byte

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 187 (272)

Command Details: Send E-mail From File
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command sends an e-mail based on a file in the file system.

The file must be a plain ASCII-file in the following format:

[To]
recipient

[From]
sender

[Subject]
email subject

[Headers]
extra headers, optional

[Message]
actual email message

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0... n] Path + filename of message file

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 188 (272)

Command Details: Send E-mail
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command sends the specified e-mail instance.

• Command Details

(no data)

• Response Details

(no data)

Object Specific Error Codes
Error Codes Meaning

1 SMTP server not found
2 SMTP server not ready

3 Authentication error
4 SMTP socket error
5 (reserved)

6 Unable to interpret e-mail file

255 Unspecified SMTP error

(other) (reserved)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 189 (272)

13.8 Anybus File System Interface Object (0Ah)
Category
Extended

Object Description
This object provides an interface to the built-in file system. Each instance represents a handle to a file stream
and contains services for file system operations.

This provides the host application with access to the built-in file system of the module, e.g. when application
specific web pages are to be installed.

Instances are created and deleted dynamically during runtime.

This object is thoroughly described in Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 190 (272)

13.9 Network Ethernet Object (0Ch)
Category
Extended

Object Description

This object provides Ethernet-specific information to the application.

The object has three instances, each corresponding to a port:

Instance # Port
1 Internal port

2 Port 1
3 Port 2

Each instance provides statistic counters for the port. This information can e.g be presented on internal web
pages, if present, using the JSON script language.

Instance attribute #1 is reserved and used for backwards compatibility with earlier applications.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Network Ethernet”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 3
4 Highest instance no. Get UINT16 3

Instance Attributes (Instance #1)
Name Access Data Type Description

1 MAC Address Get Array of UINT8 Reserved, used for backwards compatibility.
(Device MAC address.)
(See also Ethernet Host Object (F9h), p. 231)

2 (Reserved)

3 (Reserved)

4 MAC Address Get Array of UINT8 Device MAC address

5 Interface Counters Get Array of
UINT32

Array containing MIB-II interface counters (rfc1213)
See table below for array indices.

6 (Reserved)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 191 (272)

Instance Attributes (Instances #2 - #3)
Name Access Data Type Description

1 - 4 (Reserved)

5 Interface Counters Get Array of
UINT32

Array containing MIB-II interface counters (rfc1213)
See table below for array indices.

6 Media Counters Get Array of
UINT32

Array containing Ethernet-Like MIB counters for the port.
See table below for array indices.

Interface Counters
Array indices of Interface Counters attribute (#5)

Index Name Description

0 In octets Octets received on the interface
1 In Unicast Packets Unicast packets received on the interface

2 In Non-Unicast Packets Non-unicast packets (multicast/broadcast) packets received on the interface

3 In Discards Inbound packets received on the interface but discarded

4 In Errors Inbound packets that contain errors (does not include In Discards)

5 In Unknown Protos Inbound packets with unknown protocol

6 Out Octets Octets transmitted on the interface
7 Out Unicast packets Unicast packets transmitted on the interface

8 Out Non-Unicast Packets Non-unicast (multicast/broadcast) packets transmitted on the interface

9 Out Discards Outbound packets discarded

10 Out Errors Outbound packets that contain errors

Media Counters
Array indices of Media Counters attribute (#6)

Index Name Description

0 AlignmentErrors; Frames received that are not an integral number of octets in length

1 FCSErrors; Frames received that do not pass the FCS check

2 SingleCollisions; Successfully transmitted frames which experienced exactly one collision

3 MultipleCollisions; Successfully transmitted frames which experienced more than one collision

4 SQETestErrors; Number of times SQE test error is generated

5 DeferredTransmissions; Frames for which first transmission attempt is delayed because the medium is busy

6 LateCollisions; Number of times collision is detected later than 512 bit-times into the transmission
of a packet

7 ExcessiveCollisions; Frames for which transmission fails due to excessive collisions

8 lMACTransmitErrors; Frames for which transmission fails due to an internal MAC sublayer transmit error

9 lCarrieSenseErrors; Times that the carrier sense condition was lost or never asserted when attempting
to transmit a frame

10 lFrameTooLong; Frames received that exceed the maximum permitted frame size

11 lMACRecieveErrors; Frames for which reception on an interface fails due to an internal MAC sublayer
receive error

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 192 (272)

13.10 CIP Port Configuration Object (0Dh)
Category
Extended

Object Description
This object is used to populate and enumerate the CIP Port Object (see Port Object (F4h), p. 136) on the
network side. Basically, this is a matter of creating and updating instances and attributes which shall represent
a CIP Port within the host application. This process is necessary in case support for Unconnected CIP Routing
has been enabled (see EtherNet/IP Host Object (F8h), p. 222, Instance Attribute #17).

Each instance within this object corresponds to an instance in the CIP Port Object. The object supports up to 8
instances, where instance #1 is dedicated to the local TCP port, enabling the host application to implement up
to 7 additional ports. Instance #1 will automatically be populated with default values, however it is possible for
the host application to customize instance attributes #2 and #4.

Apart from attribute #7, it is possible to write to the instance attributes only during setup. The host application
is responsible for keeping instance attribute #7 updated for all ports located within the host application.

Note that the module does not take over the host application responsibility for error control; the
module will not verify that the data set by the host application is correct.

Supported Commands

Object: Get_Attribute

Create

Delete

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “CIP Port Configuration”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0008h

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 193 (272)

Instance Attributes (Instance #1)
Name Access Data Type Description

1 Port Type Set UINT16 Enumerates the port (See CIP specification, available from
www.odva.org)

2 Port Number Set UINT16 CIP port number associated with this port

3 Link Path Set Array of UINT8 Logical path segments which identify the object for this port.

4 Port Name Set Array of CHAR String (max. no. of characters is 64) which names the port.

5 - - - (reserved)

6 - - - (reserved)

7 Node Address Set Array of UINT8 Node number of this device on port. The data type restricts the range
to a Port Segment. The encoded port number must match the value
specified in attribute #2.
A device which does not have a node number on the port can specify
a zero length node address within the Port Segment (i.e. 10h 00h).
In case the node address changes during runtime, the host application
is responsible for updating this attribute as well.

8 Port Node Range Set Struct of:
UINT16 (Min)
UINT16 (Max)

Minimum and maximum node number on port.
Support for this attribute is conditional; the attribute shall be
supported provided that the node number can be reported within the
range of the data type (e.g. DeviceNet). If not (as is the case with
networks such as EtherNet/IP which uses a 4 byte IP address), the
attribute shall not be supported.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

http://www.odva.org

Anybus Module Objects 194 (272)

13.11 Functional Safety Module Object (11h)
Category
Extended

Object Description
This object contains information provided by the Safety Module connected to the Anybus CompactCom
module. Please consult the manual for the Safety Module used, for values of the attributes below.

Supported Commands

Object: Get_Attribute

Error_Confirmation

Set_IO_Config_String

Get_Safety_Output_PDU

Get_Safety_Input_PDU

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Functional Safety Module”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 195 (272)

Instance Attributes (Instance #1)
Name Access Data Type Description

1 State Get UINT8 Current state of the Safety Module
Please consult the manual for the Safety Module used.

2 Vendor ID Get UINT16 Identifies vendor of the Safety Module.
E.g. 0001h (HMS Industrial Networks)
Please consult the manual for the Safety Module used.

3 IO Channel ID Get UINT16 Describes the IO Channels that the Safety Module is equipped with.
Please consult the manual for the Safety Module used.

4 Firmware version Get Struct of
UINT8 (Major)
UINT8 (Minor)
UINT8 (Build)

Safety Module firmware version.
Format: version “2.18.3” would be represented as: first byte = 0x02,
second byte = 0x12, third byte = 0x03.

5 Serial number Get UINT32 32 bit number, assigned to the Safety Module at production.
Please consult the manual for the Safety Module used.

6 Output data Get Array of UINT8 Current value of the Safety Module output data, i.e. data FROM the
network
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

7 Input data Get Array of UINT8 Current value of the Safety Module input data, i.e. data sent TO the
network.
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

8 Error counters Get Struct of
UINT16 (ABCC
DR)
UINT16 (ABCC
SE)
UINT16 (SM
DR)
UINT16 (SM
SE)

Error counters (each counter stops counting at FFFFh)

ABCC DR: Responses (unexpected) from the Safety Module,
discarded by the Anybus CompactCom module.

ABCC SE: Serial reception errors detected by the Anybus
CompactCom module.

SM DR: Responses (unexpected) from the Anybus
CompactCom module, discarded by the Safety
Module.

SM SE: Serial reception errors detected by the Safety
Module.

9 Event log Get Array of UINT8 Latest Safety Module event information (if any) is logged to this
attribute. Any older event information is erased when a new event is
logged.
For evaluation by HMS support.

10 Exception information Get UINT8 If the Exception Code in the Anybus object is set to “Safety
communication error” (09h), additional exception information is
presented here, see table below.

11 Bootloader version Get Struct of
UINT8 Major
UINT8 Minor

Safety Module bootloader version.
Format: version “2.12” would be represented as: first byte = 0x02,
second byte = 0x0C

12 Vendor block safe uc1 Get Array of UINT8 The Safety Module may supply additional vendor-specific data to the
Anybus CompactCom. If such data is available it is presented in this
attribute.

13 Vendor block safe uc2 Get Array of UINT8 The Safety Module may supply additional vendor-specific data to the
Anybus CompactCom. If such data is available it is presented in this
attribute.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 196 (272)

Exception Information

If Exception Code 09h is set in the Anybus object, there is an error regarding the functional safety module in
the application. Exception information is presented in instance attribute #10 according to this table:

Value Exception Information

00h No information
01h Baud rate not supported

02h No start message

03h Unexpected message length

04h Unexpected command in response

05h Unexpected error code

06h Safety application not found

07h Invalid safety application CRC

08h No flash access
09h Answer from wrong safety processor during boot loader communication

0Ah Boot loader timeout
0Bh Network specific parameter error

0Ch Invalid IO configuration string

0Dh Response differed between the safety microprocessors (e.g. different module types)

0Eh Incompatible module (e.g. supported network)

0Fh Max number of retransmissions performed (e.g. due to CRC errors)

10h Firmware file error
11h The cycle time value in attribute #4 in the Functional Safety Host Object can not be used with the current baud

rate
12h Invalid SPDU input size in start-up telegram

13h Invalid SPDU output size in start-up telegram

14h Badly formatted input SPDU

15h Anybus to safety module initialization failure

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 197 (272)

Command Details: Error_Confirmation
Category

Extended

Details

Command Code 10h

Valid for: Object

Description

When the Safety Module has entered the Safe State, for any reason, it must receive an error confirmation
before it can leave the Safe State. With this command it is possible to reset all safety channels of the safety
which, for any reason, are in the Safe State at the same time. The application issues this command to the
Anybus CompactCom module, when an error has been cleared by for example an operator. The Anybus
CompactCom forwards the command to the Safety Module.

The channel Safe State can also be confirmed by the safety PLC or by the safety module.

With this command

• Command Details

(no data)

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 198 (272)

Command Details: Set_IO_Config_String
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command is sent from the host application when there is a need to change the default configuration of
the safety inputs and outputs. This string is used by networks where there are no other means (e.g. PLC or
some other tool) to provide the configuration to the safety module. Consult the specification of the safety
module for more information. The byte string passed is generated by HMS and need to be passed unmodified
using this command.

Information about this string is located in the specification of the safety module to which the string shall be
sent.

• Command Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Data (byte string)
The data consists of an IO configuration string, where the data format depends on the safety network.

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 199 (272)

Command Details: Get_Safety_Output_PDU
Category

Extended

Details

Command Code 12h

Valid for: Object

Description

This command can be issued by the application to get the complete safety output PDU sent by the PLC. The
Anybus CompactCom 40 EtherNet/IP IIoT Secure will respond with the complete safety PDU, that the
application then has to interpret.

• Command Details

(no data)

• Response Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Safety PDU from PLC

Command Details: Get_Safety_Input_PDU
Category

Extended

Details

Command Code 13h

Valid for: Object

Description

This command can be issued by the application to get the complete safety input PDU sent by the safety
module. The Anybus CompactCom 40 EtherNet/IP IIoT Secure will respond with the complete safety PDU, that
the application then has to interpret.

• Command Details

(no data)

• Response Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Safety PDU from safety module

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 200 (272)

Object Specific Error Codes
Error Code Description Comments

01h The safety module rejected a message. Error code sent by safety module is found in MsgData[2] and MsgData[3].

02h Message response from the safety
module has incorrect format (for
example, wrong length).

-

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 201 (272)

13.12 Time Object (13h)
Category
Extended

Object Description
In some networks there are multiple possible time sources. This object is used to present all known time
sources using a common format. The quality of the different time sources may vary, which the host application
has to consider when using the time value.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value Description

1 Name Get STRING “Time Object” Object name

2 Revision Get UINT8 1 Revision of object

3 Number of instances Get UINT16 N/A Supported number of instances

4 Highest instance
number

Get UINT16 N/A Highest implemented instance

11 Protocols Get Array of:
Struct of:
UINT16
Instance
ENUM Protocol
UINT8
Reserved

N/A Array of available time protocols.
Instance: Corresponding instance number.
Protocol: Enumeration of time protocols.
See Time Protocols, p. 202.
Reserved: Should not be used.

Instance Attributes (Instance #n)
Instance 1 is dedicated to CIP Sync. Instance 2 is dedicated to OPC UA Discovery server timestamp.

To make the instances available they have to be activated:

CIP Sync is activated with attribute 32 in EtherNet/IP Host Object. See EtherNet/IP Host Object (F8h), p.
222.

OPC UA is activated with attribute 1 in OPC UA Object. See OPC UA Object (E3h), p. 207.

Name Access Data Type Description

1 Protocol Get ENUM Enumeration identifier of the time protocol. See Time Protocols, p.
202 for supported protocols.

2 Current time Get UINT64 Current time in protocol specific format. If the time is not valid the
value will be set to 0. See Time Protocols, p. 202 for protocol formats.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Anybus Module Objects 202 (272)

Time Protocols
Enum
value

Priority Protocol Format Epoch

0 0 CIP Sync (IEEE 1588
PTP)

64 bit
nanoseconds

23:59:51. 51.999918, December 31, 1969

8 2 OPC UA Discovery
server timestamp

64 bit signed
number of 100
nanosecond
intervals

January 1, 1601

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 203 (272)

14 Host Application Objects
14.1 General Information

This chapter specifies the host application object implementation in the module. The objects
listed here may optionally be implemented within the host application firmware to expand the
EtherNet/IP implementation.

Standard Objects:

• MQTT Host Object (E2h), p. 204

• OPC UA Object (E3h), p. 207

• Energy Control Object (F0h), p. 216

• Assembly Mapping Object (EBh) - (see Anybus CompactCom 40 Software Design Guide)

• Modular Device Object (ECh) - (see Anybus CompactCom 40 Software Design Guide)

• Sync Object (EEh), p. 215

• Energy Reporting Object (E7h), p. 209

• Application Data Object (FEh) - (see Anybus CompactCom 40 Software Design Guide)

• Application Object (FFh) - (see Anybus CompactCom 40 Software Design Guide)

Network Specific Objects:

• Functional Safety Object (E8h), p. 210

• Application File System Interface Object (EAh), p. 212

• CIP Identity Host Object (EDh), p. 213

• EtherNet/IP Host Object (F8h), p. 222

• Ethernet Host Object (F9h), p. 231

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 204 (272)

14.2 MQTT Host Object (E2h)
Category
Extended

Object Description
This object implements MQTT functionality for the host application.

See also ...

• MQTT, p. 103

Supported Commands

Object: Get_Attribute

Get_Publish_Configuration

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “MQTT”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Description

1 MQTT mode Get UINT8 Defines the MQTT mode

0: Disabled (default)

1: Enabled with JSON data encoding

2 Last will message
configuration

Get Struct Struct that configures the MQTT last will message. For a detailed
description see table below.
Default: No last will message.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 205 (272)

Attribute #2, Last Will Message Configuration

If a struct member of attribute #2 contains invalid data, e.g. out of range values or invalid string lengths, the
last will message configuration is discarded.

Struct Element Data Type Description

1 UINT8 Specifies the QoS level of the last will message when it is published

Value: Meaning:

0: QoS 0

1: QoS 1

2: QoS 2

2 BOOL Specifies if the last will message is to be retained when it is published

FALSE: Retain bit cleared
TRUE: Retain bit set

3 UINT16 Length of the last will message topic string
Valid range: 0 - 128

4 Array of CHAR Topic string for the last will message
The length of the array must match the topic length given by struct element 3
Max length: 128 characters

5 UINT16 Length of the last will message data
Valid range: 0 - 256

6 Array of OCTET Message data of the last will message
The length of the array must match the message length given by struct element 5
Max lengt: 256 octets.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 206 (272)

Command Details: Get_Publish_Configuration

Category

Extended

Details

Command Code: 10h

Valid for: Object

Description

This command is issued at least once for every dataset, following the Get_Data_Notification response, if the
following conditions are fulfilled:

• The MQTT bit is set in the network channels field of the dataset in the Get_Data_Notification response.

• The dataset is supported by MQTT

• MQTT is enabled in instance #1, attribute #1

• The Anybus CompactCom is connected to an MQTT broker on the network

For details on how MQTT is used, see MQTT, p. 103.

• Command Details

Field Contents Comments

CmdExt[0] Dataset type (UINT8) See the description of the Get_Data_Notificaton command
of the Application Object (FFh) in the Software Design
Guide.

CmdExt[1] (reserved)

MsgData[0...1] Dataset identifier (UINT16)

• Response Details

Field Contents Comments

CmdExt[0] 0 Reserved, set to 0

CmdExt[1] 0 Reserved, set to 0

MsgData[0] Value: Meaning: If the retain bit is set, the topic will be
kept in the broker for additional
recipients.TRUE: Publish the dataset with the retain bit set

FALSE: Publish the dataset with the retain bit cleared
(Default)

MsgData[1... n] Array of char, Max length: 128 char MQTT topic, published by the dataset
on the network. Omit this field to not
customize the topic.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 207 (272)

14.3 OPC UA Object (E3h)
Category
Extended

Object Description
This object implements OPC UA functionality for the host application.

See also ...

• OPC UA, p. 80

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 208 (272)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “OPC UA”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Description

1 OPC UA Model Get UINT8 Defines the model of OPC UA functionality.

0: Disabled (default)

1: CompactCom 40 model

2: Application defined model

2 Application/
Localnamespace URI

Get Array of CHAR Application URI, also used as Local server namespace URI of the server.
Default value: “urn:<hostname/serialnumber>:anybus:
compactcom40”.
If the host name is available, it is used as a part of the URI. If no host
name is available, use the serial number instead.
Max length: 128.

3 Vendor namespace URI Get Array of CHAR Vendor namespace URI. This namespace collects type definitions
specific for the product.
Default value: “http://hms-networks.com/UA/Anybus/
CompactCom40”.
Max length: 128.

4 DeviceType Name Get Array of CHAR The name of the DeviceType.
Default value = “CompactCom40DeviceType”.
Max length: 64.

5 Device instance name Get Array of CHAR The name of the instance of the DeviceType above that represents
the device in the local namespace.
Default value = “CompactCom40”.
Max length: 64.

6 Product URI Get Array of CHAR URI that identifies the software. Part of the BuildInfo structure in the
Server object.
Default value = “http://hms-networks.com/UA/Anybus/
CompactCom40/[networktype]/[softwareversion]”
[networktype] = Abbreviation of network
[softwareversion] = String representation of software version.
Max length: 128.

7 Limits Get Struct of:
UINT16
UINT32

Configuration of server limits. See the table below for structure
description. If one of the provided values are out of range none of the
values will be used and the discard counter will be incremented.
Warning: The limits are configurable as these options are highly
dependent on the response time of the host application. Setting too
low/high values may result in a scenario where the Anybus
CompactCom is unable to publish all monitored items within the
expected interval. Please verify configuration while using other
interfaces required by the module such as process data and web
interface.

Server limits structure description

Name Data type Default Min Max

Max number of monitored items UINT16 8 8 100

Minimum sampling/publishing interval in
milliseconds

UINT32 1000 1000 1000*3600*24

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 209 (272)

14.4 Energy Reporting Object (E7h)
Category
Extended

Object Description
Using this object, the host application has a standardized way of reporting its energy consumed or produced.
The reporting capabilities of this object are limited. On networks providing more elaborate reporting
functionality, the reporting functionality will have to be implemented in a transparent manner by the
application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Energy Reporting”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Extended

Name Access Type Description

1 Energy Reading Get Struct of:
UINT32
UINT32

Amount of energy (Wh) consumed or produced by the application.
Stored in nonvolatile memory.
The first UINT32 represents the lower part of the Energy Reading,
the second UINT32 represents the higher part of the Energy Reading

2 Direction Get BOOL Indicates if the host is consuming or producing energy.

Value:
0:
1:

Meaning:
Producing
Consuming

3 Accuracy Get UINT16 Accuracy in 0.01% of reading
0: Unknown

4 Current Power
Consumption

Get UINT16 The current power consumption in 0.01% of the Nominal Power
consumption

5 Nominal Current
Consumption

Get UINT32 The nominal power consumption in mW

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 210 (272)

14.5 Functional Safety Object (E8h)
Category
Extended

Object Description

Do not implement this object if a safety module is not used.

This object specifies the safety settings of the application. It is mandatory if Functional Safety is to be
supported and a Safety Module is connected to the Anybus CompactCom module.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Functional Safety”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Default Value Comment

1 Safety enabled Get BOOL - When TRUE, enables communication with the Safety
Module.
Note: If functional safety is not supported, this
attribute must be set to FALSE.

2 Baud Rate Get UINT32 1020 kbit/s This attribute sets the baud rate of the
communication in bits/s between the Anybus
CompactCom and the Safety Module.
Valid values:

• 625 kbit/s

• 1000 kbit/s

• 1020 kbit/s (default)

Any other value set to this attribute, will cause the
module to enter the EXCEPTION state.
The attribute is optional. If not implemented, the
default value will be used.
Note: The host application shall never implement
this attribute when using the IXXAT Safe T100.

3 (reserved)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 211 (272)

Name Access Data Type Default Value Comment

4 Cycle Time Get UINT8 - Communication cycle time between the Anybus and
the Safety module in milliseconds.
Note: The host application shall never implement
this attribute when using the IXXAT Safe T100.
Valid values:

• 2 ms

• 4 ms

• 8 ms

• 16 ms

If another value is set in this attribute the Anybus
will enter Exception state.
Optional attribute; If not implemented the minimum
cycle time for the chosen baud rate will be used:

• 2 ms for 1020 kbit/s

• 2 ms for 1000 kbit/s

• 4 ms for 625 kbit/s

The Anybus CompactCom validates the cycle time
according to the minimum values above. If e.g. baud
rate is 625 kbit/s and the cycle time is set to 2 ms
the Anybus CompactCom will enter the EXCEPTION
state.

5 FW upgrade in progress Set BOOL False Indicates if the Anybus CompactCom is upgrading
the connected Safety module firmware. This means
that the Anybus CompactCom will stay in the NW_
INIT state longer than normal.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 212 (272)

14.6 Application File System Interface Object (EAh)
Category
Extended

Object Description
This object provides an interface to the built-in file system. Each instance represents a handle to a file stream
and contains services for file system operations. This allows the user to download software through the file
transfer protocol server to the application. The application decides the available memory space.

This object is thoroughly described in Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 213 (272)

14.7 CIP Identity Host Object (EDh)
Category
Extended

Object Description
This object allows for applications to support additional CIP identity instances. It is used to provide additional
product identity information, e.g. concerning the software installed.

The first instance in the CIP identity object will not change its behavior. When implementing instances in the
CIP identity host object, they will be mapped to the CIP identity object starting at instance 2. Instance no. 1 in
the CIP identity host object will be mapped to instance no. 2 in the CIP identity object and so on.

See also ...

• Identity Object (01h), p. 113 (CIP object)

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Get_Attribute_All

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “CIP Identity”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Depends on application

4 Highest instance no. Get UINT16 Depends on application

Instance Attributes (Instance #1)
Name Access Data Type Description

1 Vendor ID Get UINT16 These values replace the values for the CIP identity object instance #2
and upwards.
See also...
Identity Object (01h), p. 113 (CIP-object)

2 Device Type Get UINT16

3 Product Code Get UINT16
4 Revision Get struct of:

UINT8 Major
UINT8 Minor

5 Status Get UNIT16
6 Serial Number Get UINT32
7 Product Name Get Array of CHAR

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 214 (272)

Command Details: Get_Attribute_All
Category

Extended

Details

Command Code: 10h

Valid for: Object

Description

This service must be implemented by the application for all instances that exist in the CIP identity host object.
If identity data is requested from the network the Anybus module will issue this command to the application.
The application will then respond with a message containing a struct of all attributes in the requested instance.

• Command Details

(no data)

• Response Details

Field Contents Comments

MsgData[0, 1] Vendor ID ABCC CIP identity data

MsgData[2, 3] Device type

MsgData[4, 5] Product code

MsgData[6] Major revision

MsgData[7] Minor revision

MsgData[8,9] Status

MsgData[10 ..
.13]

Serial number

MsgData[14
n]

Product name

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 215 (272)

14.8 Sync Object (EEh)
Category
Extended

Object Description
The Anybus CompactCom 40 EtherNet/IP IIoT Secure does not support CIP Sync. This object is only used to
store the cycle time for the last established IO connection that consumes data.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)
The attributes are represented on EtherNet/IP as follows:

Name Access Data Type Description

1 Cycle time Get/Set UINT32 The RPI for the last established IO connection that consumes data
(O→T RPI)

2–8 (not implemented)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 216 (272)

14.9 Energy Control Object (F0h)
Category
Extended

Object Description
This object implements energy control functionality, i.e. energy specific settings, in the host application. The
implementation of this object is optional. All instance attributes shall be seen as required and must be
implemented in the application. If the Anybus module detects that an attribute is missing during run time an
appropriate network error is sent and the Discard Responses counter is increased in the Anybus Object
instance attribute Error Counter.

Each enabled instance in the object corresponds to an Energy saving mode. The number of available modes is
device specific, and must be defined by the application. The higher the instance number, the more energy is
saved. The instance with the highest number always corresponds to the “Power off” mode, i.e. the state where
the device is essentially shut down. Instance 1 of the object represents “Ready to operate”, i.e. the mode
where the device is fully functional and does not save energy at all. Consequently a meaningful
implementation always contains at least two instances, one for energy saving and one for operating. If this
object is implemented for PROFINET, at least three instances are needed: “Ready to operate”, “Energy saving
mode 1”, and “Power off”.

Highest number of instances is 8. Please note that these modes are always present – they are not dynamically
created or deleted. It is not allowed to leave holes in the list of instances.

Ready to operate

Energy saving mode 1

Energy saving mode 2

Energy saving mode n

Energy saving mode n-1

Power off

Mandatory transition

Optional transition

Fig. 27

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 217 (272)

Supported Commands

Object: Get_Attribute

StartPause

EndPause

Preview_Pause_Time (not PROFINET)

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Energy Control”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 Highest created instance number. Maximum value is 8.

11 Current Energy Saving
Mode

Get UINT16 Instance number of the currently used Energy saving mode. During a
mode transition the new Energy saving mode shall be presented.
“Ready to operate” will equal instance #1, and “Power off” mode will
equal Highest instance number.

12 Remaining time to
destination

Get UINT32 When changing mode this parameter will reflect the actual time (in
milliseconds) remaining until the shift is completed.
If a dynamic value cannot be generated the static value for the
transition from the source to destination mode shall be used.
If the value is infinite, or unknown, the maximum value 0xFFFFFFFF
shall be used.

13 Energy consumption to
destination

Get FLOAT When changing mode this parameter will reflect the actual energy (in
kWh) which will be consumed until the shift is completed.
If a dynamic value cannot be generated the static value for the
transition from the source to destination mode shall be used.
If the value is undefined the value 0.0 shall be used.

14 Transition to “Power
off” mode supported

Get BOOL Indicates whether transition to “Power off” mode is supported or not.

0: Not supported

1: Supported

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 218 (272)

Instance Attributes (Instance #1 - #8)
Name Access Data Type Description

1 ModeAttributes Get BITS16 Bit 0: Meaning:

0: Only static time and energy values are available
(Value of bit 0 attribute is not implemented)

1: Dynamic time and energy values are available

Bit 1-15: Reserved
2 TimeMinPause Get UINT32 Minimum pause time in milliseconds. (tpause)

If the value is infinite, or unknown, the maximum value 0xFFFFFFFF
shall be used.

3 TimeToPause Get UINT32 Maximum time to go to this Energy saving mode.(ms, toff)
If the value is infinite, or unknown, the maximum value 0xFFFFFFFF
shall be used.

4 TimeToOperate Get UINT32 Maximum time needed to go to the “Ready to operate” mode. (ms,
ton)
If the value is infinite, or unknown, the maximum value 0xFFFFFFFF
shall be used.

5 TimeMinLengthOfStay Get UINT32 The minimum time that the device must stay in this mode. In
milliseconds.(ms, toff_min)
If the value is infinite, or unknown, the maximum value 0xFFFFFFFF
shall be used.

6 TimeMaxLengthOfStay Get UINT32 Maximum time that is allowed to stay in this mode. In milliseconds.
If no maximum value is available or if not implemented, the maximum
value FFFFFFFFh shall be used.

7 ModePowerConsump-
tion

Get FLOAT Amount of power consumed in this mode. (kW)
If the value is undefined the value 0.0 shall be used.

8 EnergyConsumptionTo-
Pause

Get FLOAT Amount of energy required to go to this mode. (kWh)
If the value is undefined the value 0.0 shall be used.

9 EnergyConsumption-
ToOperate

Get FLOAT Amount of energy required to go to the “Ready to operate” mode
from this mode. (kWh)
If the value is undefined the value 0.0 shall be used.

10 Availability Get BOOL Indicates if this energy saving mode is available given the current
device state.
Not used for PROFINET.
False Not available
True Available (Value if attribute not implemented)

11 Power Consumption Get UINT32 Indicates the power consumption of the device when in this state.
Not used for PROFINET.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 219 (272)

Command Details: Start_Pause

Details

Command Code 10h

Valid for: Object

Description

This command is sent to the host application when the system wants to initialize a pause of the system. The
length of the pause is specified in milliseconds. The response of the message contains the destination mode (i.
e. the instance number of the selected energy saving mode).

• Command Details

Field Contents Comments

Data[0] Pause time (low word, low byte) Pause time (ms)

Data[1] Pause time (low word, high byte)

Data[2] Pause time (high word, low byte)

Data[3] Pause time (high word, high byte)

• Response Details

Field Contents Comments

Data[0] Instance number (low byte) Instance number of selected Energy mode

Data[1] Instance number (low byte)

If the application is unable to select a state, given the requested pause time, it shall return one of the
error codes in the table below.
Error code Description

0x0D Invalid state Given the state of the device and the requested pause time it is currently not possible
to enter any energy saving mode

0x12 Value too low The requested pause time is too short

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 220 (272)

Command Details: End_Pause

Details

Command Code 11h

Valid for: Object

Description

This command is sent to the host application when the system wants to return the system from a pause mode
back to “Ready to operate” mode. In the response message the number of milliseconds to actualize the switch
is returned.

• Command Details

(none)

• Response Details

Field Contents Comments

Data[0] Time To Operate (low word, low byte) Time needed to switch to “Ready to operate”

Data[1] Time To Operate (low word, high byte)

Data[2] Time To Operate (high word, low byte)

Data[3] Time To Operate (high word, high byte)

If the application is unable to end the pause it shall return the error code in the table below.

Error code Description

0x0D Invalid state Given the state of the device, it is currently not possible to end the pause

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 221 (272)

Command Details: Preview_Pause_Time

Details

Command Code 12h

Valid for: Object

Description

Not used for PROFINET devices.

This command is sent to the host application when the system wants to preview the application’s choice of
Energy saving mode. The length of the pause is specified in milliseconds. The response shall contain the
destination mode the application would have chosen if the StartPause service was sent (that is, the instance
number of the selected energy saving mode). No transition to an Energy saving mode occurs.

• Command Details

Field Contents Comments

Data[0] Pause time (low word, low byte) Pause time (ms)

Data[1] Pause time (low word, high byte)

Data[2] Pause time (high word, low byte)

Data[3] Pause time (high word, high byte)

• Response Details

Field Contents Comments

Data[0] Instance number (low byte) Instance number of selected Energy mode

Data[1] Instance number (low byte)

If the application is unable to select a state, given the requested pause time, it shall return one of the
error codes in the table below.
Error code Description

0x0D Invalid state Given the state of the device and the requested pause time it is currently not possible
to enter any energy saving mode

0x12 Value too low The requested pause time is too short

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 222 (272)

14.10 EtherNet/IP Host Object (F8h)
Category
Basic, Extended

Object Description
This object implements EtherNet/IP specific features in the host application. Note that this object must not be
confused with the Ethernet Host Object, see Ethernet Host Object (F9h), p. 231.

The implementation of this object is optional; the host application can support none, some, or all of the
attributes specified below. The module will attempt to retrieve the values of these attributes during startup; if
an attribute is not implemented in the host application, simply respond with an error message (06h, “Invalid
CmdExt[0]”). In such case, the module will use its default value.

If the module attempts to retrieve a value of an attribute not listed below, respond with an error message
(06h, “Invalid CmdExt[0]”).

Note that some of the commands used when accessing this object may require segmentation. For more
information, see Message Segmentation, p. 182.

If the module is configured to use EIP QuickConnect functionality, the EDS file has to be changed. As the EDS
file is changed, the identity of the module has to be changed and the module will require certification..

See also ...

• Identity Object (01h), p. 113 (CIP object)

• Assembly Object (04h), p. 117 (CIP object)

• Port Object (F4h), p. 136 (CIP object)

• CIP Port Configuration Object (0Dh), p. 192

• Anybus CompactCom 40 Software Design Guide, “Error Codes”

Supported Commands

Object: Get_Attribute

Process_CIP_Object_Request

Set_Configuration_Data

Process_CIP_Routing_Request

Get_Configuration_Data

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “EtherNet/IP”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Basic

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 223 (272)

Name Access Data Type Default Value Comment

1 Vendor ID Get UINT16 005Ah These values are set in the Identity Object
(CIP) at startup.
See also...

• Network Identity, p. 25

• Identity Object (01h), p. 113

Please note that changing any of these
attributes requires a new Vendor ID.

2 Device Type Get UINT16 002Bh

3 Product Code Get UINT16 0037h
4 Revision Get struct of:

UINT8 Major
UINT8 Minor

(software revision)

5 Serial Number Get UINT32 (set at production)

6 Product Name Get Array of CHAR “Anybus CompactCom 40
EtherNet/IP(TM)”

Extended

Name Access Data Type Default
Value

Comment

7 Producing Instance No. Get Array of
UINT16

- The values in this array are the EtherNet/IP Assembly
instance numbers that matches the host application
Assembly Mapping Object instances that are listed in
attribute #11 (Write PD Instance List). If the Assembly
Mapping Object is not implemented, one element in this
array is allowed, to set the producing instance number.
The maximum number of entries in the array is 6.
See “Multiple Assembly Instances” below for an example.

8 Consuming Instance No. Get Array of
UINT16

- The values in this array are the EtherNet/IP Assembly
instance numbers that matches the host application
Assembly Mapping Object instances that are listed in
attribute #12 (Read PD Instance List). If the Assembly
Mapping Object is not implemented, one element in this
array is allowed, to set the consuming instance number.
The maximum number of entries in the array is 6.
See “Multiple Assembly Instances” below for an example.

9 Enable communication
settings from net

Get BOOL True Value Meaning

True Can be set from network
False Cannot be set from network
See also ...

• TCP/IP Interface Object (F5h), p. 138 (CIP-object)

• Ethernet Link Object (F6h), p. 141 CIP-object)

• Network Configuration Object (04h), p. 151(Anybus
Module Object)

11 Enable CIP forwarding Get BOOL False Value Meaning

True Requests to unknown CIP objects and unknown
assembly object instances are routed to the
application.

False Requests to unknown CIP objects and unknown
assembly object instances are not routed to the
application.

See also.command details for Process _CIP_Object_Request
below

12 Enable Parameter
Object

Get BOOL True Value Meaning

True Enable CIP Parameter Object

False Disable CIP Parameter Object

13 Input-Only heartbeat
instance number

Get UINT16 0003h See “Instance 03h Attributes (Heartbeat, Input-Only)” in
Assembly Object (04h), p. 117 (CIP-object).

14 Listen-Only heartbeat
instance number

Get UINT16 0004h See “Instance 04h Attributes (Heartbeat, Listen-Only)” in
Assembly Object (04h), p. 117 (CIP-object).

15 Assembly object
Configuration instance
number

Get UINT16 0005h See “Instance 05h Attributes (Configuration Data)” in
Assembly Object (04h), p. 117 (CIP-object).

16 Disable Strict IO Match Get BOOL False If true, the module will accept Class1 connection requests
that have sizes that’s less than or equal to the configured IO
sizes.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 224 (272)

Name Access Data Type Default
Value

Comment

17 Enable unconnected
routing

Get BOOL False If true, the module enables unconnected CIP routing. This
also triggers an initial upload of the contents of the CIP Port
Mapping object.

18 Input-Only extended
heartbeat instance
number

Get UINT16 0006h See “Instance 06h Attributes (Heartbeat, Input-Only
Extended)” in Assembly Object (04h), p. 117 (CIP-object).

19 Listen-Only extended
heartbeat instance
number

Get UINT16 0007h See “Instance 06h Attributes (Heartbeat, Listen-Only
Extended)” in Assembly Object (04h), p. 117 (CIP-object).

20 Interface label port 1 Get Array of CHAR Port 1 The value of this attribute is used to change the interface
label for Ethernet Link Object Instance #1

21 Interface label port 2 Get Array of CHAR Port 2 The value of this attribute is used to change the interface
label for Ethernet Link Object Instance #2

22 Interface label internal
port

Get Array of CHAR Internal The value of this attribute is used to change the interface
label for Ethernet Link Object Instance #3

23 -
25

(reserved)

26 Enable EtherNet/IP
QuickConnect

Get BOOL False Value Meaning

True EtherNet/IP QuickConnect functionality
enabled.

False False EtherNet/IP QuickConnect functionality
disabled.

If the module is configured to use EIP QuickConnect
functionality, the EDS file has to be changed. As the EDS file
is changed, the identity of the module has to be changed
and the module will require certification.

27 -
28

(reserved)

29 Ignore Sequence Count
Check

Get BOOL False Setting this attribute to “true” makes the module ignore the
Sequence Count Check for consumed Class 1 data. This
means that all data, not just changed/new data, received
from the Originator, will be copied to the application.
Copying all data and not just changed data is a violation of
the CIP specification. It will also affect the performance of
the module.
Use precaution when setting this flag to“true”.
HMS Networks will do NO performance measurements and
states NO guarantees about how performance will be
affected when copying all data.

30 ABCC ADI Object
Number

Get UINT16 00A2h This attribute either changes the object number of theADI
Object (CIP object) or disables the ADI Object (CIP object).
Valid object numbers are within the vendor specific ranges
(0064h - 00C7h and 0300h - 04FFh). Any other value will
disable the ADI object.

31 Enable DLR Get BOOL True Value Meaning

True DLR functionality enabled

False DLR functionality disabled

32 Enable CIP Sync Get BOOL False Value Meaning

True CIP Sync functionality enabled

False CIP Sync functionality disabled

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 225 (272)

Multiple Assembly Instances
The Assembly Mapping Object has two arrays on class level (Write PD Instance List and Read PD Instance List)
listing instances defined by the application. The arrays of attributes 7 and 8 in the EtherNet/IP host object
(Producing Instance Number and Consuming Instance number) are bound to the instance lists in the Assembly
Mapping Object. The arrays list the corresponding CIP instance numbers representing each assembly instance
defined by the application.

For more information, see

• Using the Assembly Mapping Object (EBh), p. 33

• Anybus CompactCom 40 Software Design Guide, “Assembly Mapping Object (EBh)”

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 226 (272)

Command Details: Process_CIP_Object_Request
Category

Extended

Details

Command Code: 10h

Valid for: Object

Description

By setting the ‘Enable CIP Request Forwarding’-attribute (#11), all requests to unimplemented CIP-objects and
unknown assembly object instances, will be forwarded to the host application through this command. The
application then has to evaluate the request and return a proper response. The module supports one CIP-
request; additional requests will be rejected by the module.

Note that since the telegram length on the host interface is limited, the request data size must not exceed
1524 bytes. If it does, the module will send a ‘resource unavailable’ response to the originator of the request
and the message will not be forwarded to the host application.

1524 bytes are available for class 3 connections using Large Forward Open. If UCMM is used, the total size (Message
Router request/response) is limited to 504 bytes.

If the legacy message channel is used, message data is limited to 255 bytes.

This command is similar - but not identical - to the ‘Process_CIP_Request’-command in the Anybus
CompactCom 40 DeviceNet.

• Command Details

Field Contents Comments

CmdExt[0] CIP Service Code CIP service code from original CIP request

CmdExt[1] Request Path Size Number of 16-bit words in the Request Path field

MsgData[0... m] Request Path CIP EPATH (Class, Instance, Attr. etc.)

MsgData[m... n] Request Data Service-specific data

• Response Details

Field Contents Comments

CmdExt[0] CIP Service Code (Reply bit set)

CmdExt[1] 00h (reserved, set to zero)

MsgData[0] General Status CIP General Status Code

MsgData[1] Size of Additional Status Number of 16-bit words in Additional Status array

MsgData[2... m] Additional Status Additional Status, if applicable

MsgData[m... n] Response data Actual response data, if applicable

When using this functionality, make sure to implement the common CIP Class Attribute (attribute #1,
Revision) for all objects in the host application firmware. Failure to observe this will prevent the module
from successfully passing conformance tests.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 227 (272)

Command Details: Set_Configuration_Data
Category

Extended

Details

Command Code: 11h

Valid for: Object

Description

If the data segment in the CIP “Forward_Open” service contains Configuration Data, this will be forwarded to
the host application through this command. If implemented, the host application should evaluate the request
and return a proper response. Segmentation is used, see “Message Segmentation” on page 189 for more
information. The maximum total amount of configuration data that will be accepted by the module is 458
bytes.

This command must be implemented in order to support Configuration Data. If not implemented, “Forward_
Open” requests will be rejected.

• Command Details

Field Contents Comments

CmdExt[0] - (reserved, ignore)

CmdExt[1] Segmentation Control bits See Message Segmentation, p. 182

MsgData[0 - 1] Producing connection point Producing connection point, requested by the originator.

MsgData[2 - 3] Consuming connection point Consuming connecition point, requested by the originator.

MsgData[4... n] Data Actual configuration data

When the Set_Configuration_Data command is sent to the application as a result of a CIP Forward_open
service containing Configuration Data, the producing connection point will be indicated by MsgData[0-1],
and the consuming connection point by MsgData[2-3]. However, the Set_Configuration command may
also come as a result of a CIP Set_Attribute_Single service to the CIP Assembly Object or a non matching
NULL Forward Open service request. For both cases, MsgData[0-1] and MsgData[2-3] will contain 0 (zero).

• Response Details (Success)

Field Contents Comments

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] 00h (reserved, set to zero)

• Response Details (Error)

Field Contents Comments

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] 00h (reserved, set to zero)

MsgData[0] Error code Anybus error code

MsgData[1] Extended error code If the Anybus error code is set to FFh, the extended error code
shall be translated as shown in the table below.

MsgData[2... 3] Index If the Extended error code is set to 02h (invalid configuration),
this parameter points to the attribute that failed.

Extended Error Code

If the Error code equals FFh (Object specific error), the extended code will be translated as below:

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 228 (272)

Code Contents CIP no. CIP status code Additional Information
01h Ownership conflict 01h Connection failure The configuration data was supplied in a forward open request.

10h Device State
conflict

The configuration data was supplied in a set request to the Assembly
object.

02h Invalid
configuration

09h Bad attribute data CIP extended error code: Use value from MsgData[2 - 3]. The
extended error code shall only be used if the request originated from
a Forward Open request, not for explicit set requests.

• Connection Manager (06h), p. 120 (CIP object)

• Message segmentation

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 229 (272)

Command Details: Process_CIP_Routing_Request
Category

Extended

Details

Command Code: 12h

Valid for: Object

Description

The module will strip the first path within the “Unconnected_Send” service and evaluate whether or not it’s
possible to continue with the routing (e.g. check that the requested port exists within the port object). If the
stripped path was the last path the contents delivered to the application will be the CIP request sent to the
destination node, otherwise it will be an “Unconnected_Send” service with updated route path information.

The module supports one pending request. Additional requests will be rejected by the module.

Please note that since the telegram length on the host interface is limited, the data must not exceed 1524
bytes in length. If it does, the module will reject the originator of the request (“Resource unavailable”), and
this command will not be issued towards the host application.

If the legacy message channel is used, message data is limited to 255 bytes.

• Command Details

Field Contents Comments

CmdExt[0] - (reserved, ignore)

CmdExt[1] - (reserved, ignore)

MsgData[0... n] Destination Path Destination path encoded as an EPATH.

MsgData[n+1] Time_tick Valid after timeout parameters have been updated

MsgData[n+2] Time-out_ticks Valid after timeout parameters have been updated

MsgData[n+3... m] CIP message CIP message to route

• Response Details

Field Contents Comments

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] 00h (reserved, set to zero)

MsgData[0] CIP Service Actual CIP service code, response bit set

MsgData[1] 00h (reserved, set to zero)

MsgData[2] General Status Actual CIP General status code

MsgData[3] Size of Additional Status No. of 16-bit words in Additional Status Array

MsgData[4... n] Additional Status Array Additional status, if applicable

MsgData[n+1... m] Response Data Actual response data

See also..

• Port Object (F4h), p. 136 (CIP object)

• CIP Port Configuration Object (0Dh), p. 192

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 230 (272)

Command Details: Get_Configuration_Data
Category

Extended

Details

Command Code: 13h

Valid for: Object

Description

If the configuration data is requested from the network, the Anybus will issue this command to the application.
The application shall send the stored configuration data in the response message.

Segmentation is used since the telegram length on the host interface is limited. The maximum total amount of
configuration data that will be accepted by the module is 458 bytes.

This command must be implemented in order to support Configuration Data. If not implemented, the request
will be rejected by the Anybus module.

• Command Details

Field Contents Comments

CmdExt[0] 00h -

CmdExt[1] 00h -

MsgData[0... n] - No extended message data

• Response Details (Success)

Field Contents Comments

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] Segmentation Control bits See Message Segmentation, p. 182

MsgData[0 - n] Status Configuration data from the application

• Response Details (Error)

Field Contents Comments

CmdExt[0] 00h (reserved, set to zero)

CmdExt[1] Segmentation Control bits See Message Segmentation, p. 182

MsgData[0] Status Anybus protocol error code

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 231 (272)

14.11 Ethernet Host Object (F9h)
Object Description
This object implements Ethernet features in the host application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Ethernet”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
• If an attribute is not implemented, the default value will be used.

• The module is preprogrammed with a valid MAC address. To use that address, do not implement attribute
#1.

• Do not implement attributes #9 and #10, only used for PROFINET devices, if the module shall use the
preprogrammed MAC addresses.

• If new MAC addresses are assigned to a PROFINET device, these addresses (in attributes #1, #9, and #10)
have to be consecutive, e.g. (xx:yy:zz:aa:bb:01), (xx:yy:zz:aa:bb:02), and (xx:yy:zz:aa:bb:03).

Name Access Data Type Default Value Comment

1 MAC address Get Array of UINT8 - 6 byte physical address value; overrides the preprogrammed
Mac address. Note that the new Mac address value must be
obtained from the IEEE.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

2 Enable HICP Get BOOL True (Enabled) Enable/Disable HICP

3 Enable Web Server Get BOOL True (Enabled) Enable/Disable Web Server
(Not used if Transparent Ethernet is enabled.)

4 (reserved) Reserved for Anybus CompactCom 30 applications.

5 Enable Web ADI
access

Get BOOL True (Enabled) Enable/Disable Web ADI access
(Not used if Transparent Ethernet is enabled.)

6 Enable FTP server Get BOOL True (Enabled) Enable/Disable FTP server
(Not used if Transparent Ethernet is enabled or if device
supports IIoT secure functionality.)

7 Enable admin mode Get BOOL False
(Disabled)

Enable/Disable admin mode
(Not used if Transparent Ethernet is enabled.)

8 Network Status Set UINT16 - See below.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 232 (272)

Name Access Data Type Default Value Comment

9 Port 1 MAC address Get Array of UINT8 - Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 1 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

10 Port 2 MAC address Get Array of UINT8 - Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 2 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

11 Enable ACD Get BOOL True (Enabled) Enable/Disable ACD protocol.
If ACD functionality is disabled using this attribute, the ACD
attributes in the CIP TCP/IP object (F5h) are not available.

12 Port 1 State Get ENUM 0 (Enabled) The state of Ethernet port 1.

• This attribute is not read by EtherCAT and Ethernet
POWERLINK devices, where Port 1 is always enabled.

00h: Enabled
01h: Disabled.

The port is treated as existing. References to the
port can exist, e.g. in network protocol or on
website.

13 Port 2 State Get ENUM 0 (Enabled) The state of Ethernet port 2.

• This attribute is not read by EtherCAT and Ethernet
POWERLINK devices, where Port 2 is always enabled.

00h: Enabled
01h: Disabled.

The port is treated as existing. References to the
port can exist, e.g. in network protocol or on
website.

02h: Inactive.
The attribute is set to this value for a device that
only has one physical port. All two-port
functionality is disabled. No references can be
made to this port.
Note: This functionality is available for PROFINET,
Ethernet/IP and Modbus-TCP devices.

14 (reserved)

15 Enable reset from
HICP

Get BOOL 0 = False Enables the option to reset the module from HICP.

16 IP configuration Set Struct of:
UINT32 (IP
address)
UINT32
(Subnet mask)
UINT32
(Gateway)

N/A Whenever the configuration is assigned or changed, the
Anybus CompactCom module will update this attribute.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 233 (272)

Name Access Data Type Default Value Comment

17 IP address byte 0–2 Get Array of UINT8
[3]

[0] = 192
[1] = 168
[2] = 0

First three bytes in IP address. Used in standalone shift register
mode if the configuration switch value is set to 1-245. In that
case the IP address will be set to:
Y[0].Y[1].Y[2].X
Where Y0-2 is configured by this attribute and the last byte X
by the configuration switch.

18 Ethernet PHY
Configuration

Get Array of BITS16 0x0000 for
each port

Ethernet PHY configuration bit field. The length of the array
shall equal the number of Ethernet ports of the product. Each
element represents the configuration of one Ethernet port
(element #0 maps to Ethernet port #1, element #1 maps to
Ethernet port #2 and so on).
Note: Only valid for EtherNet/IP and Modbus-TCP devices.

Bit 0: Auto negotiation fallback duplex
0 = Half duplex
1 = Full duplex

Bit 1–15: Reserved
20 SNMP read-only

community string
Get Array of CHAR “public” Note: This attribute is only valid for PROFINET devices.

Sets the SNMP read-only community string. Max length is 32.

21 SNMP read-write
community string

Get Array of CHAR “private” Note: This attribute is only valid for PROFINET devices.
Sets the SNMP read-write community string. Max length is 32.

22 DHCP Option 61
source

Get ENUM 0 (Disabled) Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

23 DHCP Option 61
generic string

Get Array of UINT8 N/A Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

24 Enable DHCP Client Get BOOL 1 = True Note: This attribute is currently valid for Ethernet/IP and
PROFINET devices.
Enable/disable DHCP Client functionality

0: DHCP Client functionality is disabled

1: DHCP Client functionality is enabled

25 Enable WebDAV
Server

Get BOOL 1 = True Note: This attribute is currently valid for devices with IIoT
Secure functionality.
Enable/disable WebDAV server

0: WebDAV functionality is disabled

1: WebDAV functionality is enabled

Network Status
This attribute holds a bit field which indicates the overall network status as follows:

Bit Contents Description Comment

0 Link Current global link status
1= Link sensed
0= No link

EtherCAT only: This link status indicates whether the
Anybus CompactCom is able to communicat using
Ethernet over EtherCAT (EoE) or not. That is, it
indicates the status of the logical EoE port link and is
not related to the link status on the physical EtherCAT
ports.

1 IP established 1 = IP address established
0 = IP address not established

2 (reserved) (mask off and ignore)

3 Link port 1 Current link status for port 1
1 = Link sensed
0 = No link

EtherCAT only: This link status indicates whether the
Anybus CompactCom is able to communicat using
Ethernet over EtherCAT (EoE) or not. That is, it
indicates the status of the logical EoE port link and is
not related to the link status on the physical EtherCAT
ports.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 234 (272)

Bit Contents Description Comment

4 Link port 2 Current link status for port 2
1 = Link sensed
0 = No link

Not used for EtherCAT

5... 15 (reserved) (mask off and ignore)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Host Application Objects 235 (272)

DHCP Option 61 (Client Identifier)

Only valid for EtherNet/IP devices

The DHCP Option 61 (Client Identifier) allow the end-user to specify a unique identifier, which has to be unique
within the DHCP domain.

Attribute #22 (DHCP Option 61 source) is used to configure the source of the Client Identifier. The table below
shows the definition for the Client identifier for different sources and their description.

Value Source Description

0 Disable The DHCP Option 61 is disabled. This is the default value if the attribute is not implemented in the
application.

1 MACID The MACID will be used as the Client Identifier
2 Host Name The configured Host Name will be used as the Client Identifier

3 Generic String Attribute #23 will be used as the Client Identifier

Attribute #23 (DHCP Option 61 generic string) is used to set the Client Identifer when Attribute #22 has been
set to 3 (Generic String). Attribute #23 contains the Type field and Client Identifier and shall comply with the
definitions in RFC 2132. The allowed max length that can be passed to the module via attribute #23 is 64 octets.

Example:

If Attribute #22 has been set to 3 (Generic String) and Attribute #23 contains 0x01, 0x00, 0x30, 0x11, 0x33,
0x44, 0x55, the Client Identifier will be represented as an Ethernet Media Type with MACID 00:30:11:33:44:55.

Example 2:

If Attribute #22 has been set to 2 (Host Name) Attribute #23 will be ignored and the Client Identifier will be the
same as the configured Host Name.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

This page intentionally left blank

Appendix A: Categorization of Functionality 237 (272)

A Categorization of Functionality
The objects, including attributes and services, of the Anybus CompactCom and the application
are divided into two categories: basic and extended.

A.1 Basic
This category includes objects, attributes and services that are mandatory to implement or to use.
They will be enough for starting up the Anybus CompactCom and sending/receiving data with
the chosen network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this
category.

A.2 Extended
Use of the objects in this category extends the functionality of the application. Access is given to
the more specific characteristics of the industrial network, not only the basic moving of data to
and from the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the
available network functionality is enabled and accessible, access to the specification of the
industrial network may be required.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

B Compatibility to Standard Anybus CompactCom 40
The Anybus CompactCom 40 EtherNet/IP IIoT Secure is not compatible to standard Anybus
CompactCom. The differences are summarized in the table below.

Issue Description

User account configuration “web_acces.cfg” and “ftp.cfg” files are not used for account configuration.
User accounts are given roles and are configured using the internal web pages.
They can also be configured using the JSON API.
For more information see Initial Setup and Account Configuration, p. 14.

HTTP(S) configuration Changes are made to the “http.cfg” configuration file.

• Web root cannot be configured. All URLs is from system root, but accounts
have different access rights.

• Access rights are controlled per role and are configured in this file.

• The index page must be configured.

For more information see Secure Web Server (HTTPS), p. 37.

File transfer protocol File transfer protocol FTP changed to WebDAV

SSI SSI removed.
JSON functions URL The URLs to JSON functions is changed, to make it possible to configure access

rights for each JSON API. For more information see JSON, p. 46.

JSON function protection For standard Anybus CompactCom 40 all JSON functions are protected by the
root “web_acces.cfg” file. For Anybus CompactCom Security modules, JSON
functions are instead protected independently in the same way as protecting file
system resources.
For more information see Secure Web Server (HTTPS), p. 37.

OPC UA File format changed for opcua.cfg.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix C: Implementation Details 239 (272)

C Implementation Details
C.1 SUP-Bit Definition

The supervised bit (SUP) indicates that the network participation is supervised by another
network device. In the case of EtherNet/IP, this means that the SUP-bit is set when one or more
CIP (Class 1 or Class 3) connections has been opened towards the module.

C.2 Anybus State Machine
The table below describes how the Anybus Statemachine relates to the EtherNet/IP network

Anybus State Implementation Comment
WAIT_PROCESS The module stays in this state until a Class 1

connection has been opened.
-

ERROR Class 1 connections errors
Duplicate IP address detected

-

PROCESS_ACTIVE Error free Class 1 connection active (RUN-bit set
in the 32-bit Run/Idle header of an Exclusive-
Owner connection)

Only valid for consuming connections.

IDLE Class 1 connection idle.
EXCEPTION Unexpected error, e.g. watchdog timeout etc. MS LED turns red (to indicate a major

fault)
NS LED is off

C.3 Application Watchdog Timeout Handling
Upon detection of an application watchdog timeout, the module will cease network participation
and shift to state EXCEPTION. No other network specific actions are performed.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

D Secure HICP (Secure Host IP Configuration Protocol)
D.1 General

The Anybus CompactCom 40 EtherNet/IP IIoT Secure supports the Secure HICP protocol used by
the Anybus IPconfig utility for changing settings, e.g. IP address, Subnet mask, and enable/
disable DHCP. Anybus IPconfig can be downloaded free of charge from the support pages at HMS
Networks, www.anybus.com/support. This utility may be used to access the network settings of
any Anybus product connected to the network via UDP port 3250.

The protocol offers secure authentication and the ability to restart/reboot the device(s).

D.2 Operation
When the application is started, the network is automatically scanned for Anybus products. The
network can be rescanned at any time by clicking Scan.

To alter the network settings of a module, double-click on its entry in the list. A window will
appear, containing the settings for the module.

Fig. 28

Validate the new settings by clicking Set, or click Cancel to cancel all changes.

For Anybus CompactCom 40 EtherNet/IP IIoT Secure, you can not set a password to protect the
configuration from unauthorized access in this view. The password is set from the internal web
pages.

It is strongly recommended to password protect the IP configuration.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

http://www.anybus.com/support

Appendix E: Installing a CA Certificate in Windows 241 (272)

E Installing a CA Certificate in Windows
This section describes how to install an Anybus CA Certificate in the trusted certificate store in
Windows. Chrome and IE will use the CA certificate. Other browsers may use other stores for
their trusted certificates.

1. Open the certificate.

2. Click on “Install Certificate....”

Fig. 29

3. The Certificate Import Wizard is opened. Select Store Location to Current User.

Click Next to continue the installation.

Fig. 30

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix E: Installing a CA Certificate in Windows 242 (272)

4. Continue the installation according to the instructions in the wizard. When asked to specify
a certificate store, select the trusted store as shown in the figure.

Fig. 31

5. Check that the settings are correct before you complete the wizard.

Fig. 32

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix E: Installing a CA Certificate in Windows 243 (272)

6. The wizard will finally ask you to confirm that you want to install this certifcate.

Fig. 33

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix F: Technical Specification 244 (272)

F Technical Specification
F.1 Front View
F.1.1 Front View (Ethernet Connectors)

Item Connector
1 Network Status LED Ethernet, RJ45

1 2

3 42 Module Status LED
3 Link/Activity LED (port 1)

4 Link/Activity LED (port 2)

Test sequences are performed on the Network and Module Status LEDs during startup.

F.1.2 Network Status LED
LED State Description

Off No power or no IP address

Green Online, one or more connections established (CIP Class 1 or 3)

Green, flashing Online, no connections established

Red Duplicate IP address, FATAL error

Red, flashing One or more connections timed out (CIP Class 1 or 3)

F.1.3 Module Status LED
LED State Description

Off No power

Green Controlled by a Scanner in Run state

Green, flashing Not configured, or Scanner in Idle state

Red Major fault (EXCEPTION-state, FATAL error etc.)

Red, flashing Recoverable fault(s). Module is configured, but stored parameters differ from currently used
parameters

Alternate red and
green, flashing

Firmware upgrade in progress

F.1.4 LINK/Activity LED 3/4
LED State Description

Off No link, no activity

Green Link (100 Mbit/s) established

Green, flickering Activity (100 Mbit/s)

Yellow Link (10 Mbit/s) established

Yellow, flickering Activity (10 Mbit/s)

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix F: Technical Specification 245 (272)

F.1.5 Ethernet Interface
Ethernet Interface (RJ45 connectors)

The Ethernet interface 10/100Mbit, full or half duplex operation.

Pin no Description

4,5,7,8 Connected to chassis ground
over serial RC circuit

1 8

6 RD-
3 RD+
2 TD-
1 TD+
Housing Cable Shield

F.2 Functional Earth (FE) Requirements
In order to ensure proper EMC behavior, the module must be properly connected to functional
earth via the FE pad/FE mechanism described in the Anybus CompactCom 40 Hardware Design
Guide. Proper EMC behavior is not guaranteed unless these FE requirements are fulfilled.

F.3 Power Supply
F.3.1 Supply Voltage

The Anybus CompactCom 40 EtherNet/IP IIoT Secure requires a regulated 3.3 V power source as
specified in the general Anybus CompactCom 40 Hardware Design Guide.

F.3.2 Power Consumption
The Anybus CompactCom 40 EtherNet/IP IIoT Secure is designed to fulfil the requirements of a
Class C module. The current hardware design consumes up to 510 mA.

In line with HMS policy of continuous product development, we reserve the right to change the
exact power requirements of this product without prior notification.

It is strongly advised to design the power supply in the host application based on the power consumption
classifications described in the general Anybus CompactCom Hardware Design Guide, and not on the
exact power requirements of a single product.

F.4 Environmental Specification
Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

F.5 EMC Compliance
Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 246 (272)

G Conformance Test Guide
G.1 General

When using the default settings of all parameters, the Anybus CompactCom 40 EtherNet/IP IIoT
Secure is precertified for network compliance. This precertification is done to ensure that the
end product can be certified.

To be allowed to use EtherNet/IP in a product the vendor is required to be a licensed
EtherNet/IP vendor, with a vendor ID of its own. Please contact www.odva.org to obtain a
vendor ID.

Changes in the parameters in the example EDS file, supplied by HMS Networks, will require a
certification. This chapter provides a guide for successfully conformance testing your product,
containing the Anybus CompactCom 40 EtherNet/IP IIoT Secure, to comply with the demands for
network certification set by the ODVA.

The actions described in this appendix have to be accounted for in the certification process, e.g.
the identity of the product needs to be changed to match your company and device.

This appendix provides guidelines and examples of what is needed for conformance
testing and certification. Depending on the functionality of your application, there may be
additional steps to take.

All screenshots within this document are taken from the ODVA Conformance Test Software Tool
for EtherNet/IP CT14, © ODVA Inc. This software is available for order through the ODVA website.
It is required to perform pre-testing with this software prior to submitting the product for
conformance testing.

Also, a Statement of Conformance file (STC file), describing the EtherNet/IP application, has to be
prepared prior to submitting the product for conformance testing.

G.2 Suggested Test Tools
G.2.1 Wireshark

This free, open source tool is the de facto standard for network capture and analysis. It is heavily
used by ODVA TSPs, HMS Networks, and the greater EtherNet/IP user base. Wireshark (
www.wireshark.org) captures Ethernet traffic using your computers network interface card, and
displays the contents in an intuitive fashion that allows for detailed analysis of the packets.
Developers from HMS Networks have contributed to the EtherNet/IP dissectors (the analysis
engine), and it is possible for users to create their own dissectors for their application data. The
use of Wireshark is well documented, but there are a few good tips for EtherNet/IP testing that
will help users get to the crucial information.

• Use viewing filters “CIP” to see only EtherNet/IP traffic.

• It is possible to filter by the HMS MAC ID. This will only show Ethernet messages with HMS
devices as the source or destination “eth.addr[0:3] == 00:30:11”.

• There are many other useful filters available on the Wireshark webpage.

G.2.2 NMAP
NMAP is a free, open source tool for network discovery and security testing. NMAP will discover
which TCP and UDP ports are open or responding. It will also determine which layer 3 services
are supported by your device. ODVA has strict guidelines for open ports, and mandatory layer 3
services. For the NMAP procedure used by TSPs please see the Sample Test Report that comes
with Conformance Test Software from ODVA.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

https://www.odva.org/
https://www.wireshark.org

Appendix G: Conformance Test Guide 247 (272)

G.2.3 ODVA Conformance Test Software
This automated test software is designed to query, provoke, and detect software flaws in your
device. ODVA sells yearly subscriptions of this software to vendors so that they can prepare for
conformance testing. This software is also the best way to modify or create the Statement of
Conformance (STC) file. Pressing CTRL+D will bring up a GUI for the Data section of the STC file.

Getting Started

After completing the install, a webpage is brought up in the default browser. This page gives an
overview of the test software and lists the relevant documentation with a brief summary. The
setup for testing is covered in the Conformance Test Software User Manual.

Chapter Contents

1 System requirements and installation

2 How to select a device and how to modify the Statement of Conformance file

3 How to set up the network to prepare for testing

4 How to run the test software

The User Manual - Critical Points

Users are strongly encouraged to read through the Conformance Test Software User Manual to
fully understand the testing software. The following points are meant to recapture the critical
sections of this document.

• The Network Interface that will be used for testing needs to be selected from the available
network interface cards in the Setup menu.

Fig. 34

• Most devices will comply with the default timeout settings, but some require more relaxed
standards for responses. This can be set in the Set Message Wait Timers menu.

• The latest version of the CT Test software requires users to allocate a second IP address for
their network interface card.

• Enabling the Encapsulation Logging feature of the CT test will allow users to efficiently work
with Wireshark captures and Conformance Test logs.

G.2.4 EZ-EDS
EZ-EDS is a free utility made available by ODVA. This tool is very helpful for editing and testing
Electronic Data Sheets. Electronic Data Sheets are ASCII formatted files that describe data
organization, configuration, and performance capabilities. They are commonly called EDS files,
and have the extension .eds. EDS files can be built and modified using a text editor, but EZ-EDS
provides a graphical user interface that brings attention to major fields. EZ-EDS also tests EDS

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 248 (272)

files for correct formatting. Much of the possible content of EDS files is optional, and ODVA tests
stress correct formatting and not content.

G.2.5 Anybus EDS Generator
The Anybus EDS Generator tool automatically generates an EDS file by scanning a device using
the Anybus CompactCom 40 EtherNet/IP. This tool is easy to use and will provide a correctly
configured EDS file that matches your product. It is still required to validate the EDS file via EZ-
EDS.

The tool is available from the HMS Networks web site.

G.2.6 Sample Test Reports
The subscription to the conformance test software includes the EtherNet/IP Sample Test Report
document. This document outlines the manual procedure that testers will perform in addition to
running the automated test software.

Manual Test Procedure

Some features of EtherNet/IP cannot be properly verified by automated test software or the
development of a fully automated test may be impractical. For these features, a manual test
procedure, as well as passing criteria, is listed in the Sample Test Report. This is the exact
procedure and criteria used by the Test Service Providers.

The majority of functionality that needs to be tested manually is provided by the systems of the
Anybus CompactCom, and has no interaction with the host application. Therefore, developers
using the Anybus CompactCom may omit this lengthy procedure, but they must check the
following:

• HMS recommends everyone to complete the Physical layer and EDS test sections of the
sample test report. This ensures that produce labeling of LED’s is correct and that the EDS
file is verified prior to submitting the product to the TSP for conformance test

• If DLR is enabled in the product, it is required to be able to configure the speed and the
duplex of all Ethernet ports in some way. The host application may elect to disable the
standard means of configuring the speed and duplex in the Anybus CompactCom by:

– Disabling set access to the Ethernet Link object by setting instance attribute #9 (Enable
Communication Settings from NET) in the Host EtherNet/IP object to False.

– Disabling the web server. On the standard web pages of the Anybus CompactCom it is
possible to configure speed and duplex of the ethernet ports. For applications using
transparent ethernet functionality the web server is always disabled.

If none of the these ways of configuring the speed and duplex is possible, the host
application must provide some other way to configure them. For example the application
can have a keypad interface which can be used for configuration.

• If the host application includes hardware switches (for example DIP switches or rotary
switches) for configuring the IP address or has disabled either ACD or DLR, HMS Networks
recommends to perform the manual test cases in TCP/IP Interface Object Tests (section 4),
Ethernet Link Object Tests (section 5), and Address Conflict Detection (ACD) Tests (section
10) in the sample test report.

G.3 Statement of Conformance (STC)

This document is not a comprehensive guide. Following the steps below will not
absolutely guarantee that a device will complete conformance testing.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 249 (272)

The goal of this section is to explain the relation the Anybus Objects to the Conformance Test
and the Statement of Conformance (STC). The objects listed below exist in the host application,
the Anybus CompactCom, and not in the EtherNet/IP interface. The objects are described in the
Anybus CompactCom 40 Software Design Guide and in the Anybus CompactCom 40 EtherNet/IP
Network Guide.

It is recommended to read the CIP Protocol Test Specification and the EtherNet/IP Test
Specification prior to testing. In these documents the expected response and/or the acceptable
behavior are stated, which is useful to be able to avoid a lot of initial errors. Modifications can be
made to the Statement of Conformance and to the host application at an early stage, reducing
time and effort.

G.3.1 Implementation of Host Objects
The implementations of the host objects may have to be adapted, to make sure that the end
product will pass a conformance test. Using the CT Software, follow the instructions below. Only
the host objects relevant to EtherNet/IP will be discussed.

EtherNet/IP Host Object (F8h)

The implementation of the EtherNet/IP Host Object (F8h) has impact on the following objects:
Identity Object (01h, CIP object), Assembly Object (04h, CIP object), Port Object (F4h, CIP object),
and CIP Port Configuration Object (host object, 0Dh). It also has impact on how the STC is
configured. The instance attributes, listed below, need to be considered.

EtherNet/IP Host Object (F8h) - Attribute #1 - Vendor ID

The Vendor ID must match the Vendor name in the CT software and the STC.

Fig. 35

First time EtherNet/IP vendors may not find their name available from the drop down menu, as
it’s not certain that the test software has been updated. It is possible to pre-test with any Vendor
ID in the list, to reduce the number of errors reported due to Vendor ID mismatch, as long as the
Vendor ID is changed in both the device and in the STC before actual conformance testing.

Alternatively, vendors can add the vendor information to the VID.dat file.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 250 (272)

EtherNet/IP Host Object (F8h) - Attribute #2 - Device Type

The Device Type must match the Device Type in the drop down list:

Fig. 36

EtherNet/IP Host Object (F8h) - Attribute #3 - Product Code

The Product Code must match the Product Code in the drop down list:

Fig. 37

EtherNet/IP Host Object (F8h) - Attribute #4 - Revision

The Revision must match the revision field <major>. <minor>.

Fig. 38

EtherNet/IP Host Object (F8h) - Attribute #5 - Serial Number

The current version of CT test does not check serial number.

According to the CIP specification, the combination of Vendor ID and serial number must be unique. It is
not permitted to use a custom serial number in combination with the HMS Vendor ID (005Ah).

EtherNet/IP Host Object (F8h) - Attribute #6 - Product Name

The Product Name must match the Product Name field.

Fig. 39

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 251 (272)

EtherNet/IP Host Object (F8h) - Attribute #7 - Producing Instance No.

The Producing Instance(s) will impact the assembly object, and will need to be listed. For most
applications the producing instance(s) will be Static Inputs.

Fig. 40

Producing Instances will also impact the Connections of the Connection Manager object. Each of
the connections must have the connection path modified to point to the correct instance(s). The
example below lists 0x64 as the producing instance. See Volume 1: Common Industrial Protocol
Specification appendix C for the encoding of the Connection Path.

Fig. 41

This attribute is an array if the host application implements the Assembly Mapping Host object, see
details of this object below.

EtherNet/IP Host Object (F8h) - Attribute #8 - Consuming Instance No.

The response field will impact the assembly object. For most applications the producing instance
(s) will be Static Outputs.

Fig. 42

Producing Instances will also impact the Connections of the Connection Manager object. Each of
the connections must have the connection path modified to point to the correct instance(s). The

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 252 (272)

example below lists 0x96 as the consuming instance. See Volume 1: Common Industrial Protocol
Specification appendix C for the encoding of the Connection Path.

Fig. 43

This attribute is an array if the host application implements the Assembly Mapping Host object, see
details of this object below.

EtherNet/IP Host Object (F8h) - Attribute #9 - Enable Communication Settings from Net

This attribute sets the ability for other devices on the network to adjust the communication
settings using access to the CIP TCP/IP object and the CIP Ethernet Link Object. Check the box in
the Physical Data section if this method is supported.

Fig. 44

The STC file must be configured to support the ability to set the affected attributes in the TCP/IP
Interface object and in the Ethernet Link object according to the table below.

Enable communication
settings from net

CIP TCP/IP Object CIP Ethernet Link Object

True Set service enabled on attributes 3, 5, 6,
8, 9, 10, 11 and 12.

Attribute 6 enabled.
Set service enabled on object level.

False Set service enabled on attributes 3, 8, 9,
10, 11 and 12.
Set service disabled on attributes 5 and 6.

Attribute 6 disabled.
Set service disabled on object level (does not
apply if the Admin state attribute is implemented).
Attribute 3 shall be settable in all modes except
when hardware switches are used.

Please note that using the DLR functionality requires that Ethernet ports are able to have forced
settings e.g. 10 Mbps Half-duplex. For DLR devices with Communication Setting from the
network disabled, the application must provide the ability to force Ethernet settings. For
example, the web server can provide the user the ability to force Ethernet settings.

EtherNet/IP Host Object (F8h) - Attribute #11 - Enable CIP Forwarding

Enabling CIP Forwarding allows the host application to respond to all requests to both CIP
objects and instances of the Assembly Object not implemented by the Anybus CompactCom. The
Conformance Test software will check to see if those requests are handled properly by the
application. All Objects and Assembly Object Instances listed in the section about CIP objects in
the corresponding EtherNet/IP network appendices, are handled by the Anybus CompactCom.
This means that all requests to CIP objects and instances not listed in the CIP objects section
need to be handled by responses to the Process_CIP_Request command if CIP Forwarding is
enabled.

Enabling CIP Forwarding can be necessary when users support device profiles defined by Volume
1 of the CIP Network Libraries. Additionally, vendors may define and support objects and

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 253 (272)

Assembly Object Instances that are not specified in the CIP network specification as long as those
objects and Assembly Object Instances are in the vendor specific range.

CIP defined device profiles define which object(s) instance(s) attributes(s), and Instances of the
Assembly Object need be supported by a device. Additionally, mandatory services and behaviors
are defined. Chapter 6 of Volume 1 CIP Network Libraries details device profiles. The default
profile supported by the Anybus CompactCom is Generic Device, Keyable. This device profile, and
some other profiles do not require any additional objects or assembly instances to be supported
making it not necessary to enable CIP forwarding.

Responding properly can mean different things for different requests at different times. The
following list gives advice how to reduce the complexity.

• Decide which Object/Instance/attributes combinations will be implemented. Consult
specifications to ensure that mandatory/optional/vendor specific combinations are correct.

• Decide which services are supported for the implemented combinations. Consult
specification to ensure that mandatory/optional/vendor specific services are implemented
properly.

• Verify that proper application behavior is provided for the correct interaction of the
implemented services and paths.

• Provide the correct error response for all paths not supported by application.

CIP status code 0x05 (path destination unknown) will be reported, when the application
returns any of the following Anybus CompactCom error codes: Unsupported Object (3),
Unsupported Instance (4). Consult the CIP network libraries Vol1 appendix B for status
codes, and the section on CIP Objects in the Anybus CompactCom EtherNet/IP Network
Guide for a translation of CIP error codes to Anybus CompactCom error codes.

• Provide the correct error response for all unsupported commands.

CIP status code 0x08 service not supported will be reported when the application returns
the Anybus CompactCom error code Unsupported Command (5). Consult the CIP network
libraries Vol1 appendix B for status codes, and the CIP objects chapter in the Anybus
CompactCom EtherNet/IP Network Guide for a translation of CIP error codes to Anybus
CompactCom error codes.

• Provide error checking for all commands that modify variables, and respond with the
correct CIP defined error code. Consult the CIP network libraries Vol1 appendix B for status
codes, and the CIP Objects chapter in the Anybus CompactCom EtherNet/IP Network Guide
for a translation of CIP error codes to Anybus CompactCom error codes.

Please consult the profile requirements, services, and behaviors as well as the object definitions
specified in the CIP Network Libraries.

EtherNet/IP Host Object (F8h) - Attribute #12 - Enable Parameter Object

The purpose of the CIP Parameter Object is to provide a uniform interface for device
configuration. EtherNet/IP requires one instance of the parameter object per configurable
parameter. A request to the CIP parameter object is converted into a request to the Host
Application Data object. It is possible to disable access to the Parameter Object by responding
FALSE to this request. The required and optional instance attributes are listed in table 5A-14.7 of
The CIP Network Libraries Volume 1. If the object is disabled the parameter object must be
removed from the list of supported objects in the STC file.

EtherNet/IP Host Object (F8h) - Attribute #13 - Input-Only Heartbeat Instance Number

By default this instance number is 3. Changing this value from the default will require users to
modify the Input only connection listed in the Connection Manager portion of the .stc file. The
following figure shows that for the input only connection 03 shows up as the 0->T connection

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 254 (272)

point for the connection path. For an explanation of the configuration path please see The CIP
Networks Library Volume 1 Appendix C.

Fig. 45

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 255 (272)

EtherNet/IP Host Object (F8h) - Attribute #14 - Listen-Only Heartbeat Instance Number

This attribute will set the Assembly Instance for the Heartbeat connection point (Originator to
Target). This instance should be listed as a connection point in the connection manager object
for the input only connection. The default instance number is 4.

Fig. 46

EtherNet/IP Host Object (F8h) - Attribute 15 - Assembly Object Configuration Instance Number

Device configuration parameters can be grouped together in an assembly instance. By default
this Instance is 5. Support for the Configuration instance is provided by the functions Get_
Configuration_Instance and Set_Configuration_Instance of the EtherNet/IP host object. If this
instance is used to pass configuration data, this assembly should be listed in the Assembly object
as a Static Configuration, and should be listed in the connection paths in the Connection
Manager.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 256 (272)

EtherNet/IP Host Object (F8h) - Attribute 16 - Disable Strict lO Match

Device configuration parameters can be grouped together in an assembly instance. By default
this Instance is 5. Support for the Configuration instance is provided by the functions Get_
Configuration_Instance and Set_Configuration_Instance of the EtherNet/IP host object. If this
instance is used to pass configuration data, this assembly should be listed in the Assembly object
as a Static Configuration, and should be listed in the connection paths in the Connection
Manager.

Fig. 47

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 257 (272)

EtherNet/IP Host Object (F8h) - Attribute 17 - Enable Unconnected Routing

Enabling this attribute will allow unconnected routing, and allow access to the CIP Port Object
(F4h). It is possible for originators to use CIP routing to link to other subnets or backplanes
through the Anybus CompactCom. For EtherNet/IP, multiple Port Object Instances can share the
single or dual Physical ports. For each CIP routable port, one instance of the CIP Port Object
should exists. Enabling this attribute also requires that applications support for Hosts CIP Port
Configuration Object (ODh). The Statement of Conformance file can be configured to reflect the
ability for port forwarding, by selecting the check box in the Communication data section, and
the port object can be added to the list of implemented objects.

Fig. 48

EtherNet/IP Host Object (F8h) - Attribute 18 - Input-Only Extended Heartbeat Instance Number

The extended version of the Input-only Heartbeat connection is functionally the same with one
exception. The state of the connection does not affect the state of the module, i.e., a timeout of
this connection will not force the module into the Exception state. This Instance can be used for
a connection point and that connection should be annotated in the Connection Manager. The
instance number should appear in the connection path.

EtherNet/IP Host Object (F8h) - Attribute 19 - Listen-Only Extended Heartbeat Instance
Number

The extended version of the Listen-only Heartbeat connection is functionally the same with one
exception. The state of the connection does not affect the state of the module, i.e., a timeout of
this connection will not force the module into the Exception state. This Instance can be used for
a connection point and that connection should be annotated in the Connection Manager. The
instance number should appear in the connection path.

EtherNet/IP Host Object (F8h) - Attribute 20 - Interface label port 1

This label is not checked by the CT test software, however if changed please ensure that the EDS
file is updated with the equivalent string.

EtherNet/IP Host Object (F8h) - Attribute 21 - Interface label port 2

This label is not checked by the CT test software, however if changed please ensure that the EDS
file is updated with the equivalent string.

EtherNet/IP Host Object (F8h) - Attribute 22 - Interface label internal port

This label is not checked by the CT test software, however if changed please ensure that the EDS
file is updated with the equivalent string.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 258 (272)

EtherNet/IP Host Object (F8h) - Attribute 26 - Enable EtherNet/IP QuickConnect

Enabling QuickConnect will make the duration from power-on to available on the network as
short as possible. QuickConnect will require a change to the default EDS file, and also require
that, for two port modules, ports 1 and 2 labeled externally on the device.

If QuickConnect is enabled, attribute #12 of TCP/IP Interface object needs to be set to Set and
Get access in the STC file. If QuickConnect is disabled Get and Set access must be unchecked.

Fig. 49

EtherNet/IP Host Object (F8h) - Attribute 29 - Ignore Sequence Count Check

Enabling this functionality violates the CIP Network Libraries specifications.

EtherNet/IP Host Object (F8h) - Attribute 30 - ABCC ADI Object Number

The default behavior of the Anybus CompactCom EtherNet/IP family of modules provide access
to Instances of the Application Data Objects through the CIP ADI Object (A2h). It is possible to
change this Object Class number or disable access altogether. It is important to note that A2h is
in the vendor specific range where Vendors are free to implement their own objects. Choosing
an object class number outside the vendor specific range should only be done when the device
provides the functionality specified by the object, and adheres to the organization of attributes
and services set in the CIP Networks Library. The vendor specific range is 64h – C7h and 300h –
4FFh.

EtherNet/IP Host Object (F8h) - Attribute 31 - Enable DLR

The default behavior of the Anybus CompactCom EtherNet/IP is to have DLR enabled, if for some
reason the DLR is disabled the DLR object must be removed from the list of supported objects in
the STC file.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 259 (272)

Ethernet Host Object (F9h)

Many of the attributes for this object are outside ODVA’s specification and have no bearing on
the conformance test, and will not be listed in this document.

Ethernet Host Object (F9h) - Attribute #1 - MAC Address (Also Attribute #8 and #9)

The MAC address should be listed in the Statement of Conformance. This attribute can be
accessed in the Physical Data section.

Fig. 50

Ethernet Host Object (F9h) - Attribute #11 - Enable ACD (Automatic Collision Detection)

The MAC address should be listed in the Statement of Conformance. This attribute can be
accessed in the Physical Data section.

Auto Collision Detection is a feature of EtherNet/IP that will detect and mitigate the errors due
to multiple devices having the same IP address. This attribute can be accessed in the Physical
Data section. Also, there is a section in ODVA’ Conformance Test Details form that indicates if
the device is ACD capable.

Fig. 51

Ethernet Host Object (F9h) - Attribute 13 - Port 2 State

For Anybus CompactCom B40 and C40 applications port 2 may not be mounted if the application
only has space for one ethernet port or for some other reason only need one ethernet port. If
this attribute is set to inactive, the DLR object will automatically be disabled, hence the object
must be removed from the list of supported objects in the STC file.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 260 (272)

Ethernet Host Object (F9h) - Attribute #24 - Enable DHCP Client

If the host application for any reason does not want to support DHCP, this attribute shall be set
to False. The DHCP client support in Physical data section of the stc file must be unchecked.

Fig. 52

CIP Identity Host Object (EDh)

This object allows devices to support additional instances of the Identity Object (CIP object, 01h)
beyond the 1st instance which is supported by default. The support for additional instances of
the Identity Object must be reflected in the Statement of Conformance by changing Identity
Class attributes Max Instance, and Number of Instances to the proper values.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 261 (272)

Assembly Mapping Object (EBh)

The assembly mapping host object can be used to create up to 6 producing and 6 consuming CIP
assembly instances. These additional assemblies will also create connection points in the
connection manager which will be equivalent to the standard exclusive owner connection in the
Anybus CompactCom40 EtherNet/IP.

For each added connection point the Assembly object and Connection manager object in the STC
file must be updated to describe these new assembly instances.

Fig. 53

In this example five additional producing assemblies has been added.

Fig. 54

In this example five additional consuming assemblies has been added.

It is not required to list all possible combinations of connections between the producing and
consuming connection points in the Connection Manager section of the STC file. It is up to the
vendor do decide which connection combinations that should be available for the customer in
the EDS file, it is however required to list all connections that exist in the EDS file in the
Connection Manager section of the EDS file.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 262 (272)

Fig. 55

This is an example of an additional exclusive owner connection connecting to connection points
101/151.

Please note that it is required to implement the Write_Assembly_Data and Read_Assembly_Data
services of the Assembly mapping host object in the application to pass Conformance testing.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix G: Conformance Test Guide 263 (272)

G.3.2 Implementation of Anybus Module Objects
Only the Anybus module objects relevant to EtherNet/IP will be discussed.

Network Object (03h)

Network Object (03h) - Attribute #5 - Write Process Data Size

The Write Process Data Size represents the current amount of data mapped for the T-> O
connection. In most cases, but not always, this value will correspond to the T->O connection size
in the connection manager. Please note that it is possible to support multiple assemblies for
connection points by supporting process data remapping.

Network Object (03h) - Attribute #6 - Read Process Data Size

The Read Process Data Size represents the current amount of data mapped for the O->T
connection. In most cases, but not always, this value will correspond with the O->T connection
size in the connection manager. Please note that it is possible to support multiple assemblies for
connection points by supporting process data remapping.

Network Object (03h) - CIP Port Configuration Object (0Dh)

CIP routing can be enabled by instance attribute #17 of the Host EtherNet/IP object. Each
instance of this object corresponds to an instance of the CIP Port object (F4h).

Please note that a CIP port does not necessarily correspond to a Physical port. The two network
connectors on the two-port Anybus CompactCom correspond to a single CIP routable port.
Devices with a single CIP port are not required to support the Port Object, but the
Communication Adapter device profile does require support for this object.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix H: Licensing Information 264 (272)

H Licensing Information
lwIP is licensed under the BSD licence:

Copyright (c) 2001-2004 Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

--

Print formatting routines

Copyright (C) 2002 Michael Ringgaard. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the project nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS " AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix H: Licensing Information 265 (272)

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

--

Copyright (c) 2002 Florian Schulze.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the authors nor the names of the contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

ftpd.c - This file is part of the FTP daemon for lwIP

--

FatFs - FAT file system module R0.09b (C)ChaN, 2013

FatFs module is a generic FAT file system module for small embedded
systems. This is a free software that opened for education, research and
commercial developments under license policy of following terms.

Copyright (C) 2013, ChaN, all right reserved.

The FatFs module is a free software and there is NO WARRANTY. No
restriction on use. You can use, modify and redistribute it for personal,
non-profit or commercial products UNDER YOUR RESPONSIBILITY.
Redistributions of source code must retain the above copyright notice.

--

Copyright (c) 2016 The MINIX 3 Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix H: Licensing Information 266 (272)

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Author: David van Moolenbroek <david@minix3.org>

--

MD5 routines

Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.

This software is provided "as-is", without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software. Permission is granted to anyone

to use this software for any purpose, including commercial applications,
and to alter it and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not
be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
distribution.

L. Peter Deutsch

ghost@aladdin.com

--

Copyright 2013 jQuery Foundation and other contributors

http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining a
copy of this "software" and associated documentation files (the
Software), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix H: Licensing Information 267 (272)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--

rsvp.js

Copyright (c) 2013 Yehuda Katz, Tom Dale, and contributors

Permission is hereby granted, free of charge, to any person obtaining a
copy of this "software" and associated documentation files (the
Software), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--

libb (big.js)
The MIT Expat Licence.
Copyright (c) 2012 Michael Mclaughlin

Permission is hereby granted, free of charge, to any person obtaining a
copy of this "software" and associated documentation files (the
Software), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--

The "inih" library is distributed under the New BSD license:
Copyright (c) 2009, Ben Hoyt
All rights reserved.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix H: Licensing Information 268 (272)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Ben Hoyt nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY BEN HOYT "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL BEN HOYT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

**

open62541 is licensed under the Mozilla Public License v2.0

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this file,
You can obtain one at http://mozilla.org/MPL/2.0/.

To obtain customized changes please contact foss@anybus.com.

**

musl as a whole is licensed under the following standard MIT license:

--

Copyright © 2005-2014 Rich Felker, et al.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix H: Licensing Information 269 (272)

**

PCG Random Number Generation for C.

Copyright 2014 Melissa O'Neill

Licensed under the Apache License, Version 2.0 ("the License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

For additional information about the PCG random number generation scheme,
including its license and other licensing options, visit

http://www.pcg-random.org
**

queue.h

Copyright (c) 1991, 1993

The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OFMERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

@(#)queue.h
8.5 (Berkeley) 8/20/94

--

Format - lightweight string formatting library.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

Appendix H: Licensing Information 270 (272)

Copyright (C) 2010-2013, Neil Johnson
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided
with the distribution.
* Neither the name of nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED.IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORYOF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THISSOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Anybus CompactCom 40 EtherNet/IP IIoT Secure Network Guide SCM-1202–069 2.6 en-US

This page intentionally left blank

last page

© 2021 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se SCM-1202–069 2.6 en-US / 2021-10-29 / 23674

	1 Preface
	1.1 About this document
	1.2 Related Documents
	1.3 Document History
	1.4 Document Conventions
	1.5 Document Specific Conventions
	1.6 Abbreviations
	1.7 Trademarks

	2 About the Anybus CompactCom 40 EtherNet/IP IIoT Secure
	2.1 General
	2.2 Features
	2.3 IIoT – Industrial Internet of Things
	2.4 Security
	2.5 Certificates
	2.5.1 Initial Device Certificate
	2.5.2 Certificate Authorities
	2.5.3 Device Certificates

	3 Initial Setup and Account Configuration
	3.1 Set an IP Address
	3.2 Configure First Administrator Account
	3.3 Install a Device Certificate
	3.4 Protect the IP Configuration
	3.5 Install a CA Certificate
	3.6 Account Configuration

	4 Basic Operation
	4.1 General Information
	4.1.1 Software Requirements
	4.1.2 Electronic Data Sheet (EDS)

	4.2 Network Identity
	4.3 Authentication, Passwords, and User Roles
	4.4 Communication Settings
	4.4.1 Communication Settings in Stand Alone Shift Register Mode

	4.5 Beacon Based DLR (Device Level Ring)
	4.6 Network Data Exchange
	4.6.1 Application Data
	4.6.2 Process Data
	4.6.3 Translation of Data Types

	4.7 Web Interface
	4.8 E-mail Client
	4.9 Modular Device Functionality
	4.10 File System
	4.10.1 Overview
	4.10.2 General Information
	4.10.3 System Files

	5 EtherNet/IP Implementation Details
	5.1 General Information
	5.2 EtherNet/IP & CIP Implementation
	5.3 Using the Assembly Mapping Object (EBh)
	5.3.1 Introduction
	5.3.2 Adding Data - The Application Data Object
	5.3.3 Grouping Data - The Assembly Mapping Object
	5.3.4 Configuring CIP Assembly Numbers
	5.3.5 Going Forward

	5.4 Socket Interface (Advanced Users Only)
	5.5 Diagnostics
	5.6 QuickConnect
	5.7 CIP Safety
	5.7.1 Safety Module Firmware Upgrade
	5.7.2 Reset Request from Network

	6 Secure Web Server (HTTPS)
	6.1 General Information
	6.2 Default Web Pages
	6.2.1 Network Configuration
	6.2.2 Ethernet Statistics Page

	6.3 Server Configuration
	6.3.1 Default Content Types

	6.4 Login
	6.5 Logout
	6.6 Cross Site Request Forgery (CSRF) Protection

	7 JSON
	7.1 General Information
	7.1.1 Encoding
	7.1.2 Access
	7.1.3 Security
	7.1.4 Error Response

	7.2 Cross Site Request Forgery (CSRF) Protection
	7.3 Supported JSON functions
	7.4 JSON API
	7.4.1 ADI
	7.4.2 Module
	7.4.3 Network
	7.4.4 Services
	7.4.5 Security
	7.4.6 cacerts.json & devcerts.json
	7.4.7 installcacert.json & installdevcert.json
	7.4.8 deletecacert.json & deletedevcert.json
	7.4.9 cfgcertusage.json
	7.4.10 Hex Format Explained

	7.5 Example

	8 File Transfer Protocol (WebDAV)
	8.1 WebDAV Configuration
	8.2 WebDAV

	9 E-mail Client
	9.1 General Information
	9.2 How to Send E-mail Messages

	10 OPC UA
	10.1 General
	10.2 Configuration
	10.2.1 Parameters
	10.2.2 Access Configuration

	10.3 CompactCom 40 Device Type Information Model
	10.3.1 CompactCom 40 Device Type Namespaces
	10.3.2 Identification Parameters
	10.3.3 Application Data Exchange

	10.4 Application Defined Information Model
	10.4.1 Application Defined Namespaces
	10.4.2 Identification Parameters
	10.4.3 Application Data

	10.5 Time
	10.6 Server Endpoints
	10.6.1 SecurityPolicies
	10.6.2 UserIdentityTokens
	10.6.3 Endpoints

	10.7 Error Code Translation
	10.7.1 Error Code Translation when Accessing the Application Data Object

	10.8 Stack Configuration
	10.8.1 Connection Configuration
	10.8.2 Data Subscription Configuration
	10.8.3 Resource Configuration

	11 MQTT
	11.1 MQTT Configuration
	11.2 Connection Setup
	11.3 Publications
	11.3.1 Topic
	11.3.2 Dataset Encoding

	11.4 Stack Configuration

	12 CIP Objects
	12.1 General Information
	12.2 Translation of Status Codes
	12.3 Identity Object (01h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes
	Device Status
	Service Details: Reset

	12.4 Message Router (02h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	12.5 Assembly Object (04h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance 03h Attributes (Heartbeat, Input-Only)
	Instance 04h Attributes (Heartbeat, Listen-Only)
	Instance 05h Attributes (Configuration Data)
	Instance 06h Attributes (Heartbeat, Input-Only Extended)
	Instance 07h Attributes (Heartbeat, Listen-Only Extended)
	Instance 64h Attributes (Producing Instance)
	Instance 96h Attributes (Consuming Instance)

	12.6 Connection Manager (06h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes
	Class 0 Connection Details
	Class 1 Connection Details
	Class 3 Connection Details

	12.7 Parameter Object (0Fh)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes
	Default Values

	12.8 DLR Object (47h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	12.9 QoS Object (48h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	12.10 Base Energy Object (4Eh)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	12.11 Power Management Object (53h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	12.12 ADI Object (A2h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	12.13 Port Object (F4h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes (Instance #1)
	Instance Attributes (Instances #2... #8)

	12.14 TCP/IP Interface Object (F5h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	12.15 Ethernet Link Object (F6h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	13 Anybus Module Objects
	13.1 General Information
	13.2 Anybus Object (01h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Reset

	13.3 Diagnostic Object (02h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.4 Network Object (03h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.5 Network Configuration Object (04h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #3, IP Address)
	Instance Attributes (Instance #4, Subnet Mask)
	Instance Attributes (Instance #5, Gateway Address)
	Instance Attributes (Instance #6, DHCP Enable)
	Instance Attributes (Instance #7 Ethernet Communication Settings 1)
	Instance Attributes (Instance #8 Ethernet Communication Settings 2)
	Instance Attributes (Instance #9, DNS1)
	Instance Attributes (Instance #10, DNS2)
	Instance Attributes (Instance #11, Host name)
	Instance Attributes (Instance #12, Domain name)
	Instance Attributes (Instance #13, SMTP Server)
	Instance Attributes (Instance #14, SMTP User)
	Instance Attributes (Instance #15, SMTP Password)
	Instance Attributes (Instance #16, MDI 1 Settings)
	Instance Attributes (Instance #17, MDI 2 Settings)
	Instance Attributes (Instances #18 and #19)
	Instance Attributes (Instance #20, QuickConnect)
	Instance Attributes (Instance #40, OPC UA TCP Port)
	Instance Attributes (Instance #41, OPC UA Discovery Server)
	Instance Attributes (Instance #42, OPC UA SecurityPolicyNone)
	Instance Attributes (Instance #50, MQTT Broker URL)
	Instance Attributes (Instance #51, MQTT Client Identifier)
	Instance Attributes (Instance #52, MQTT Keep Alive)
	Instance Attributes (Instance #53, MQTT Username)
	Instance Attributes (Instance #54, MQTT Password)
	Instance Attributes (Instance #55, MQTT Base Topic)
	Instance Attributes (Instance #56, MQTT QoS)
	Instance Attributes (Instance #57, MQTT TLS)
	Multilingual Strings

	13.6 Socket Interface Object (07h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Sockets #1...Max. no. of instances)
	Command Details: Create
	Command Details: Delete
	Command Details: Bind
	Command Details: Shutdown
	Command Details: Listen
	Command Details: Accept
	Command Details: Connect
	Command Details: Receive
	Command Details: Receive_From
	Command Details: Send
	Command Details: Send_To
	Command Details: IP_Add_Membership
	Command Details: IP_Drop_Membership
	Command Details: DNS_Lookup
	Socket Interface Error Codes (Object Specific)
	Message Segmentation

	13.7 SMTP Client Object (09h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Create
	Command Details: Delete
	Command Details: Send E-mail From File
	Command Details: Send E-mail
	Object Specific Error Codes

	13.8 Anybus File System Interface Object (0Ah)
	Category
	Object Description

	13.9 Network Ethernet Object (0Ch)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Instance Attributes (Instances #2 - #3)
	Interface Counters
	Media Counters

	13.10 CIP Port Configuration Object (0Dh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.11 Functional Safety Module Object (11h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Error_Confirmation
	Command Details: Set_IO_Config_String
	Command Details: Get_Safety_Output_PDU
	Command Details: Get_Safety_Input_PDU
	Object Specific Error Codes

	13.12 Time Object (13h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #n)
	Time Protocols

	14 Host Application Objects
	14.1 General Information
	14.2 MQTT Host Object (E2h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	14.3 OPC UA Object (E3h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	14.4 Energy Reporting Object (E7h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	14.5 Functional Safety Object (E8h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	14.6 Application File System Interface Object (EAh)
	Category
	Object Description

	14.7 CIP Identity Host Object (EDh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Get_Attribute_All

	14.8 Sync Object (EEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	14.9 Energy Control Object (F0h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1 - #8)

	14.10 EtherNet/IP Host Object (F8h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Multiple Assembly Instances
	Command Details: Process_CIP_Object_Request
	Command Details: Set_Configuration_Data
	Command Details: Process_CIP_Routing_Request
	Command Details: Get_Configuration_Data

	14.11 Ethernet Host Object (F9h)
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Network Status
	DHCP Option 61 (Client Identifier)

	A Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B Compatibility to Standard Anybus CompactCom 40
	C Implementation Details
	C.1 SUP-Bit Definition
	C.2 Anybus State Machine
	C.3 Application Watchdog Timeout Handling

	D Secure HICP (Secure Host IP Configuration Protocol)
	D.1 General
	D.2 Operation

	E Installing a CA Certificate in Windows
	F Technical Specification
	F.1 Front View
	F.1.1 Front View (Ethernet Connectors)
	F.1.2 Network Status LED
	F.1.3 Module Status LED
	F.1.4 LINK/Activity LED 3/4
	F.1.5 Ethernet Interface

	F.2 Functional Earth (FE) Requirements
	F.3 Power Supply
	F.3.1 Supply Voltage
	F.3.2 Power Consumption

	F.4 Environmental Specification
	F.5 EMC Compliance

	G Conformance Test Guide
	G.1 General
	G.2 Suggested Test Tools
	G.2.1 Wireshark
	G.2.2 NMAP
	G.2.3 ODVA Conformance Test Software
	G.2.4 EZ-EDS
	G.2.5 Anybus EDS Generator
	G.2.6 Sample Test Reports

	G.3 Statement of Conformance (STC)
	G.3.1 Implementation of Host Objects
	G.3.2 Implementation of Anybus Module Objects

	H Licensing Information

