
AAnnyybbuuss®® CCoommppaaccttCCoomm™™ 4400
BBAACCnneett//IIPP ww.. IITT FFuunnccttiioonnaalliittyy

NETWORK GUIDE
SCM-1202–040 1.4 en-US ENGLISH

Important User Information
Liability
Every care has been taken in the preparation of this document. Please inform HMS Industrial Networks of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks, reserve the right to modify our products in line with our policy of continuous product development. The
information in this document is subject to change without notice and should not be considered as a commitment by
HMS Industrial Networks. HMS Industrial Networks assumes no responsibility for any errors that may appear in this
document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements
including any applicable laws, regulations, codes, and standards.

HMS Industrial Networks will under no circumstances assume liability or responsibility for any problems that may
arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks cannot assume
responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights
HMS Industrial Networks has intellectual property rights relating to technology embodied in the product described in
this document. These intellectual property rights may include patents and pending patent applications in the USA
and other countries.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Table of Contents Page

1 Preface ... 5
1.1 About this document ..5

1.2 Related Documents ..5

1.3 Document History ..5

1.4 Document Conventions ...5

1.5 Document Specific Conventions..6

1.6 Trademark Information ...6

2 About the Anybus CompactCom 40 BACnet/IP... 7
2.1 General ..7

2.2 Features ...7

2.3 Fieldbus Conformance Notes..7

2.4 Certification ..8

3 Basic Operation ... 9
3.1 General Information ...9

3.2 Device Customization ...9

3.3 BACnet/IP Implementation .. 10

3.4 Communication Settings.. 22

3.5 Diagnostics ... 22

3.6 Network Data Exchange .. 22

3.7 File System ... 25

4 COV Notifications, Alarms and Events ... 27
4.1 General .. 27

4.2 COV (Change of Value) Notifications.. 27

4.3 Alarm/Event Functionality ... 27

4.4 Setup of Alarm and Events... 28

5 FTP Server .. 32
5.1 General Information ... 32

5.2 User Accounts ... 32

5.3 Session Example .. 33

6 Web Server .. 34
6.1 General Information ... 34

6.2 Default Web Pages ... 34

6.3 Server Configuration... 38

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

7 E-mail Client... 41
7.1 General Information ... 41

7.2 How to Send E-mail Messages .. 41

8 Server Side Include (SSI) ... 42
8.1 General Information ... 42

8.2 Include File ... 42

8.3 Command Functions... 42

8.4 Argument Functions ... 57

8.5 SSI Output Configuration ... 61

9 JSON... 62
9.1 General Information ... 62

9.2 JSON Objects... 63

9.3 Example ... 81

10 Anybus Module Objects.. 82
10.1 General Information ... 82

10.2 Anybus Object (01h) ... 83

10.3 Diagnostic Object (02h) ... 84

10.4 Network Object (03h) ... 85

10.5 Network Configuration Object (04h) .. 87

10.6 Socket Interface Object (07h) ... 98

10.7 SMTP Client Object (09h)... 115

10.8 File System Interface Object (0Ah) .. 120

10.9 Network Ethernet Object (0Ch) .. 121

11 Host Application Objects .. 122
11.1 General Information ... 122

11.2 BACnet Host Object (EFh) .. 123

11.3 Ethernet Host Object (F9h) .. 129

A Categorization of Functionality .. 133
A.1 Basic .. 133

A.2 Extended .. 133

B Implementation Details .. 134
B.1 SUP-Bit Definition .. 134

B.2 Anybus State Machine .. 134

B.3 Application Watchdog Timeout Handling.. 134

B.4 Implemented BACnet BIBBs ... 134

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

C Secure HICP (Secure Host IP Configuration Protocol) ... 136
C.1 General .. 136

C.2 Operation ... 136

D Technical Specification.. 137
D.1 Front View .. 137

D.2 Functional Earth (FE) Requirements... 138

D.3 Power Supply .. 138

D.4 Environmental Specification... 138

D.5 EMC Compliance.. 138

E Backward Compatibility.. 139
E.1 Initial Considerations .. 139

E.2 Hardware Compatibility .. 139

E.3 General Software ... 145

E.4 Network Specific — BACnet/IP ... 147

F Copyright Notices .. 148

This page intentionally left blank

Preface 5 (150)

1 Preface
1.1 About this document

This document is intended to provide a good understanding of the functionality offered by the
Anybus CompactCom 40 BACnet/IP. The document describes the features that are specific to
Anybus CompactCom 40 BACnet/IP. For general information regarding Anybus CompactCom,
consult the Anybus CompactCom design guides.

The reader of this document is expected to be familiar with high level software design and
communication systems in general. The information in this network guide should normally be
sufficient to implement a design. However if advanced BACnet/IP specific functionality is to be
used, in-depth knowledge of BACnet/IP networking internals and/or information from the official
BACnet/IP specifications may be required. In such cases, the persons responsible for the
implementation of this product should either obtain the BACnet/IP specification to gain sufficient
knowledge or limit their implementation in such a way that this is not necessary.

For additional related documentation and file downloads, please visit the support website at
www.anybus.com/support.

1.2 Related Documents
Document Author Document ID

Anybus CompactCom 40 Software Design Guide HMS HMSI-216-125

Anybus CompactCom M40 Hardware Design Guide HMS HMSI-216-126

Anybus CompactCom B40 Design Guide HMS HMSI-27-230

Anybus CompactCom Host Application Implementation Guide HMS HMSI-27-334

BACnet specification ASHRAE Doc. Id. 135, 2008

1.3 Document History
Version Date Description

1.0 2017-06-14 First release
1.1 2017-07-10 Added appendix on backwards compatibility

BACnet objects updated

1.2 2018-05-08 Minor update

1.3 2018-10-17 Minor correction to Network Configuration Object

1.4 2019-02-27 Rebranding
Minor update

1.4 Document Conventions
Ordered lists are used for instructions that must be carried out in sequence:

1. First do this

2. Then do this

Unordered (bulleted) lists are used for:

• Itemized information

• Instructions that can be carried out in any order

...and for action-result type instructions:

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

http://www.anybus.com/support

Preface 6 (150)

► This action...

→ leads to this result

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

Monospaced text is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Document Conventions, p. 5

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

Caution
This instruction must be followed to avoid a risk of personal injury.

WARNING
This instruction must be followed to avoid a risk of death or serious injury.

1.5 Document Specific Conventions
• The terms “Anybus” or “module” refers to the Anybus CompactCom module.

• The terms “host” or “host application” refer to the device that hosts the Anybus.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the
hexadecimal value.

• A byte always consists of 8 bits.

• The terms “basic” and “extended” are used to classify objects, instances and attributes.

1.6 Trademark Information
Anybus® is a registered trademark of HMS Industrial Networks.

All other trademarks are the property of their respective holders.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

http://www.hms-networks.com

About the Anybus CompactCom 40 BACnet/IP 7 (150)

2 About the Anybus CompactCom 40 BACnet/IP
2.1 General

The Anybus CompactCom 40 BACnet/IP communication module provides instant BACnet and
BACnet/IP connectivity via the patented Anybus CompactCom host interface. Any device that
supports this standard can take advantage of the features provided by the module, allowing
seamless network integration regardless of network type.

This product conforms to all aspects of the host interface for Anybus CompactCom 40 modules
defined in the Anybus CompactCom 40 Hardware and Software Design Guides, making it fully
interchangeable with any other device following that specification. Generally, no additional
network related software support is needed, however in order to be able to take full advantage
of advanced network specific functionality, a certain degree of dedicated software support may
be necessary.

2.2 Features
• Fulfills all requirements for a BACnet/IP device

• Two BACnet/IP ports

• Data sharing

• Linear network topology supported

• 100 Mbit, full/half duplex operation

• Web server w. customizable content

• FTP server

• E-mail client

• JSON

• Server Side Include (SSI) functionality

• Customizable Identity Information

• 256 ADIs available in simple mode for mapping to BACnet objects

• A total of 256 ADIs per BACnet object type available in advanced mode for mapping to
BACnet objects

• Transparent Socket Interface

• Change Of Value (COV) notification and Alarm/Event functionality supported (max 64 ADIs
available)

• Support for Foreign Device Registration functionality

2.3 Fieldbus Conformance Notes
• BACnet International does not require a certification for the use of BACnet products.

• The Anybus CompactCom 40 BACnet/IP has not been tested by BACnet International.
However it is recommended to test the final product for conformance with BACnet/IP.

• To enable the product to appear as a vendor specific implementation rather than a generic
Anybus module, customize the information in the BACnet Object.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

About the Anybus CompactCom 40 BACnet/IP 8 (150)

2.4 Certification
HMS Industrial Networks will not certify the Anybus CompactCom 40 BACnet/IP.

The module is implemented as a BACnet Application Specific Controller (B-ASC). Even though
HMS Industrial Networks will not certify the module, the implementation fulfills the
requirements for certification as a B-ASC. See Implemented BACnet BIBBs, p. 134 for a complete
list of BACnet BIBBs implemented in the module.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 9 (150)

3 Basic Operation
3.1 General Information
3.1.1 Software Requirements

No additional network support code needs to be written in order to support the Anybus
CompactCom 40 BACnet/IP, however due to the nature of the BACnet/IP networking system
certain restrictions must be taken into account:

• There is no support for arrays of data elements in the ADIs as all data on BACnet is
represented as single units without any possibility to access data in any other way.

• Data types UINT64, SINT64, BIT2-BIT7, BITSx, OCTET and PADx cannot be represented on
BACnet. PADx can be used for explicit padding of process data, but can not be translated to
any BACnet object.

• It is not possible to map read process data.

For in depth information regarding the Anybus CompactCom software interface, consult the
general Anybus CompactCom 40 Software Design Guide.

See also ...

• Anybus-CompactCom 40 Software Design Guide, Application Data Object (FEh)

• Network Object (03h), p. 85

3.2 Device Customization
3.2.1 Network Identity

By default, the module uses the following identity settings:

Vendor Name: “HMS Industrial Networks”

Vendor ID: 01E6h (HMS Industrial Networks)

Model Name “CompactCom 40 BACnet/IP”

Object Name “CompactCom 40 BACnet/IP”

Network Type 009Ah(“BACnet/IP”)

Product Name: CompactCom 40 BACnet/IP

Optionally, it is possible to customize the identity of the module by implementing the
corresponding instance attributes in the BACnet Host Object.

See also...

• BACnet Host Object (EFh), p. 123 (Host Application Object)

• Network Object (03h), p. 85

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 10 (150)

3.2.2 Web Interface
The web interface can be fully customized to suit a particular application. Data and web pages
are stored in a FLASH-based file system, which can be accessed using any standard FTP-client.

See also...

• File System, p. 25

• FTP Server, p. 32

• Web Server, p. 34

3.2.3 Socket Interface (Advanced Users Only)
The built-in socket interface allows additional protocols to be implemented on top of TCP/IP.

See also...

• Socket Interface Object (07h), p. 98 (Anybus Module Object)

• Message Segmentation, p. 113

3.3 BACnet/IP Implementation
It is recommended to enable attribute 7 (Support advanced mapping) in the BACnet Host Object,
to fully take advantage of the functionality and flexibility of the module.

The module is implemented as a B-ASC (BACnet Application Specific Controller). It supports the
following BACnet objects:

Object Name Class
Device object 8

Analog Value object 2

Binary Value object 5

Multi-state Value object 19

Notification Class object 15

Each Anybus CompactCom 40 BACnet/IP contains one Device object and six Notification Class
objects. These objects are fixed and can not be changed by the application.

The Analog Value, Binary Value, and Multi-State Value objects and their data are mapped against
the ADIs in the Application Data object.

The BACnet Interoperability Building Blocks (BIBBs), that are implemented in the module, are
listed in appendix B.

See also...

• Network Data Exchange, p. 22

• Application Data Object (see Anybus-CompactCom Software Design Guide)

• Implemented BACnet BIBBs, p. 134

• Application Data (ADIs), p. 22

• Mapping of BACnet Objects to Anybus CompactCom, p. 23

• BACnet Host Object (EFh), p. 123

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 11 (150)

3.3.1 Device Object
The BACnet device object contains information about the module as a node on a BACnet
network. Apart from the value of the Object_Identifier, the values of the properties in the object
can not be changed by the application directly. Some values can be changed by setting the
corresponding attributes in the BACnet Host object.

Properties that are stored in non volatile memory, keep their assigned values when the module is
turned off.

Property Identifier Value R/W NV Description/Comment

Object_Identifier N/A R/W The instance number portion (device
instance) of this property is affected when
the value attribute of Instance 3 in the
Network Configuration Object is changed.

Object_Name “CompactCom 40
BACnet/IP”

R/W This property can be written to only if the
Object Name in the BACnet Host object can
be set.
This property can be changed by setting the
corresponding attribute in the BACnet Host
object

Object_Type DEVICE R

System_Status NON_OPERATIONAL
OPERATIONAL

R The status of the system is reported as
NON_OPERATIONAL if the Anybus
CompactCom module has entered the
ERROR state. Otherwise the state is reported
as OPERATIONAL.

Vendor_Name “HMS Industrial
Networks”

R This property can be changed by setting the
corresponding attribute in the BACnet Host
object

Vendor_Identifier 486 R HMS Industrial Networks
This property can be changed by setting the
corresponding attribute in the BACnet Host
object

Model_Name “CompactCom 40
BACnet/IP”

R This property can be changed by setting the
corresponding attribute in the BACnet Host
object

Firmware_Revision N/A R Firmware revision of the Anybus
CompactCom 40 BACnet/IP as a string.
This property can be changed by setting the
corresponding attribute in the BACnet Host
object

Application_Software_Revision N/A R

Protocol_Version 1 R

Protocol_Revision 14 R

Protocol_Service_Supported 1001 0100 0000 1011
1100
1000 0010 0000 1110
0001

R Bit map stating what protocol services are
supported in the object, see Supported
BACnet Services, p. 20.

Protocol_Object_Types_
Supported

0010 0100 1000 0001
0001 0000

R Bit map stating what object types are
supported in the object (analog-value,
binary-value, multi-state value, device, and
notification-class objects).

Object_List R This list is filled based on the ADIs that are
implemented in the application.

Max_APDU_Length_Accepted 1024 R

Segmentation_Supported SUPPORTED_BOTH R Segmentation supported for both Rx and Tx
APDU.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 12 (150)

Property Identifier Value R/W NV Description/Comment

Max_Segments_Accepted 5 R Supporting 5 segments
Number of maximum length APDUs that can
be received in a segmented message. This is
the maximum APDU payload in a request
after segmentation.

Local_Time N/A R The local time is synchronized from the
application at power up or set from the
BACnet network via the TimeSynchronization
service.

Local_Date N/A R The local date is synchronized from the
application at power up or set from the
BACnet network via the TimeSynchronization
service.

APDU_Timeout 10000 (default)
Valid range: 0 - 65535

R/W NV APDU transaction timeout (ms).
The value 0 is only valid if Number_Of_
APDU_Retries = 0.

Number_Of_APDU_Retries 3 (default)
Valid range: 0 - 255

R/W NV Number of APDU transaction and/or
segment retransmission retries.

Device_Address_Binding N/A R Managed by the APL layer and contains the
list of all device address bindings of active
client processes inside the Anybus
CompactCom BACnet/IP module.

Database_Revision N/A R NV Incremented by 1 each time an object
identifier is changed or the name of a
BACnet object is changed.

APDU_Segment_Timeout 5000 (default)
Valid range: 0 - 65535

R/W NV APDU segment timeout (ms).
The value 0 is only valid if Number_Of_
APDU_Retries = 0.

Active_COV_Subscriptions R Populated based on active COV subscription
(max. 60) entries in AE module. Registered
with SubscribeCOV service.

Property_List See description R Array containing all properties supported by
the device object, except Object_Name,
Object_Type, Object_Identifier and
Property_List:
[System_Status, Vendor_Name, Vendor_
Identifier, Model_Name, Firmware_Revision,
Application_Software_Version, Protocol_
Version, Protocol_Revision, Protocol_
Service_Supported, Protocol_Object_Types_
Supported, Object_List, Max_APDU_Length_
Accepted, Segmentation_Supported, Max_
Segments_Accepted, Local_Time, Local_
Date, APDU_Timeout, Number_Of_APDU_
Retries, Device_Address_Binding, Database_
Revision, APDU_Segment_Timeout, Active_
COV_Subscriptions]

Serial_Number Serial number of the
module assigned
during production.

R This property can be changed via the BACnet
Host Object (EFh), p. 123.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 13 (150)

3.3.2 Analog Value Object
The analog value object is mapped to ADIs of data types that represent analog values, e.g.
UINT16.

Properties that are stored in non volatile memory, keep their assigned values when the module is
turned off. The properties are only available if the corresponding ADI is mapped on the write
process data channel and will be set to default at a change in the write process data map.

See also...

• Mapping of BACnet Objects to Anybus CompactCom, p. 23

• Communication Settings, p. 22

• Alarm/Event Functionality, p. 27

Property Identifier Value R/W NV Description/Comment

Object_Identifier N/A R

Object_Name N/A R/W In simple mode: Analog_Value_# (# =
instance number). The property is not
writable.
In advanced mode: Corresponding ADI name.
The property is writable if the Set_Attribute
service, to update the Name attribute of the
Application Data Instances, is supported.
If the host application for any reason returns
an error code when the ADI name is read,
the BACnet device class error code
OPERATIONAL_PROBLEM is returned to the
network.

Object_Type ANALOG_VALUE R

Present_Value N/A R/W Corresponding ADI value converted to Real.
If the host application for any reason returns
an error code, the BACnet device class error
code OPERATIONAL_PROBLEM is returned to
the network.

Status_Flags F, F, F, F R Bit string of Status flags indicating the status
of the object.
Bit 0: IN_ALARM
Bits 1 - 3: not used. Set to FALSE.

Event_State NORMAL (0) R Valid states:
0: NORMAL
3: HIGH_LIMIT
4: LOW_LIMIT

Out_Of_Service FALSE R Always FALSE

Units NO_UNITS R

COV_Increment 0 R/W NV Min. value: 0
Max. value: Corresponding ADI data type
max value.

Time_Delay 0 R/W NV Time delay for an event to be triggered after
occurrence (s)
Min. value: 0
Max. value: UINT32max/1000

Notification_Class 0 R/W NV Min. value: 0
Max. value: 5

High_Limit 0 R/W NV Min. value: Min. value of the ADI’s data type
Max. value: Max. value of the ADI’s data
type

Low_Limit 0 R/W NV

Deadband 0 R/W NV Min. value: 0
Max. value: Corresponding ADI data type
max value

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 14 (150)

Property Identifier Value R/W NV Description/Comment

Limit_Enable F, F R/W NV Bit string that determines what TO event
limits are enabled
Bit 0: LOW_LIMIT_ENABLE
Bit 1: HIGH_LIMIT_ENABLE

Event_Enable F, F, F R/W NV Bit string that determines what TO events
that are enabled
Bit 0: TO-OFFNORMAL
Bit 1: not used. Set to FALSE.
Bit 2: TO-NORMAL

Notify_Type Alarm R/W NV Specifies the classification of an TO event
that is sent by this object.
0: ALARM
1: EVENT

Acked_Transitions T, T, T R Bit string that determines what TO events
has been acknowledged by a BACnet
recipient.
Only available if the corresponding ADI is
mapped on the write process data channel.
Bit 0: TO-OFFNORMAL
Bit 1: TO-FAULT
Bit 2: TO-NORMAL

Event_Time_Stamps N/A R Array of BACnetTimeStamp that specifies the
last TO event stamp that was triggered.
Only available if the corresponding ADI is
mapped on the write process data channel.
(ArrayIdx 0: Number of elements)
ArrayIdx 1: TO-OFFNORMAL
ArrayIdx 2: TO-FAULT
ArrayIdx 3: TO-NORMAL

Event_Detection_Enable TRUE R/W NV This property specifies if alarm/event
detection is enabled for the object.
Note: Property is only available if the
corresponding ADI is mapped on write
process data.
See Setup of Alarm and Events, p. 28 for
more details regarding this property.

Property_List See description R Array containing all properties supported by
the analog value object, except Object_
Name, Object_Type, Object_Identifier and
Property_List:
Corresponding ADI not mapped on write
PD:
[Present_Value, Status_Flags, Event_State,
Out_Of_Service, Units]
Corresponding ADI mapped on write PD:
[Present_Value, Status_Flags, Event_State,
Out_Of_Service, Units, COV_Increment,
Time_Delay, Notification_Class, High_Limit,
Low_Limit, Deadband, Limit_Enable, Event_
Enable, Acked_Transitions, Notify_Type,
Event_Time_Stamps, Event_Detection_
Enable]

Non volatile properties are kept in non volatile memory until the write process data map
changes. After a change to the write process data map, the BACnet object properties will be set
to their default values. Non volatile properties are saved to non volatile memory immediately
after they are changed.

The Present_Value property is linked to the Value attribute of the corresponding ADI. A
successful read request from the network will return a value that will be converted to a BACnet
Real value and returned to the network. If an error is returned from the application, the BACnet
device class error code OPERATIONAL_PROBLEM is returned to the network.

When the Present_Value property is written from the network, the BACnet Real value is
converted to the data type of the corresponding ADI. For all data types, except FLOAT, all

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 15 (150)

decimal precision is lost. If error code Out of range or Attribute not settable is returned, the
corresponding BACnet error code will be returned to the network. Any other error code will be
translated to OPERATIONAL_PROBLEM.

3.3.3 Binary Value Object
The binary value object is mapped to ADIs of data type BOOL.

Properties that are stored in non volatile memory, keep their assigned values when the module is
turned off. The properties are only available if the corresponding ADI is mapped on the write
process data channel and will be set to default at a change in the write process data map.

See also...

• Mapping of BACnet Objects to Anybus CompactCom, p. 23

• Communication Settings, p. 22

• Alarm/Event Functionality, p. 27

Property Identifier Value R/W NV Description/Comment

Object_Identifier N/A R

Object_Name N/A R/W In simple mode: Binary_Value_# (# =
instance number). The property is not
writable.
In advanced mode: Corresponding ADI name.
The property is writable if the Set_Attribute
service, to update the Name attribute of the
Application Data Instances, is supported.
If read request for any reason returns a error
code from the application, the BACnet
device class error code OPERATIONAL_
PROBLEM is returned to the network.

Object_Type BINARY_VALUE R

Present_Value N/A R/W Corresponding ADI value

Status_Flags F, F, F, F R Bit string of Status flags indicating the status
of the object.
Bit 0: IN_ALARM
Bits 1 - 3: not used. Set to FALSE.

Event_State NORMAL R Valid states:
0: NORMAL
2: OFF_NORMAL

Out_Of_Service FALSE R Always FALSE

Time_Delay 0 R/W NV Time delay for an event to be triggered after
occurrence (s)

Notification_Class 0 R/W NV Min. value: 0
Max. value: 5

Alarm_Value INACTIVE (0) R/W NV

Event_Enable N/A R/W NV Bit string that determines what TO event is
enabled
Bit 0: TO-OFFNORMAL
Bit 1: not used. Set to FALSE.
Bit 2: TO-NORMAL

Notify_Type Alarm R/W NV Specifies the classification of an TO event
that is sent by this object.
0: ALARM
1: EVENT

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 16 (150)

Property Identifier Value R/W NV Description/Comment

Acked_Transitions T, T, T R Bit string that determines what TO events
have been acknowledged by a BACnet
recipient.
Only available if the corresponding ADI is
mapped on the write process data channel.
Bit 0: TO-OFFNORMAL
Bit 1: TO-FAULT
Bit 2: TO-NORMAL

Event_Time_Stamps N/A R

Event_Detection_Enable TRUE R/W NV This property specifies if alarm/event
detection is enabled for the object.
Note: Property is only available if the
corresponding ADI is mapped on write
process data.
See Setup of Alarm and Events, p. 28 for
more details regarding this property.

Property_List See description R Array containing all properties supported by
the binary value object, except Object_
Name, Object_Type, Object_Identifier and
Property_List:
Corresponding ADI not mapped on write
PD:
[Present_Value, Status_Flags, Event_State,
Out_Of_Service]
Corresponding ADI mapped on write PD:
[Present_Value, Status_Flags, Event_State,
Out_Of_Service, Time_Delay, Notification_
Class, Alarm_Value, Event_Enable, Acked_
Transitions, Notify_Type, Event_Time_
Stamps, Event_Detection_Enable]

Non volatile properties are kept in non volatile memory until the write process data map
changes. After a change to the write process data map, the BACnet object properties will be set
to their default values. Non volatile properties are saved to non volatile memory immediately
after they are changed.

The Present_Value property is linked to the Value attribute of the corresponding ADI. A
successful read request from the network will return a value that will be converted to a BACnet
BinaryPV value and returned to the network. If an error is returned from the application, the
BACnet device class error code OPERATIONAL_PROBLEM is returned to the network.

When the Present_Value property is written from the network, the BACnet BinaryPV value is
converted to Bool. If error code Out of range or Attribute not settable is returned, the
corresponding BACnet error code will be returned to the network. Any other error code will be
translated to OPERATIONAL_PROBLEM.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 17 (150)

3.3.4 Multi-State Value Object
The multi-state value object is mapped to ADIs of data type ENUM.

Properties that are stored in non volatile memory, keep their assigned values when the module is
turned off. The properties are only available if the corresponding ADI is mapped on the write
process data channel and will be set to default at a change in the write process data map.

See also...

• Mapping of BACnet Objects to Anybus CompactCom, p. 23

• Communication Settings, p. 22

• Alarm/Event Functionality, p. 27

Property Identifier Value R/W NV Description/Comment

Object_Identifier N/A R

Object_Name N/A R/W In simple mode: Multistate_Value_# (# =
instance number). The property is not
writable.
In advanced mode: Corresponding ADI name.
The property is writable if the Set_Attribute
service, to update the Name attribute of the
Application Data Instances, is supported.
If a read request returns an error code from
the application, the BACnet device class
error code OPERATIONAL_PROBLEM is
returned to the network.

Object_Type MULTISTATE_VALUE R

Present_Value N/A R/W Corresponding ADI value

Status_Flags F, F, F, F R Bit string of Status flags indicating the status
of the object.
Bit 0: IN_ALARM
Bit 1: FAULT
Bits 2 - 3: not used. Set to FALSE.

Event_State NORMAL R Valid states:
0: NORMAL
1: FAULT
2: OFF_NORMAL

Out_Of_Service FALSE R Always FALSE

Number_Of_States N/A R Corresponding ADI Max_Value + 1. If an
error occurs when reading the Max_value,
this property will be set to 256.

Time_Delay 0 R/W NV Time delay for an event to be triggered after
occurrence (s)

Notification_Class 0 R/W NV Min. value: 0
Max. value: 5

Alarm_Values Empty list R/W NV

Fault_Values Empty list R/W NV

Event_Enable N/A R/W NV Bit string that determines what TO event is
enabled
Bit 0: TO-OFFNORMAL
Bit 1: TO-FAULT
Bit 2: TO-NORMAL

Notify_Type Alarm R/W NV Specifies the classification of an TO event
that is sent by this object.
0: ALARM
1: EVENT

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 18 (150)

Property Identifier Value R/W NV Description/Comment

Acked_Transitions T, T, T R Bit string that determines the TO events that
have been acknowledged by a BACnet
recipient.
Only available if the corresponding ADI is
mapped on the write process data channel.
Bit 0: TO-OFFNORMAL
Bit 1: TO-FAULT
Bit 2: TO-NORMAL

Event_Time_Stamps N/A R Array of BACnetTimeStamp that specifies
the last TO event stamp that was triggered.
Only available if the corresponding ADI is
mapped on the write process data channel.
(ArrayIdx 0: Number of elements)
ArrayIdx 1: TO-OFFNORMAL
ArrayIdx 2: TO-FAULT
ArrayIdx 3: TO-NORMAL

Event_Detection_Enable TRUE R/W NV This property specifies if alarm/event
detection is enabled for the object.
Note: Property is only available if the
corresponding ADI is mapped on write
process data.
See Setup of Alarm and Events, p. 28 for
more details regarding this property.

State_Text N/A R This property is mapped against the
module’s Get_Enum_String service

Reliability NO_FAULT_DETECTED R Object reliability
Only available if the corresponding ADI is
mapped on the write process data channel.
0: NO_FAULT_DETECTED
9: MULTI_STATE_FAULT

Property_List See description R Array containing all properties supported by
the multistate value object, except Object_
Name, Object_Type, Object_Identifier and
Property_List:
Corresponding ADI not mapped on write
PD:
[Present_Value, Status_Flags, Event_State,
Out_Of_Service, Number_Of_States, State_
Text, Reliability]
Corresponding ADI mapped on write PD:
[Present_Value, Status_Flags, Event_State,
Out_Of_Service, Number_Of_States, Time_
Delay, Notification_Class, Alarm_Values,
Fault_Values, Event_Enable, Acked_
Transitions, Notify_Type, Event_Time_
Stamps, Event_Detection_Enable, State_
Text, Reliability]

Non volatile properties are kept in non volatile memory until the write process data map
changes. After a change to the write process data map, the BACnet object properties will be set
to their default values. Non volatile properties are saved to non volatile memory immediately
after they are changed.

The Present_Value property is linked to the Value attribute of the corresponding ADI. A
successful read request from the network will return a value that will be converted to a BACnet
Unsigned value, incremented by one and returned to the network. (The ENUM ADI is zero based
in the Anybus CompactCom, but the first state of a multistate value object on BACnet is one.) If
an error is returned from the application, a BACnet device class error code OPERATIONAL_
PROBLEM is returned to the network.

When the Present_Value property is written from the network, the BACnet Unsigned value is
decremented by one. If error code Out of range or Attribute not settable is returned, the
corresponding BACnet error code will be returned to the network. Any other error code will be
translated to OPERATIONAL_PROBLEM.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 19 (150)

The State_Text property is linked to the Get_Enum_String service of the ADI. The property is an
array property, where array index 0 returns the number of states (see property Number_Of_
States). All other indices return the corresponding state text. Multistate states begin at 1, so the
value is decremented by 1 and a Get_Enum_String command is sent to the corresponding ADI. If
an error is returned from the application, a BACnet device class error code OPERATIONAL_
PROBLEM is returned to the network.

3.3.5 Notification Class Object
An Anybus CompactCom 40 BACnet/IP always contain 6 (0 - 5) instances of this object. Each
instance contains a list of devices that need to be informed about certain events and alarms.

The default values of properties, stored in the non-volatile memory, are assigned by the Anybus
CompactCom module the first time the module is started. When a BACnet user requests to write
any of these properties the data is saved to non volatile memory directly after the validation of
the service write request.

See also...

• COV Notifications, Alarms and Events, p. 27

Property Identifier Value R/W NV Description/Comment

Object_Identifier N/A R

Object_Name Default: Notification_
Class_# (# = instance
number)

RW NV BACnet Char string (only ANSIX34 supported).
Max. 30 characters

Object_Type NOTIFICATION_CLASS R

Notification_Class N/A R Equal to instance number

Priority Default: {3, 0, 0, 0}
Values 0 - 255 are
allowed, a lower value
has higher priority
than a higher value.

Index
0: R
Index
1-3: R/
W

NV BACnet array of Unsigned values:
0: Number of Elements
1: TO-OFFNORMAL
2: TO-FAULT
3: TO-NORMAL

Ack_Required Default: {0, 0, 0}
(0 = not set)

R/W NV BACnet Bit string of 3 bits:
Bit 0: TO-OFFNORMAL
Bit 1: TO-FAULT
Bit 2: TO-NORMAL

Recipient_List N/A R/W NV BACnet list of BACnetDestination primitives.
There are 18 recipient list entries available
to be configured among the 6 Notification
Class instances.

Property_List See description R Array containing all properties supported by
the notification class object, except Object_
Name, Object_Type, Object_Identifier and
Property_List:
[Notification_Class, Priority, Ack_Required,
Recipient_List, Recipient_Error_Field]

Vendor property 600: Recipient_
Error_Field

Default: {0, 0, 0, ...}
(0 = not set)

R BACnet Bit string of a maximum of 60 bits.
The string has one bit per element present
in the Recipient_List. If a bit is set an event
notification error is present for the
corresponding recipient entry in the
Recipient_List property.

The Recipient_List specifies one or more recipients that a notification event should be sent to. In
total there are 18 list entries available to be divided among the 6 Notification Class object
instances. These are managed on a “pool” basis, and when all have been assigned to the
Notification object instances, an error is issued (CLASS_SERVICES, CODE_NO_SPACE_TO_ADD_
LIST_ELEMENT).

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 20 (150)

3.3.6 Supported BACnet Services
The following services are supported by the Anybus CompactCom 40 BACnet/IP

Service Description

ReadProperty Reads a single property from a BACnet object

ReadPropertyMultiple Reads multiple properties from a BACnet object

WriteProperty Writes a single property to a BACnet object

WritePropertyMultiple Writes multiple properties to a BACnet object

Who-Is Upon receipt of a Who-Is request the module will return an I-Am response containing its
BACnet device object instance number.
The service is used to find out which devices are present on the network, and their addresses.

Who-Has This service is used to find out what devices in a network are implementing a specific object.
The service uses either the object identifier or the object name for lookup.
Upon a receipt of a Who_Has request the module will return an I-Have response, if it
implements the requested object.

I-Am This service is sent by the module in response to a matching Who-Is request. It is used to
locate BACnet devices based on the device object instance number.

DeviceCommunication-
Control

Turns off the BACnet communication of the module. Once communication is disabled the
module will only respond to DeviceCommunicationControl requests and ReinitializeDevice
messages. If only initiation instead of all communication is disabled, the module will also
respond to Who-Is requests.

ReinitializeDevice Resets devices over BACnet. A cold start results in a hardware reset. A warm start results in a
restart of the BACnet stack and data mapping will not be affected.

TimeSynchronization Synchronizes the current time and date of the module.

SubscribeCOV Subscribes for changes of value with a BACnet object. The ADI corresponding to the object
has to be mapped on write process data.

GetAlarmSummary Responds with a list containing information about all active alarms.

GetEventSummary Responds with a list containing information about all active alarms and events.

AcknowledgeAlarm Acknowledges an active alarm.

3.3.7 BACnet Error Codes
Device Class Error Codes
Error Code Indicates
OPERATIONAL_PROBLEM The application has generated a not expected response, e.g. reading the value

attribute of an ADI failed when performing ReadProperty on a value object.

Property Class Error Codes

Error Code Indicates
WRITE_ACCESS_DENIED Trying to write a non-writable property.

READ_ACCESS_DENIED Trying to read a non-readable property.

PROPERTY_IS_NOT_AN_ARRAY Trying to read or write an array index of a property that is not an array.

INVALID_DATA_TYPE Trying to write a property using the wrong data type.

VALUE_OUT_OF_RANGE The value written to a property is either too large or too small.

UNKNOWN_PROPERTY Trying to read a non-existent property.

INVALID_ARRAY_INDEX Trying to read or write an array index that does not exist for the property.

CHARACTER_SET_NOT_SUPPORTED Writing a char string property with a character set not supported by the
Anybus CompactCom module.

DUPLICATE_NAME The value written to an Object_Name property already exists as an object
name for another object.

OTHER The Anybus CompactCom module encountered a general error.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 21 (150)

Service Class Error Codes
Error Code Indicates
INCONSISTENT_PARAMETERS Something went wrong while parsing the data in a WriteProperty request.

INVALID_EVENT_STATE The event state supplied in an AcknowledgeAlarm request is not correct.

INVALID_TIME_STAMP The time stamp supplied in an AcknowledgeAlarm request is not correct.

SERVICE_REQUEST_DENIED Generic error occurred for an AcknowledgeAlarm request

CHARACTER_SET_NOT_SUPPORTED Wrong character set used for the password supplied with a
ReinitializeDevice or DeviceCommunicationControl request.

COMMUNICATION_DISABLED Received an invalid request for the current DeviceCommunicationControl
state.

COV_SUBSCRIPTION_FAILED a SubscribeCOV request could not be completed due to lack of resources
or
it is not possible to set up the object for COV notification due to properties
not being mapped on process-write data.

Object Class Error Codes

Error Code Indicates
UNKNOWN_OBJECT The requested object does not exist in the Anybus CompactCom module.

NO_ALARM_CONFIGURED There is no alarm or event to acknowledge for the event state supplied with
the AcknowlegeAlarm request.

OTHER Generic error during object request

ABORT_BUFFER_OVERFLOW Response APDU is too large.

UNKNOWN_OBJECT The requested object does not exist in the Anybus CompactCom module.

OTHER The Anybus CompactCom module encountered a general error.

Security Class Error Codes

Error Code Indicates
PASSWORD_FAILURE Wrong password for ReinitializeDevice or DeviceCommunicationControl

service.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 22 (150)

3.4 Communication Settings
As with other Anybus-CompactCom products, network related communication settings are
grouped in the Network Configuration Object (04h).

In this case, this includes...

UDP All data to and from the module is transported via UDP

TCP/IP settings These settings must be set properly in order for the module to be able to participate on
the network.

The module supports DHCP, which may be used to retrieve the TCP/IP settings from a
DHCP-server automatically. DHCP is enabled by default, but can be disabled if necessary.

Physical Link Settings By default, the module uses auto-negotiation to establish the physical link settings,
however it is possible to force a specific setting if necessary.

The parameters in the Network Configuration Object (04h) are available from the network
through the built-in web server.

See also...

• Web Server, p. 34

• Network Configuration Object (04h), p. 87

• Secure HICP (Secure Host IP Configuration Protocol), p. 136

3.5 Diagnostics
Major unrecoverable faults are reported in the Diagnostic Object

See also...

• Diagnostic Object (02h), p. 84

3.6 Network Data Exchange
3.6.1 Application Data (ADIs)

ADIs are represented through the BACnet objects. The properties of the BACnet objects are
mapped to instances in the Application Data Object on the host application side.

There are two mapping schemes, one simple and one advanced. The application decides what
scheme to use by implementing an attribute (#7, Support advanced mapping) in the BACnet Host
Object. Accessible range of ADIs for the simple mapping scheme is 1 to 256. In the advanced
mapping scheme, there are 256 analog value objects, 256 binary value objects and 256 multi-
state value objects that can be mapped to ADIs in any order. It is recommended to use advanced
mapping to fully take advantage of the functionality and flexibility of the module.

See also...

• Mapping of BACnet Objects to Anybus CompactCom, p. 23

• BACnet Host Object (EFh), p. 123

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 23 (150)

3.6.2 Translation of Data Types
The Anybus data types are translated to BACnet standard and vice versa as follows:

Anybus Data Type BACnet Object Name Comments
BOOL Binary Value Object Each ADI element of this type occupies one byte.

ENUM Multi-state Value
Object

SINT8 Analog Value Object

UINT8 Analog Value Object

SINT16 Analog Value Object Each ADI element of this type occupies two bytes.

UINT16 Analog Value Object

SINT32 Analog Value Object Each ADI element of this type occupies four bytes.

UINT32 Analog Value Object

FLOAT Analog Value Object

CHAR Analog Value Object Each ADI element of this type occupies one byte.

PADx - Explicit padding of process data.

If an ADI of a size that doesn’t match the size of the Present Value property in a Value Object, is
mapped to a Value object, it will result in FAULT or in OPERATIONAL_PROBLEM when accessed.

Anybus CompactCom data types BIT1 and BOOL1 are not implemented.

3.6.3 Mapping of BACnet Objects to Anybus CompactCom
Simple Mapping

In the simple mapping schema, that is implemented by default, the module will scan the first 256
implemented instances of the application data object during initialization. It will read the data
type attribute and based on the data type BACnet objects will be created in a sequential order,
starting with 0. Anybus CompactCom data types will be mapped to BACnet objects according to
the table above. This mapping will stay fixed. For an example see the figure below:

Fig. 1

ADI#

BV#

AV#

MSV#

0
1

2

3

0

0

1

1

2

1 - BOOL
2 - BOOL
3 - UINT16
4 - BOOL
10 - UINT16
11 - UINT32
20 - BOOL
21 - ENUM
22 - ENUM

BV: Binary Value object
AV: Analog Value object
MSV: Multi-state Value object

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 24 (150)

Advanced Mapping

If the attribute “Advanced mapping supported” in the BACnet Host object is true, the user can
create almost any type of mapping of BACnet objects to Anybus CompactCom ADIs. This
mapping can be designed to closely match the application and it is up to the application to keep
track of the ADI - BACnet object relationships. The services of the BACnet host object are then
used to implement this mapping on BACnet. Valid range of object identifier number is 0 - 2039
for each value object type. For an example see the figure below:

Fig. 2

3.6.4 Process Data
The Anybus CompactCom 40 BACnet/IP supports COV (Change Of Value) notification and Alarm/
Event functionality, see COV Notifications, Alarms and Events, p. 27. To be able to use these
features for a BACnet object, the corresponding ADI must be mapped on write process data. If
not, the module has no way of detecting any changes in the value of the ADI. Also, if an ADI is
mapped on write process data, the properties used for COV notifications and Alarms/Events will
be accessible to the corresponding BACnet object. If the mapping is changed, all COV and Alarm/
Event information, that has been stored in non volatile memory, will be cleared.

Up to 64 ADIs can be mapped to write process data. It is possible to map multiple elements of
the PADx data type.

No read process data is passed from the module to the application.

ADI#

BV#

AV#

MSV#

100
801

300

300

100

100

200

200

201

1 - BOOL
2 - BOOL
3 - UINT16
4 - BOOL
10 - UINT16
11 - UINT32
20 - BOOL
21 - ENUM
22 - ENUM

BV: Binary Value object
AV: Analog Value object
MSV: Multi-state Value object

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 25 (150)

3.7 File System
3.7.1 Overview

The Anybus CompactCom 40 BACnet/IP has a built-in file system, that can be accessed from the
application and from the network. Three directories are predefined:

VFS The virtual file system that e.g. holds the web pages of the module.

Application This directory provides access to the application file system through the Application File
System Interface Object (EAh) (optional).

Firmware This directory provides access to the application file system through the Application File
System Interface Object (EAh) (optional).

In the firmware folder, it is not possible to use append mode when writing a file. Be sure to use write
mode only.

Anybus
CompactCom
File system

File 1

File 2

VFS

File 1

File 2

Application

Application
File system

File A1

File A2

Directory A1

File A1:1

File A1:2

The Anybus CompactCom accesses
the application file system through the
Application File System Interface Object.

Anybus CompactCom Application

Firmware

Fig. 3

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Basic Operation 26 (150)

3.7.2 General Information
The built-in file system hosts 28 Mb of nonvolatile storage, which can be accessed by the HTTP
and FTP servers, the e-mail client, and the host application (through the Anybus File System
Interface Object (0Ah).

Maximum number of directories and files that can be stored in the root directory is 511, if only
short filenames are used (8 bytes name + 3 bytes extension). If longer filenames are used, less
than 511 directories/files can be stored. This limitation does not apply to other directories in the
file system.

The file system uses the following conventions:

• \ (backslash) is used as a path separator

• Names may contain spaces, but must not begin or end with one.

• Valid characters in names are ASCII character numbers less than 127, excluding the
following characters: \ / : * ? “ < > |

• Names cannot be longer than 48 characters

• A path cannot be longer than 225 characters (filename included)

See also...

• FTP Server, p. 32

Web Server, p. 34

E-mail Client, p. 41

Server Side Include (SSI), p. 42

File System Interface Object (0Ah), p. 120

The file system is located in flash memory. Due to technical reasons, each flash segment
can be erased approximately 100000 times before failure, making it unsuitable for
random access storage.

The following operations will erase one or more flash segments:

Deleting, moving or renaming a file or directory

Writing or appending data to an existing file

Formatting the file system

3.7.3 System Files
The file system contains a set of files used for system configuration. These files, known as
“system files”, are regular ASCII files which can be altered using a standard text editor (such as
the Notepad in Microsoft Windows™). The format of these files are, with some exceptions, based
on the concept of keys, where each keys can be assigned a value, see below.

Example 1:

[Key1]
value of Key1

[Key2]
value of Key2

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

COV Notifications, Alarms and Events 27 (150)

4 COV Notifications, Alarms and Events
4.1 General

The Anybus CompactCom 40 BACnet/IP supports COV (Change Of Value) notification and Alarm/
Event functionality. These features can only be used for a BACnet object if the corresponding ADI
is mapped on write process data.

If the mapping of the ADIs is changed, all COV and Alarm/Event information, that has been stored in non
volatile memory, will be cleared.

4.2 COV (Change of Value) Notifications
A BACnet device can subscribe for a COV (Change of value) notification from another BACnet
device on the network. The first device uses the service SubscribeCOV to send the identifier of
the desired object to the second device to activate the notification. A change in the Present_
value property will then trigger a COV notification to the first BACnet device.

Each Value object is mapped to an ADI in the Anybus-CompactCom module, and the property
Present_value corresponds to the Value attribute in the ADI. If the ADI is not mapped on the
write process data area any change in the value will go unnoticed and a subscribeCOV service
will return the error code COV_SUBSCRIPTION_FAILED.

In Binary Value and Multi-State Value objects any change in the present value will cause a
notification to be sent. In Analog Value objects a property, COV_increment, is used to decide
how much a present value needs to change in order for a notification to be sent.

4.3 Alarm/Event Functionality
A change in the present value of an object can also be used to trigger an alarm or an event.

Each value object is associated to a Notification Class object instance. Each instance contains a
list of all recipients of a specific Alarm/Event notification. Alarms and events are handled in the
same way by the value objects. If an alarm or an event is to be issued is decided by the
application in the property Notify_Type in the value object and the choice indicates the severity
of the notification to the recipient.

Alarms/events are issued every time a value object changes state. The reasons for changing
states are specific to each of the three value objects as described below. The possibility to issue
an alarm or an event has to be enabled in each object. It is also possible to delay an alarm/event
using the Time_Delay property of the object. As previously mentioned this functionality is only
available if the ADIs are mapped to write process data.

4.3.1 Analog Value Object Alarm/Event Functionality
An Analog Value object has three possible states: NORMAL, LOW_LIMIT and HIGH_LIMIT. The
LOW_LIMIT state is entered when the present value, object property Present_value, falls below
the value in the object property Low_limit. The HIGH_LIMIT state is entered when the present
value rises above the value in the property High_limit. When the present value returns above or
below the given limit, the object returns to the NORMAL state.The OFF_NORMAL bit in the
property Event_enable must be set, to allow transitions to other states than the NORMAL state.
The LOW_LIMIT and HIGH_LIMIT bits in the property Limit_Enable must be set to allow
transitions to the corresponding state.

A change of state will result in either a TO-NORMAL event or a TO-OFFNORMAL event issued to
the Notification Class object instance. A TO-OFFNORMAL event indicates that the value of the

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

COV Notifications, Alarms and Events 28 (150)

property value has increased above the defined high limit or decreased below the defined low
limit. A TO-NORMAL event indicates a return to the NORMAL state.

4.3.2 Binary Value Object Alarm/Event Functionality
A Binary Value Object has two states, NORMAL and OFF_NORMAL. An alarm value can be set
and when the property Present_Value is changed to this value, the object changes from the
NORMAL state to the OFF_NORMAL state. The corresponding bit(s) must be set in the property
Event_Enable for this functionality to be available.

A change of state will result in either a TO-NORMAL event or a TO-OFFNORMAL event issued to
the Notification Class object instance. A TO-OFFNORMAL event indicates that the value of the
property value has changed to equal the alarm value. A TO-NORMAL event indicates a return to
the NORMAL state.

4.3.3 Multi-State Value Object Alarm/Event Functionality
The Multi-State Value object contains one list for alarm values and one for fault values. When
the property Present_Value is changed to a value that is present in the alarm value list, the
object enters the OFF_NORMAL state and a TO-OFFNORMAL event is issued. If the value is
present in the fault values list, the object enters the FAULT state and a TO-FAULT event is issued.
A TO-NORMAL event is issued when the object returns to the NORMAL state from any of the
other two states. The corresponding bit(s) must be set in the property Event_Enable for the
functionality to be available.

4.3.4 Summary of States and Events for the Value Objects
Object State Possible events

Analog Value Object NORMAL TO-OFFNORMAL
HIGH_LIMIT TO-NORMAL

LOW_LIMIT

Binary Value Object NORMAL TO-OFFNORMAL
OFF_NORMAL TO-NORMAL

Multi State Value Object NORMAL TO-FAULT
TO-OFFNORMAL

FAULT TO-NORMAL
TO-OFFNORMAL

OFF_NORMAL TO-NORMAL
TO-FAULT

4.4 Setup of Alarm and Events
This section gives a short guide to what properties in the BACnet objects need to be setup and
monitored when implementing the BACnet alarm/event functionality.

4.4.1 Notification Class Object
BACnet object notifications are classified as either TO-OFFNORMAL, TO-FAULT, or TO-NORMAL.
Any event triggered by a BACnet value object is interpreted as one of these three.

See also...

• Notification Class Object, p. 19

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

COV Notifications, Alarms and Events 29 (150)

Priority

This property defines how to prioritize the three different kinds of notifications/events that can
be issued by an object. A lower value has priority over a higher value, e.g. setting Priority
arrayidx 2 to 1 and the other entries in the array to 5 and 76 will give TO-FAULT priority over the
other notifications.

If all three events are given the same priority in the property, they will receive the following
priority by default:

1. TO-NORMAL

2. TO-FAULT

3. TO-OFFNORMAL

I.e. TO-NORMAL has the highest priority.

Ack Required

This property specifies if an acknowledgement is required from the recipients of a specific TO
event. Every TO event sent is flagged to tell the recipient whether an acknowledgement is
required or not, based on the corresponding TO bit in the bit string in this property.

Recipient List

This list specifies the BACnet recipients that shall receive a notification of an alarm/event
associated with the notification class. The list is a sequence of BACnetDestination primitives,
where each entry consists of the following elements:

Element Description

Transitions Bit string that determines what TO events shall be sent to this recipient.

IssueConfirmedNotifica-
tions

Boolean that specifies if a ConfirmedEventNotification or UnConfirmedEventNotification
request shall be sent to the recipient.

ProcessIdentifier Unsigned32 value that specifies the process identifier that is linked to the notification event.
If an acknowledgement is required for the specific event (see Ack_Required) the
acknowledgement source has to have a valid value of a recipient process identifier to
successfully acknowledge the alarm/event.

Recipient BACnetRecipient primitive that can either be a DeviceInstanceNumber or a BACnetMAC
address. The primitive will be added to the DAB (Device Address Binding) lookup mechanism
of the BACnet APL layer and who-is/I-am BACnet UnConfirmedServices will be used to probe
for the recipient device on BACnet. When a valid lookup is found the event notifications will
be sent to that device. If no valid probe is found the corresponding bit in VendorProperty:
600, BACnetRecipientErrorField will be set in the notification class.

ToTime BACNetTime primitive that specifies the ending time for when the recipient will accept event
notifications. The contents must match the local RTC time or no event notifications will be
sent to this recipient entry.

FromTime BACNetTime primitive that specifies the starting time for when the recipient will accept event
notifications. The contents must match the local RTC time or no event notifications will be
sent to this recipient entry.

ValidDays BACnetDaysOfWeek that specifies the valid days of the week for when the recipient will
accept event notifications. The contents must match the local RTC time or no event
notifications will be sent to this recipient entry.

Vendor Property: 600, Recipient_Error_Field

This vendor specific property, added by HMS Industrial Networks, holds a bit string that is used
for diagnostics to determine if a recipient has notification errors present or not. Bit 0 in the bit
string represents recipient 1 in the RecipientList property, bit 1 represents recipient 2, and so on.

If the bit for a recipient is set, one of the following error events are present:

• The recipient device was not found on the BACnet network.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

COV Notifications, Alarms and Events 30 (150)

• A ConfirmedEventNotification request sent to the recipient returns a negative acknowledge
response or an internal timeout.

If a bit has been set, as a result of an error, the bit will be cleared when a successful notification
event has been sent or when the Recipient_List property has been updated with a new list of
recipients.

4.4.2 Analog Value Object
Available TO events are TO-NORMAL and TO-OFFNORMAL. The object has three states, NORMAL,
LOW_LIMIT and HIGH_LIMIT, but the TO events only reflect transitions to and from a normal
state to a not normal state.

Object Properties to Setup

Property Description

Notification Class Unsigned value that specifies which Notification Class the alarm/event notification of this
object is associated to.

Event Enable Bit string that defines what TO events will be enabled to send alarm/event notifications.

NotifyType Enumeration that decides if a notification shall be an EVENT or an ALARM.

Limit Enable Bit string that enables/disables HIGH_LIMIT and LOW_LIMIT guarding.

High Limit BACnet real value (float) that specifies the upper limit of the normal value span where a TO_
OFFNORMAL event will be issued.

Low Limit BACnet real value (float) that specifies the lower limit of the normal value span where a TO_
OFFNORMAL event will be issued.

Deadband BACnet real value (float) that specifies the deadband for the high and low limits

Time Delay Unsigned value that specifies the time (ms) that will elapse before an event notification is
triggered to be sent to its recipient.

Object Properties to Monitor

Property Description

Event State BACnet enum of the event state that specifies the current state of the object.

Event Time Stamps BACnet array of time stamps indicating when the last triggered events of each of the 3
different TO states, occurred.

Acked Transitions Bit string that specifies the TO event transitions that have been acknowledged by a
notification class recipient. It is enough if one recipient acknowledges an event for the
corresponding TO bit to be set. If no acknowledgement is required for the notification class
the corresponding TO bit will be set automatically.

Status Flags Bit string of the status flags of the objects. If a TO-OFFNORMAL event is active the IN_ALARM
bit will be set.

4.4.3 Binary Value Object
Available TO events are TO-NORMAL and TO-OFFNORMAL.

Object Properties to Setup

Property Description

Notification Class Unsigned value that specifies which Notification Class the alarm/event notification of this
object is associated to.

Event Enable Bit string that defines what TO events will be enabled to send alarm/event notifications.

NotifyType Enumeration that decides if a notification shall be an EVENT or an ALARM.

Alarm Value BACnet BinaryPV enumeration that specifies when Present_Value is OFF_NORMAL, either 0
(inactive) or 1 (active).

Time Delay Unsigned value that specifies the time (ms) that will elapse before an event notification is
triggered to be sent to its recipient.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

COV Notifications, Alarms and Events 31 (150)

Object Properties to Monitor

Property Description

Event State BACnet enum of the event state that specifies the current state of the object.

Event Time Stamps BACnet array of time stamps indicating when the last triggered events of each of the2
different TO states, occurred.

Acked Transitions Bit string that specifies the TO event transitions that have been acknowledged by a
notification class recipient. It is enough if one recipient acknowledges an event for the
corresponding TO bit to be set. If no acknowledgement is required for the notification class
the corresponding TO bit will be set automatically.

Status Flags Bit string of the status flags of the objects. If a TO-OFFNORMAL event is active the IN_ALARM
bit will be set.

4.4.4 Multi-state Value Object
Available TO events are TO-NORMAL, TO-OFFNORMAL, and TO-FAULT.

Object Properties to Setup

If the same value is specified for the Alarm Values property as for the Fault Values property, both
a TO_OFFNORMAL and a TO_FAULT will be triggered.

Property Description

Notification Class Unsigned value that specifies which Notification Class the alarm/event notification of this
object is associated to.

Event Enable Bit string that defines what TO events will be enabled to send alarm/event notifications.

NotifyType Enumeration that decides if a notification shall be an EVENT or an ALARM.

Alarm Values BACnet list of unsigned values that will trigger a TO-OFFNORMAL event.

Fault Values BACnet list of unsigned values that will trigger a TO-FAULT event.

Time Delay Unsigned value that specifies the time (ms) that will elapse before an event notification is
triggered to be sent to its recipient.

Any valid value, that is not listed in the Alarm Values and Fault Values properties, can generate a TO-
NORMAL event.

Object Properties to Monitor:

Property Description

Event State BACnet enum of the event state that specifies the current state of the object.

Event Time Stamps BACnet array of time stamps indicating when the last triggered events of each of the 3
different TO states, occurred.

Acked Transitions Bit string that specifies the TO event transitions that have been acknowledged by a
notification class recipient. It is enough if one recipient acknowledges an event for the
corresponding TO bit to be set. If no acknowledgement is required for the notification class
the corresponding TO bit will be set automatically.

Status Flags Bit string of the status flags of the objects. If a TO-OFFNORMAL event is active the IN_ALARM
bit will be set. If a TO-FAULT event is active the FAULT bit will be set.

Reliability BACnet enumeration that is set to 9 (multi_state_fault) if a TO-FAULT event is active and 0
(no_fault_detected) otherwise.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

FTP Server 32 (150)

5 FTP Server
5.1 General Information

The built-in FTP-server makes it easy to manage the file system using a standard FTP client. It can
be disabled using attribute #6 in the Ethernet Host Object (F9h).

By default, the following port numbers are used for FTP communication:

• TCP, port 20 (FTP data port)

• TCP, port 21 (FTP command port)

The FTP server supports up to two concurrent clients.

5.2 User Accounts
User accounts are stored in the configuration file \ftp.cfg. This file holds the usernames,
passwords, and home directory for all users. Users are not able to access files outside of their
home directory.

File Format:

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
User3:Password3:Homedirectory3

Optionally, the UserN:PasswordN-section can be replaced by a path to a file containing a list of
users as follows:

File Format (\ftp.cfg):

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
.
.
UserN:PasswordN:HomedirectoryN
\path\userlistA:HomedirectoryA
\path\userlistB:HomedirectoryB

The files containing the user lists shall have the following format:

File Format:

User1:Password1
User2:Password2
User3:Password3
.
.
.UserN:PasswordN

Notes:

• Usernames must not exceed 16 characters in length.

• Passwords must not exceed 16 characters in length.

• Usernames and passwords must only contain alphanumeric characters.

• If \ftp.cfg is missing or cannot be interpreted, all username/password combinations will be
accepted and the home directory will be the FTP root (i.e. \ftp\).

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

FTP Server 33 (150)

• The home directory for a user must also exist in the file system, if the user shall be able to
log in. It is not enough just to add the user information to the ftp.cfg file.

• If Admin Mode has been enabled in the Ethernet Object, all username/password
combinations will be accepted and the user will have unrestricted access to the file system (i.
e. the home directory will be the system root). The vfs folder is read-only.

• It is strongly recommended to have at least one user with root access (\) permission. If not,
Admin Mode must be enabled each time a system file needs to be altered (including \ftp.
cfg).

5.3 Session Example
The Windows Explorer features a built-in FTP client which can easily be used to access the file
system as follows:

1. Open the Windows Explorer.

2. In the address field, type FTP://<user>:<password>@<address>

– - Substitute <address> with the IP address of the Anybus module

– - Substitute <user> with the username

– - Substitute <password> with the password

3. Press Enter. The Explorer will now attempt to connect to the Anybus module using the
specified settings. If successful, the file system will be displayed in the Explorer window.

Fig. 4

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Web Server 34 (150)

6 Web Server
6.1 General Information

The built-in web server provides a flexible environment for end-user interaction and
configuration purposes. JSON, SSI and client-side scripting allow access to objects and file system
data, enabling the creation of advanced graphical user interfaces.

The web interfaces are stored in the file system, which can be accessed through the FTP server. If
necessary, the web server can be completely disabled in the Ethernet Host Object (F9h).

The web server supports up to 20 concurrent connections and communicates through port 80.

See also...

• FTP Server, p. 32

• Server Side Include (SSI), p. 42

• JSON, p. 62

• Ethernet Host Object (F9h), p. 129

6.2 Default Web Pages
The default web pages provide access to:

• Network configuration parameters

• Network status information

• Access to the host application ADIs

The default web pages are built of files stored in a virtual file system accessible through the vfs
folder. These files are read only and cannot be deleted or overwritten. The web server will first
look for a file in the web root folder. If not found it will look for the file in the vfs folder, making it
appear as the files are located in the web root folder. By loading files in the web root folder with
exactly the same names as the default files in the vfs folder, it is possible to customize the web
pages, replacing such as pictures, logos and style sheets.

If a complete customized web system is designed and no files in the vfs folder are to be used, it
is recommended to turn off the virtual file system completely, see the File System Interface
Object.

See also...

• File System, p. 25

• File System Interface Object (0Ah), p. 120

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Web Server 35 (150)

6.2.1 Network Configuration
The network configuration page provides an interface for changing TCP/IP and SMTP settings in
the Network Configuration Object.

Fig. 5

Available editable settings are explained in the following sections..

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Web Server 36 (150)

IP Configuration

Name Description

IP address The TCP/IP settings of the module
Default values: 0.0.0.0Value ranges: 0.0.0.0 - 255.255.255.255
The module needs a reset for the changes to take effect

Subnet mask
Gateway

Host name IP address or name
Max 64 characters
Changes will take effect immediately

Domain name IP address or name
Max 48 characters
Changes will take effect immediately

DNS 1 Primary and secondary DNS server, used to resolve host name
Default values: 0.0.0.0Value ranges: 0.0.0.0 - 255.255.255.255
Changes will take effect immediately

DNS 2

DHCP Checkbox for enabling or disabling DHCP
Default value: enabled
The module needs a reset for the changes to take effect

SMTP Settings

Changes to these settings will take effect immediately

Name Description

SMTP Server IP address or name
Max 64 characters

SMTP User Max 64 characters
SMTP Pswd Max 64 characters

Ethernet Configuration

Changes to these settings will take effect immediately.

Name Description

Comm 1 Ethernet speed/duplex settings
Default value: autoComm 2

6.2.2 Ethernet Statistics Page
The Ethernet statistics web page contains the following information:

Ethernet Link Description

Port 1 Speed: The current link speed.

Duplex: The current duplex configuration.

Port 2 Speed: The current link speed.

Duplex: The current duplex configuration.

BACnet/IP Statistics Description

SvrUnConfRxReqRecv Number of UnConfirmed server requests received

SvrUnConfTxReqSent Number of UnConfirmed server request sent

lCltUnConfTxReqSent Number of UnConfirmed client request sent

BACnet APL (application layer) Statistics Description
(Available for both client and server transactions.=

TrActive Active server transactions
TrActiveMax Max active server transactions
TrTxSegSent Number of tx segments sent

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Web Server 37 (150)

BACnet/IP Statistics Description

TrTxSegAckRecv Number of tx ack received

TrTxSegNegAckRecv Number of negative tx ack received

TrRxSegRecv Number of rx segments received

TrRxSegAckSent Number of rx segments ack sent

TrRxSegDupAckSent Number of rx segments dup ack sent

TrRxSegNegAckSent Number of rx segments neg ack sent

TrRxAPDURecv Number of Confirmed trans received
TrTxAPDUSent Number of Confirmed trans sent
TrTxSegTimeout Number of tx segment timeouts

TrRxSegTimeout Number of rx segment timeouts

TrImpDelete Number of implicit deletes

TrTxTmoDelete Number of tx timeout deletes
TrRxTmoDelete Number of rx timeout deletes
TrRxAbortsRecv Number of rx aborts received
TrTxAbortsRecv Number of tx aborts received
TrAbortsSent Number of transaction aborts sent
TrRejectsSent Number of transaction rejects sent

TrErrorsSent Number of transaction errors sent
BACnet AE (Alarm and Event) Module
statistics.

Description

iActiveCOVEntry Number of active COV subscriptions

iMaxActiveCOVEntry The maximum number of active COV subscriptions ever present since
startup.

lCOVLifeEntryRefCnt Number of COV subscriptions that have a lifetime enabled. When the
lifetime elapses they will be automatically deleted,

lCOVTrAllocResumes APL client transactions (confirmed requests) resource allocation resumes. A
needed resource was unavailable and a resume of the COV update process
was scheduled.

lCOVNwMsgAllocResums NWL client message resource allocation resumes.A needed resource was
unavailable and a resume of the COV update process was scheduled.

lCOVConfNotifys Number of confirmed COV notifications sent.

iCOVUnConfNotifys Number of unconfirmed COV notifications sent

iCOVConfNotifyErrors Number of confirmed COV notification errors. A negative acknowledgement
or/and in timeout was returned to a confirmed COV to notify request.

iACtiveAEEvents Number of currently active AE module events

iACtiveNCRecip Number of active NC recipients assigned to a notification class

lAETrAllocResumes APL client transactions (confirmed requests) resource allocation resumes. A
needed resource was unavailable and a resume of the AE update process
was scheduled.

lAENwMsgAllocResumes NWL client message resource allocation resumes.

lAEConfNotifys Number of confirmed AE notifications sent

lAEUnConfNotifys Number of unconfirmed AE notifications sent

lAEConfNotifyErrors Number of confirmed AE notification errors. A negative acknowledgement
or/and an internal timeout was returned to a confirmed AE notify request.

lAEDABLookupErrors Number of DAB (Device Address Binding) lookup errors. When an AE event
is about to be sent to a BACnet recipient and we don’t have an active
binding against it (managed by who-is/i-am negotiations by the APL layer)
this error is issued every time a notification could not be sent.

Interface Counters Description

In Octets: Received bytes.

In Ucast Packets: Received unicast packets.

In NUcast packets: Received non-unicast packets (broadcast and multicast).

In Discards: Received packets discarded due to no available memory buffers.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Web Server 38 (150)

Interface Counters Description

In Errors: Received packets discarded due to reception error.

In Unknown Protos: Received packets with unsupported protocol type.

Out Octets: Sent bytes.

Out Ucast packets: Sent unicast packets.

Out NUcast packets: Sent non-unicast packets (broadcast and multicast).

Out Discards: Outgoing packets discarded due to no available memory buffers.

Out Errors: Transmission errors.

6.3 Server Configuration
6.3.1 General Information

Basic web server configuration settings are stored in the system file \http.cfg. This file holds the
web server name, root directory for the web interface, content types, and a list of file types
which shall be scanned for SSI.

File Format:
[ServerName]
WebServerName
[WebRoot]
\web

[FileTypes]
FileType1:ContentType1
FileType2:ContentType2
...
FileTypeN:ContentTypeN

[SSIFileTypes]
FileType1
FileType2
...
FileTypeN

Web Server Name
[ServerName]

Configures the web server name included in the HTTP header of the responses from the
module.

Web Root Directory
[WebRoot]

The web server cannot access files outside this directory.

Content Types
[FileTypes]

A list of file extensions and their reported content types.

See also...

Default content types below

SSI File Types
[SSIFileTypes]

By default, only files with the extension “shtm” are scanned for SSI. Additional SSI file
types can be added here as necessary.

The web root directory determines the location of all files related to the web interface. Files
outside of this directory and its subdirectories cannot be accessed by the web server.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Web Server 39 (150)

6.3.2 Index page
The module searches for possible index pages in the following order:

1. <WebRoot>\index.htm

2. <WebRoot>\index.html

3. <WebRoot>\index.shtm

4. <WebRoot>\index.wml

Substitute <WebRoot> with the web root directory specified in \http.cfg.

If no index page is found, the module will default to the virtual index file (if enabled).

See also ...

• Default web pages

6.3.3 Default Content Types
By default, the following content types are recognized by their file extension:

File Extension Reported Content Type

htm, html, shtm text/html

gif image/gif

jpeg, jpg, jpe image/jpeg

png image/x-png

js application/x-javascript

bat, txt, c, h, cpp, hpp text/plain

zip application/x-zip-compressed

exe, com application/octet-stream

wml text/vnd.wap.wml

wmlc application/vnd.wap.wmlc

wbmp image/vnd.wap.wbmp

wmls text/vnd.wap.wmlscript

wmlsc application/vnd.wap.wmlscriptc

xml text/xml

pdf application/pdf

css text/css

Content types can be added or redefined by adding them to the server configuration file.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Web Server 40 (150)

6.3.4 Authorization
Directories can be protected from web access by placing a file called “web_accs.cfg” in the
directory to protect. This file shall contain a list of users that are allowed to access the directory
and its subdirectories.

Optionally, a login message can be specified by including the key [AuthName]. This message will
be displayed by the web browser upon accessing the protected directory.

File Format:
Username1:Password1
Username2:Password2
...
UsernameN:PasswordN

[AuthName]
(message goes here)

The list of approved users can optionally be redirected to one or several other files.

If the list of approved users is put in another file, be aware that this file can be accessed and read from
the network.

In the following example, the list of approved users will be loaded from here.cfg and too.cfg.

[File path]
\i\put\some\over\here.cfg
\i\actually\put\some\of\it\here\too.cfg

[AuthType]
Basic

[AuthName]
Howdy. Password, please.

The field “AuthType” is used to identify the authentication scheme.

Value Description

Basic Web authentication method using plaintext passwords.

Digest More secure method using challenge-response authentication. Used as default if no [Authtype]
field is specified.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

E-mail Client 41 (150)

7 E-mail Client
7.1 General Information

The built-in e-mail client allows the application to send e-mail messages through an SMTP-server.
Messages can either be specified directly in the SMTP Client Object (04h), or retrieved from the
file system. The latter may contain SSI, however note that for technical reasons, certain
commands cannot be used (specified separately for each SSI command).

The client supports authentication using the ‘LOGIN’ method. Account settings etc. are stored in
the Network Configuration Object (04h).

7.2 How to Send E-mail Messages
To be able to send e-mail messages, the SMTP-account settings must be specified.

This includes:

• A valid SMTP-server address

• A valid username

• A valid password

To send an e-mail message, perform the following steps:

1. Create a new e-mail instance using the Create command (03h)

2. Specify the sender, recipient, topic and message body in the e-mail instance

3. Issue the Send Instance Email command (10h) towards the e-mail instance

4. Optionally, delete the e-mail instance using the Delete command (04h)

Sending a message based on a file in the file system is achieved using the Send Email from File
command. This command is described in the SMTP Client Object (04h).

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 42 (150)

8 Server Side Include (SSI)
8.1 General Information

Server Side Include functionality, or SSI, allows data from files and objects to be represented on
web pages and in e-mail messages.

SSI are special commands embedded within the source document. When the Anybus
CompactCom module encounters such a command, it will execute it, and replace it with the
result (if applicable).

By default, only files with the extension ‘shtm’ are scanned for SSI.

8.2 Include File
This function includes the contents of a file. The content is scanned for SSI.

This function cannot be used in e-mail messages.

Syntax:

<?--#include file="filename"-->

filename: Source file

Scenario Default Output

Success (contents of file)

8.3 Command Functions
8.3.1 General Information

Command functions executes commands and includes the result.

General Syntax

<?--#exec cmd_argument='command'-->

command: Command function, see below

“command” is limited to a maximum of 500 characters.

Command Functions
Command Valid for E-mail Messages

GetConfigItem() Yes

SetConfigItem() No

SsiOutput() Yes

DisplayRemoteUser No

ChangeLanguage() No

IncludeFile() Yes

SaveDataToFile() No

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 43 (150)

Command Valid for E-mail Messages

printf() Yes

scanf() No

8.3.2 GetConfigItem()
This command returns specific information from a file in the file system.

File Format

The source file must have the following format:

[key1]
value1

[key2]
value2
...
[keyN]
valueN

Syntax:

<?--exec cmd_argument='GetConfigItem("filename", "key"[,"separator"])'-->

filename: Source file to read from
key: Source [key] in file.

separator: Optional; specifies line separation characters (e.g. “
”).
(default is CRLF).

Default Output

Scenario Default Output

Success (value of specified key)

Authentication Error “Authentication error”
File open error “Failed to open file ‘filename’”

Key not found “Tag (key) not found”

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 44 (150)

Example

The following SSI...

<?--exec cmd_argument='GetConfigItem("\example.cnf", "B")'-->

... in combination with the following file (‘\example.cnf’)...

[A]
First
[B]
Second
[C]
Third

... returns the string ‘Third’.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 45 (150)

8.3.3 SetConfigItem()
This function stores an HTML-form as a file in the file system.

This function cannot be used in e-mail messages.

File Format

Each form object is stored as a [tag], followed by the actual value.

[form object name 1]
form object value 1

[form object name 2]
form object value 2

[form object name 3]
form object value 3

...
[form object name N]
form object value N

Form objects with names starting with underscore will not be stored.

Syntax:

<?--exec cmd_argument='SetConfigItem("filename"[, Overwrite])'-->

filename: Destination file. If the specified file does not exist, it will be created (provided that the path is
valid).

Overwrite: Optional; forces the module to create a new file each time the command is issued. The
default behavior is to modify the existing file.

Default Output

Scenario Default Output

Success “Configuration stored to‘filename’”

Authentication Error “Authentication error”
File open error “Failed to open file ‘filename’”

File write error “Could not store configuration to ‘filename’”

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 46 (150)

Example

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SetConfigItem command.

<HTML>
<HEAD><TITLE>SetConfigItem Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SetConfigItem("\food.txt")'-->

<FORM action="test.shtm">
<P>

<LABEL for="Name">Name: </LABEL>

<INPUT type="text" name="Name">

<LABEL for="_Age">Age: </LABEL>

<INPUT type="text" name="_Age">

<LABEL for="Food">Food: </LABEL>

<INPUT type="radio" name="Food" value="Cheese"> Cheese

<INPUT type="radio" name="Food" value="Sausage"> Sausage

<LABEL for="Drink">Drink: </LABEL>

<INPUT type="radio" name="Drink" value="Wine"> Wine

<INPUT type="radio" name="Drink" value="Beer"> Beer

<INPUT type="submit" name="_submit">
<INPUT type="reset" name="_reset">

</P>
</FORM>

</BODY>
</HTML>

The resulting file (‘\food.txt’) may look somewhat as follows:

[Name]
Cliff Barnes

[Food]
Cheese

[Drink]
Beer

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 47 (150)

8.3.4 SsiOutput()
This command temporarily modifies the SSI output of the following command function.

Syntax:

<?--#exec cmd_argument='SsiOutput("success", "failure")'-->

success: String to use in case of success

failure: String to use in case of failure

Default Output

(this command produces no output on its own)

Example

The following example illustrates how to use this command.

<?--#exec cmd_argument='SsiOutput ("Parameter stored", "Error")'-->
<?--#exec cmd_argument='SetConfigItem("File.cfg", Overwrite)'-->

See also...

• SSI Output Configuration, p. 61

8.3.5 DisplayRemoteUser
This command stores returns the username on an authentication session.

This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='DisplayRemoteUser'-->

Default Output

Scenario Default Output

Success (current user)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 48 (150)

8.3.6 ChangeLanguage()
This command changes the language setting based on an HTML form object.

This function cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='ChangeLanguage("source")'-->

source: Name of form object which contains the new language setting.

The passed value must be a single digit as follows:

Form value Language

“0” English

“1” German

“2” Spanish

“3” Italian
“4” French

Default Output

Scenario Default Output

Success “Language changed”

Error “Failed to change language”

Example

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the ChangeLanguage() command.

<HTML>
<HEAD><TITLE>ChangeLanguage Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='ChangeLanguage("lang")'-->

<FORM action="test.shtm">
<P>

<LABEL for="lang">Language(0-4): </LABEL>

<INPUT type="text" name="lang">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 49 (150)

8.3.7 IncludeFile()
This command includes the content of a file. Note that the content is not scanned for SSI.

Syntax:

<?--#exec cmd_argument='IncludeFile("filename" [, separator])'-->

filename: Source file
separator: Optional; specifies line separation characters (e.g. “
”).

Default Output

Scenario Default Output

Success (file contents)

Authentication Error “Authentication error”
File Open Error “Failed to open file ‘filename’”

Example

The following example demonstrates how to use this function.

<HTML>
<HEAD><TITLE>IncludeFile Test</TITLE></HEAD>
<BODY>

<H1> Contents of ‘info.txt’:</H1>
<P>

<?--#exec cmd_argument='IncludeFile("info.txt")'-->.
</P>

</BODY>
</HTML>

Contents of ‘info.txt’:

Neque porro quisquam est qui dolorem ipsum quia dolor sit
amet,consectetur, adipisci velit...

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 50 (150)

When viewed in a browser, the resulting page should look somewhat as follows:

Fig. 6

See also...

• Include File, p. 42

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 51 (150)

8.3.8 SaveDataToFile()
This command stores data from an HTML form as a file in the file system. Content from the
different form objects are separated by a blank line (2*CRLF).

This function cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='SaveDataToFile("filename" [, "source"],
Overwrite|Append)'-->

filename Destination file. If the specified file does not exist, it will be created (provided that the path is
valid).

source: Optional; by specifying a form object, only data from that particular form object will be
stored. Default behavior is to store data from all form objects except the ones where the
name starts with underscore.

Overwrite|Append Specifies whether to overwrite or append data to existing files.

Default Output

Scenario Default Output

Success “Configuration stored to ‘filename’”

Authentication Error “Authentication error”
File Write Error “Could not store configuration to ‘filename’”

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 52 (150)

Example

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SaveDataToFile command.

<HTML>
<HEAD><TITLE>SaveDataToFile Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SaveDataToFile("\stuff.txt", “Meat”, Overwrite)'-->

<FORM action="test.shtm">
<P>

<LABEL for="Fruit">Fruit: </LABEL>

<INPUT type="text" name="Fruit">

<LABEL for="Meat">Meat: </LABEL>

<INPUT type="text" name="Meat">

<LABEL for="Meat">Bread: </LABEL>

<INPUT type="text" name="Bread">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

The resulting file (\stuff.txt) will contain the value specified for the form object called “Meat”.

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 53 (150)

8.3.9 printf()
This function returns a formatted string which may contain data from the Anybus CompactCom
module and/or application. The formatting syntax used is similar to that of the standard C-
function printf().

The function accepts a template string containing zero or more formatting tags, followed by a
number of arguments. Each formatting tag corresponds to a single argument, and determines
how that argument shall be converted to human readable form.

Syntax:

<?--#exec cmd_argument='printf("template" [, argument1, ..., argumentN])'-->

template: Template which determines how the arguments shall be represented. May contain any
number of formatting tags which are substituted by subsequent arguments and formatted as
requested. The number of format tags must match the number of arguments; if not, the
result is undefined.
See section “Formatting Tags” below for more information.

argument: Source arguments; optional parameters which specify the actual source of the data that shall
be inserted in the template string. The number of arguments must match the number of
formatting tags; if not, the result is undefined.
At the time of writing, the only allowed argument is ABCCMessage().
See also...

• ABCCMessage(), p. 57

Default Output

Scenario Default Output

Success (printf() result)

ABCCMessage error ABCCMessage error string (Errors, p. 60)

Example

See ..

• ABCCMessage(), p. 57

• Example (Get_Attribute):, p. 59

Formatting Tags

Formatting tags are written as follows:

%[Flags][Width][.Precision][Modifier]type

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 54 (150)

• Type (Required)

The Type-character is required and determines the basic representation as follows:

Type Character Representation Example

c Single character b

d, i Signed decimal integer. 565

e, E Floating-point number in exponential notation. 5.6538e2

f Floating-point number in normal, fixed-point notation. 565.38

g, G %e or %E is used if the exponent is less than -4 or greater than or
equal to the precision; otherwise %f is used. Trailing zeroes/
decimal point are not printed.

565.38

o Unsigned octal notation 1065

s String of characters Text

u Unsigned decimal integer 4242

x, X Hexadecimal integer 4e7f

% Literal %; no assignment is made %

• Flags (Optional)

Flag Character Meaning

- Left-justify the result within the give width (default is right justification)

+ Always include a + or - to indicate whether the number is positive or negative

(space) If the number does not start with a + or -, prefix it with a space character instead.

0 (zero) Pad the field with zeroes instead of spaces

For %e, %E, and %f, forces the number to include a decimal point, even if no digits follow. For %
x and %X, prefixes 0x or 0X, respectively.

• Width (Optional)

Width Meaning

number Specifies the minimum number of characters to be printed.
If the value to be printed is shorter than this number, the result is padded to make up the field
width. The result is never truncated even if the result is larger.

• Precision (Optional)

The exact meaning of this field depends on the type character:

Type Character Meaning

d, i, o, u, x, X Specifies the minimum no. of decimal digits to be printed. If the value to be printed is shorter
than this number, the result is padded with space. Note that the result is never truncated, even
if the result is larger.

e, E, f Specifies the no. of digits to be printed after the decimal point (default is 6).

g, G Specifies the max. no. of significant numbers to be printed.

s Specifies the max. no. of characters to be printed

c (no effect)

• Modifier

Modifier
Character

Meaning

hh Argument is interpreted as SINT8 or UINT8

h Argument is interpreted as SINT16 or UINT16

L Argument is interpreted as SINT32 or UINT32

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 55 (150)

8.3.10 scanf()
This function is very similar to the printf() function described earlier, except that it is used for
input rather than output. The function reads a string passed from an HTML form object, parses
the string as specified by a template string, and sends the resulting data to the specified
argument. The formatting syntax used is similar to that of the standard C-function scanf().

The function accepts a source, a template string containing zero or more formatting tags,
followed by a number of arguments. Each argument corresponds to a formatting tag, which
determines how the data read from the HTML form shall be interpreted prior sending it to the
destination argument.

This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='scanf("source", "template" [,
argument1, ..., argumentN])'-->

source Name of the HTML form object from which the string shall be extracted.

template: Template which specifies how to parse and interpret the data. May contain any number of
formatting tags which determine the conversion prior to sending the data to subsequent
arguments. The number of formatting tags must match the number of arguments; if not, the
result is undefined.
See section “Formatting Tags” below for more information.

argument: Destination argument(s) specifying where to send the interpreted data. The number of
arguments must match the number of formatting tags; if not, the result is undefined.
At the time of writing, the only allowed argument is ABCCMessage().
See also...

• ABCCMessage(), p. 57

Default Output

Scenario Default Output

Success “Success”
Parsing error “Incorrect data format”

Too much data for argument “Too much data”

ABCCMessage error ABCCMessage error string (Errors, p. 60)

Example

See also...

ABCCMessage(), p. 57

Example (Set_Attribute):, p. 59

Formatting Tags

Formatting tags are written as follows:

%[*][Width][Modifier]type

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 56 (150)

• Type (Required)

The Type-character is required and determines the basic representation as follows:

Type Input Argument Data Type

c Single character CHAR

d Accepts a signed decimal integer SINT8
SINT16
SINT32

i Accepts a signed or unsigned decimal integer. May be given as
decimal, hexadecimal or octal, determined by the initial characters
of the input data:
Initial Characters: Format:
0x Hexadecimal
0: Octal
1... 9: Decimal

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

u Accepts an unsigned decimal integer. UINT8
UINT16
UINT32

o Accepts an optionally signed octal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

x, X Accepts an optionally signed hexadecimal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

e, E,
f,
g, G

Accepts an optionally signed floating point number. The input
format for floating-point numbers is a string of digits, with some
optional characteristics:

– It can be a signed value

– It can be an exponential value, containing a decimal rational
number followed by an exponent field, which consists of an ‘E’
or an ‘e’ followed by an integer.

FLOAT

n Consumes no input; the corresponding argument is an integer into
which scanf writes the number of characters read from the object
input.

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

s Accepts a sequence of nonwhitespace characters STRING

[scanset] Accepts a sequence of nonwhitespace characters from a set of
expected bytes specified by the scanlist (e.g
‘[0123456789ABCDEF]’)
A literal ‘]’ character can be specified as the first character of the
set. A caret character (^) immediately following the initial ‘[’ inverts
the scanlist, i.e. allows all characters except the ones that are listed.

STRING

% Accepts a single %input at this point; no assignment or conversion
is done. The complete conversion specification should be %%.

-

• * (Optional)

Data is read but ignored. It is not assigned to the corresponding argument.

• Width (Optional)

Specifies the maximum number of characters to be read

• Modifier (Optional)

Specifies a different data size.

Modifier Meaning

h SINT8, SINT16, UINT8 or UINT16

l SINT32 or UINT32

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 57 (150)

8.4 Argument Functions
8.4.1 General Information

Argument functions are supplied as parameters to certain command functions.

General Syntax:

(Syntax depends on context)

Argument Functions:

Function Description

ABCCMessage() -

8.4.2 ABCCMessage()
This function issues an object request towards an object in the module or in the host application.

Syntax

ABCCMessage(object, instance, command, ce0, ce1,
msgdata, c_type, r_type)

object Specifies the Destination Object

instance Specifies the Destination Instance

command Specifies the Command Number

ce0 Specifies CmdExt[0] for the command message

ce1 Specifies CmdExt[1] for the command message

msgdata Specifies the actual contents of the MsgData[] subfield in the command

• Data can be supplied in direct form (format depends on c_type)

• The keyword “ARG” is used when data is supplied by the parent command (e.g. scanf()).

c_type: Specifies the data type in the command (msgdata), see below.

r_type: Specifies the data type in the response (msgdata), see below.

Numeric input can be supplied in the following formats:

Decimal (e.g. 50) (no prefix)

Octal (e.g. 043) Prefix 0 (zero)

Hex (e.g. 0x1f) Prefix 0x

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 58 (150)

• Command Data Types (c_type)

For types which support arrays, the number of elements can be specified using the suffix
[n], where n specifies the number of elements. Each data element must be separated by
space.

Type Supports Arrays Data format (as supplied in msgdata)

BOOL Yes 1
SINT8 Yes -25
SINT16 Yes 2345
SINT32 Yes -2569
UINT8 Yes 245
UINT16 Yes 40000
UINT32 Yes 32
CHAR Yes A
STRING No “abcde”

Note: Quotes can be included in the string if preceded by backslash
(“\”)
Example: “We usually refer to it as \‘the Egg\’”

FLOAT Yes 5.6538e2
NONE No Command holds no data, hence no data type

• Response Data Types (r_type)

For types which support arrays, the number of elements can be specified using the suffix
[n], where n specifies the number of elements.

Type Supports Arrays Data format (as supplied in msgdata)

BOOL Yes Optionally, it is possible to exchange the BOOL data with a message
based on the value (true or false). In such case, the actual data type
returned from the function will be STRING.
Syntax: BOOL<true><false>
For arrays, the format will be BOOL[n]<true><false>.

SINT8 Yes -

SINT16 Yes -

SINT32 Yes -

UINT8 Yes This type can also be used when reading ENUM data types from an
object. In such case, the actual ENUM value will be returned.

UINT16 Yes -

UINT32 Yes -

CHAR Yes -

STRING No -

ENUM No When using this data type, the ABCCMessage() function will first read
the ENUM value. It will then issue a ‘Get Enum String’-command to
retrieve the actual enumeration string. The actual data type in the
response will be STRING.

FLOAT Yes -

NONE No Response holds no data, hence no data type

It is important to note that the message will be passed transparently to the addressed
object. The SSI engine performs no checks for violations of the object addressing scheme,
e.g. a malformed Get_Attribute request which (wrongfully) includes message data will be
passed unmodified to the object, even though this is obviously wrong. Failure to observe
this may cause loss of data or other undesired side effects.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 59 (150)

Example (Get_Attribute):

This example shows how to retrieve the IP address using printf() and ABCCMessage().

<?--#exec cmd_argument='printf("%u.%u.%u.%u",
ABCCMessage(4,3,1,5,0,0,NONE,UINT8[4]))'-->

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 1 Get_attribute

ce0 5 Attribute #5
ce1 0 -

msgdata 0 -

c_type NONE Command message holds no data

r_type UINT8[4] Array of 4 unsigned 8-bit integers

Example (Set_Attribute):

This example shows how to set the IP address using scanf() and ABCCMessage(). Note the special
parameter value “ARG”, which instructs the module to use the passed form data (parsed by
scanf()).

<?--#exec cmd_argument='scanf("IP", "%u.%u.%u.%u",
ABCCMessage(4,3,2,5,0,ARG,UINT8[4],NONE))'-->

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 2 Set_attribute

ce0 5 Attribute #5
ce1 0 -

msgdata ARG Use data parsed by scanf() call

c_type UINT8[4] Array of 4 unsigned 8-bit integers

r_type NONE Response message holds no data

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 60 (150)

Errors

In case an object request results in an error, the error code in the response will be evaluated and
translated to readable form as follows:

Error Code Output

0 “Unknown error”
1 “Unknown error”
2 “Invalid message format”

3 “Unsupported object”

4 “Unsupported instance”

5 “Unsupported command”

6 “Invalid CmdExt[0]”

7 “Invalid CmdExt[1]”

8 “Attribute access is not set-able”
9 “Attribute access is not get-able”

10 “Too much data in msg data field”

11 “Not enough data in msg data field”

12 “Out of range”

13 “Invalid state”
14 “Out of resources”
15 “Segmentation failure”

16 “Segmentation buffer overflow”

17... 255 “Unknown error”

See also...

SSI Output Configuration, p. 61

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Server Side Include (SSI) 61 (150)

8.5 SSI Output Configuration
Optionally, the SSI output can be permanently changed by adding the file \output.cfg.

File format:

[ABCCMessage_X]
0:“Success string”
1:“Error string 1”
2:“Error string 2”
...
16“:Error string 16”

Each error code corresponds to a dedicated output string, labelled
from 1 to 16.
See Errors, p. 60

[GetConfigItem_X]
0: “Success string”
1:“Authentication error string”
2:“File open error string”
3:“Tag not found string”

Use “%s” to include the name of the file.

[SetConfigItem_X]
0: “Success string”
1:“Authentication error string”
2:“File open error string”
3:“File write error string”

Use “%s” to include the name of the file.

[IncludeFile_X]
0: “Success string”
1:“Authentication error string”
2:“File read error string”

Use “%s” to include the name of the file.

[scanf_X]
0: “Success string”
1:“Parsing error string”

-

[ChangeLanguage_X]
0: “Success string”
1:“Change error string”

-

All content above can be included in the file multiple times changing the value “X” in each tag for
different languages. The module will then select the correct output string based on the language
settings. If no information for the selected language is found, it will use the default SSI output.

Value of X Language

0 English

1 German
2 Spanish

3 Italian
4 French

See also...

•

SsiOutput(), p. 47

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 62 (150)

9 JSON
9.1 General Information

JSON is an acronym for JavaScript Object Notation and an open standard format for storing and
exchanging data in an organized and intuitive way. In Anybus CompactCom, it is used to transmit
data objects consisting of name - value pairs between the webserver in the Anybus CompactCom
and a web application. The object members are unordered, thus the value pairs can appear in
any order. JavaScripts are used to create dynamic web pages to present the values. Optionally, a
callback may be passed to the GET-request for JSONP output.

JSON is more versatile than SSI in that you not only can read and write, but also change the size
and the look of the web page dynamically. A simple example of how to create a web page is
added at the end of this chapter.

9.1.1 Encoding
JSON requests shall be UTF-8 encoded. The module will interpret JSON requests as UTF-8
encoded, while all other HTTP requests will be interpreted as ISO-8859-1 encoded. All JSON
responses, sent by the module, are UTF-8 encoded, while all other files sent by the web server
are encoded as stored in the file system.

9.1.2 Access
It is recommended to password protect the JSON resources. Add password protection by adding
a file called web_accs.cfg in the root directory (all web content will be protected). The file is
described in the “Web Server” section in this document.

9.1.3 Error Response
If the module fails to parse or process a request, the response will contain an error object with
an Anybus error code:

{
"error" : 02

}

The Anybus error codes are listed in the Anybus CompactCom 40 Software Design Guide.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 63 (150)

9.2 JSON Objects
9.2.1 ADI

info.json

GET adi/info.json[?callback=<function>]

This object holds information about the ADI JSON interface. This data is static during runtime.

Name Data Type Note

dataformat Number 0 = Little endian
1 = Big endian
(Affects value, min and max representations)

numadis Number Total number of ADIs
webversion Number Web/JSON API version

JSON response example:

{
"dataformat": 0,
"numadis": 123,
"webversion": 1

}

data.json

GET adi/data.json?offset=<offset>&count=<count>[&callback=<function>]
GET adi/data.json?inst=<instance>&count=<count>[&callback=<function>]

These object calls fetch a sorted list of up to <count> ADIs values, starting from <offset> or
<instance>. The returned values may change at any time during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. <count>
number of existing ADI values will be returned. I.e. non-existing ADIs
are skipped.

inst Number Instance number of first requested ADI.
<count> number of ADI values is returned. A null value will be returned
for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description

— Array of Strings Sorted list of string representations of the ADI value attributes

JSON response example (using offset):

[
"FF",
"A201",
"01FAC105"

]

JSON response example (using inst):

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 64 (150)

[
"FF",
"A201",
null,
null,
"01FAC105"

]

metadata.json

GET adi/metadata.json?offset=<offset>&count=<count>[&callback=<function>]
GET adi/metadata.json?inst=<instance>&count=<count>[&callback=<function>]

These object calls fetch a sorted list of metadata objects for up to <count> ADIs, starting from
<offset> or <instance>.

The returned information provided is a transparent representation of the attributes available in
the host Application Data object (FEh). See the Anybus CompactCom 40 Software Design Guide
for more information about the content of each attribute.

The ADI metadata is static during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. Metadata
objects for <count> number of existing ADI will be returned. I.e. non-
existing ADIs are skipped.

inst Number Instance number of first requested ADI.
Metadata objects for <count> number of ADI values are returned. A
null object will be returned for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description

instance Number -
name String May be NULL if no name is present.

numelements Number -

datatype Number -

min String Hex formatted string, see Hex Format Explained, p. 80 for more
information.
May be NULL if no minimum value is present.

max String Hex formatted string, see Hex Format Explained, p. 80 for more
information.
May be NULL of no maximum value is present.

access Number Bit 0: Read access
Bit 1: Write access

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 65 (150)

JSON response example (using offset):

[
{

"instance": 1,
"name": "Temperature threshold",
"numelements": 1,
"datatype": 0,
"min": "00",
"max": "FF",
"access": 0x03

},
{

...
}
]

JSON response example (using inst):

[
{

"instance": 1,
"name": "Temperature threshold",
"numelements": 1,
"datatype": 0,
"min": "00",
"max": "FF",
"access": 0x03

},
null,
null
{

...
}
]

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 66 (150)

metadata2.json

GET adi/metadata2.json?offset=<offset>&count=<count>[&callback=<function>]
GET adi/metadata2.json?inst=<instance>&count=<count>[&callback=<function>]

This is an extended version of the metadata function that provides complete information about
the ADIs. This extended version is needed to describe more complex data types such as
Structures.

The information provided is a transparent representation of the attributes available in the host
Application Data object (FEh). See the Anybus CompactCom 40 Software Design Guide for more
information about the content of each attribute.

The ADI metadata is static during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. Metadata
objects for <count> number of existing ADI will be returned. I.e. non-
existing ADIs are skipped.

inst Number Instance number of first requested ADI.
Metadata objects for <count> number of ADI values are returned. A
null object will be returned for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description

instance Number -

numelements Array of umbers -

datatype Array of Numbers Array of datatypes.
For Structures and Variables, each array element defines the data type
of the corresponding element of the instance value. For Arrays, one
array element defines the data type for all elements of the instance
value.

descriptor Array of descriptors.
For Structures and Variables, each array element defines the descriptor
of the corresponding element of the instance value. For Arrays, one
array element defines the descriptor for all elements of the instance
value.

name May be NULL if no name is present.

min String Hex formatted string, see Hex Format Explained, p. 80 for more
information.
May be NULL if no minimum value is present.

max String Hex formatted string, see Hex Format Explained, p. 80 for more
information.
May be NULL of no maximum value is present.

default String Hex formatted string, see Hex Format Explained, p. 80 for more
information.
May be NULL of no default value is present.

numsubelements Array of Numbers For Structures and Variables each array element defines the number of
subelements of the corresponding element of the instance value.
May be NULL if not present.

elementname Array of Strings Array of names, one for each instance value element.
May be NULL if not present.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 67 (150)

JSON response example (using offset):

[
{

"instance": 1,
"numelements": 1,
"datatype": [0],
"descriptor": [9],
"name": "Temperature threshold",
"max": "FF",
"min": "00",
"default": "00",
"numsubelements": null
"elementname": null

},
{

...
}
]

JSON response example (instance):

[
{

"instance": 1,
"numelements": 1,
"datatype": [0],
"descriptor": [9],
"name": "Temperature threshold",
"max": "FF",
"min": "00",
"default": "00",
"numsubelements": null
"elementname": null

},
null,
null
{

...
}
]

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 68 (150)

enum.json

GET adi/enum.json?inst=<instance>[&value=<element>][&callback=<function>]

This object call fetches a list of enumeration strings for a specific instance.

The ADI enum strings are static during runtime.

Request data:

Name Data Type Description

inst Number Instance number of the ADI to get enum string for.

value Number Optional. If given only the enumstring for the requested <value> is
returned.

callback String Optional. A callback function for JSONP output.

Response data:

Name Data Type Description

string String String representation for the corresponding value.

value Number Value corresponding to the string representation.

JSON response example:

[
{

"string": "String for value 1",
"value": 1

},
{

"string": "String for value 2",
"value": 2

},
{

...
}
]

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 69 (150)

update.json

POST adi/update.json

Form data:

inst=<instance>&value=<data>[&elem=<element>][&callback=<function>]

Updates the value attribute of an ADI.

Request data:

Name Data Type Description

inst Number Instance number of the ADI
value String Value to set.

If the value attribute is a number it shall be hes formatted, see Hex
Format Explained, p. 80 for more information.

elem Number Optional.
If specified only a single element of the ADI value is set. Then <data>
shall only contain the value of the specified <element>.

callback String Optional.
A callback function for JSONP output.

Response data:

Name Data Type Note

result Number 0 = success
The Anybus CompactCom error codes are used. Please see the Anybus
CompactCom 40 Software Design Guide.

{
"result" : 0

}

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 70 (150)

9.2.2 Module
info.json

GET module/info.json

Response data:

Name Data Type Description

modulename String -

serial String 32 bit hex ASCII

fwver Array of Number (major, minor, build)

uptime Array of Number [high, low] milliseconds (ms)

cpuload Number CPU load in %

fwvertext String Firmware version in text

vendorname String Vender name (Application Object (FFh), instance attribute #8)

hwvertext String Hardware version in text

networktype Number Network type (Network Object (03h), instance attribute #1)

JSON response example:

{
"modulename": "ABCC M40",
"serial": "ABCDEF00",
"fwver": [1, 5, 0],
"uptime": [5, 123456],
"cpuload": 55
"fwvertext": "1.05.02",
"vendorname": "HMS Industrial Networks",
"hwvertext": "2",
"networktype": "0085",

}

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 71 (150)

9.2.3 Network
ethstatus.json

GET network/ethstatus.json.

Name Data Type Description

mac String 6 byte hex

comm1 Object See object definition in the table below

comm2 Object See object definition in the table below

Comm Object Definition:

Name Data Type Description

link Number 0: No link
1: Link

speed Number 0: 10 Mbit
1: 100 Mbit

duplex Number 0: Half
1: Full

JSON response example:

{
"mac": "003011FF0201",
"comm1": {

"link": 1,
"speed": 1,
"duplex": 1

},
"comm2": {

"link": 1,
"speed": 1,
"duplex": 1

}
}

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 72 (150)

ipstatus.json & ipconf.json

These two object share the same data format. The object ipconf.json returns the configured IP
settings, and ipstatus.json returns the actual values that are currently used. ipconf.json can also
be used to alter the IP settings.

GET network/ipstatus.json

or

GET network/ipconf.json

Name Data Type Note

dhcp Number -

addr String -

subnet String -

gateway String -

dns1 String -

dns2 String -

hostname String -

domainname String -

{
"dhcp": 0,
"addr": "192.168.0.55",
"subnet": "255.255.255.0",
"gateway": "192.168.0.1",
"dns1": "10.10.55.1",
"dns2": "10.10.55.2"
"hostname": "abcc123",
"domainname": "hms.se"

}

To change IP settings, use network/ipconf.json. It accepts any number of arguments from the list
above. Values should be in the same format.

Example:

GET ipconf.json?dhcp=0&addr=10.11.32.2&hostname=abcc123&domainname=hms.se

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 73 (150)

ethconf.json

GET network/ethconf.json

Name Data Type Note

mac String -

comm1 Number -

comm2 Number Only present if two Ethernet ports are activated in the module.

The values of “comm1” and “comm2” are read from the Network Configuration object, instances
#7 and #8.

{
"mac": [00, 30, 11, FF, 02, 01],
"comm1": 0,
"comm2": 4

}

The parameters “comm1” and “comm2” are configurable by adding them as arguments to the
GET request:

GET network/ethconf.json?comm1=0&comm2=4

The parameters “comm1” and “comm2” may hold an error object with Anybus error code if the
module fails processing the request:

{
"mac": [00, 30, 11, FF, 02, 01],
"comm1": 0,
"comm2": { error: 14 },

}

The Anybus CompactCom error codes are used. Please see the Anybus CompactCom 40 Software
Design Guide.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 74 (150)

ifcounters.json

GET network/ifcounters.json?port=<port>

Valid values for the argument <port> are 0, 1, and 2.

• Valid values for the argument <port> are 0, 1, and 2.

• Port number 0 option refers to the internal port (CPU port).

• Port number 2 option is only valid if two Ethernet ports are activated in the module.

Name Data Type Description

inoctets Number IN: bytes

inucast Number IN: unicast packets

innucast Number IN: broadcast and multicast packets

indiscards Number IN: discarded packets

inerrors Number IN: errors

inunknown Number IN: unsupported protocol type

outoctets Number OUT: bytes

outucast Number OUT: unicast packets

outnucast Number OUT: broadcast and multicast packets

outdiscards Number OUT: discarded packets

outerrors Number OUT: errors

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 75 (150)

mediacounters.json

GET network/mediacounters.json?port=<port>

The argument <port> is either 1 or 2.

Port number 2 option is only valid if two Ethernet ports are activated in the module.

Name Data Type Description

align Number Frames received that are not an integral number of octets in
length

fcs Number Frames received that do not pass the FCS check

singlecoll Number Successfully transmitted frames which experienced exactly one
collision

multicoll Number Successfully transmitted frames which experienced more than
one collision

latecoll Number Number of collisions detected later than 512 bit times into the
transmission of a packet

excesscoll Number Frames for which transmissions fail due to excessive collisions
sqetest Number Number of times SQE test error is generated

deferredtrans Number Frames for which the first transmission attempt is delayed
because the medium is busy

macrecerr Number Frames for which reception fails due to an internal MAC
sublayer receive error

mactranserr Number Frames for which transmission fails due to an internal MAC
sublayer transmit error

cserr Number Times that the carrier sense was lost or never asserted when
attempting to transmit a frame

toolong Number Frames received that exceed the maximum permitted frame
size

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 76 (150)

nwstats.json

GET network/nwstats.json

This object lists available statistics data. The data available depends on the product.

Example output:

[]
or
[{ "identifier": "eipstats", "title": "EtherNet/IP Statistics" }]
or
[{ "identifier": "eitstats", "title": "Modbus TCP Statistics" }]
or
[

{ "identifier": "bacnetipstats",
"title": "BACnet/IP Statistics" },

{ "identifier": "bacnetaplserverstats",
"title": "BACnet Application Layer Server Statistics" },

{ "identifier": "bacnetaplclientstats",
"title": "BACnet Application Layer Client Statistics" }

{ "identifier": "bacnetalarmstats",
"title": "BACnet Alarm and Event Module Statistics" }

]
or
[{ "identifier": "eplifcounters", "title": "IT Interface Counters" }]
or
[

{ "identifier": "ectstats", "title": "EtherCAT Statistics" },
{ "identifier": "eoeifcounters", "title": "EoE Interface Counters" },

]
or
[{ "identifier" : "pnpof", "title" : "Fiber Optical Statistics" }]

Get network specific statistics (<ID> is an “identifier” value returned from the previous
command):

GET network/nwstats.json?get=<ID>

“eipstats”

[
{ "name": "Established Class1 Connections", "value": 0 },
{ "name": "Established Class3 Connections", "value": 1 }
{ "name": "Connection Open Request", "value": 0 },
{ "name": "Connection Open Format Rejects", "value": 0 },
{ "name": "Connection Open Resource Rejects", "value": 0 },
{ "name": "Connection Open Other Rejects", "value": 0 },
{ "name": "Connection Close Requests", "value": 0 },
{ "name": "Connection Close Format Rejects", "value": 0 },
{ "name": "Connection Other Rejects", "value": 0 },
{ "name": "Connection Timeouts", "value": 0 },

]

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 77 (150)

“eitstats”

[
{ "name": "Modbus Connections", "value": 0 },
{ "name": "Connection ACKs", "value": 1 }
{ "name": "Connection NACKs", "value": 0 },
{ "name": "Connection Timeouts", "value": 0 },
{ "name": "Process Active Timeouts", "value": 0 },
{ "name": "Processed messages", "value": 0 },
{ "name": "Incorrect messages", "value": 0 },

]

“bacnetipstats”

[
{ "name": "Unconfirmed server requests received", "value": 0 },
{ "name": "Unconfirmed server requests sent", "value": 1 }
{ "name": "Unconfirmed client requests sent", "value": 0 },

]

“bacnetaplserverstats”

[
{ "name": "Active transactions", "value": 0 },
{ "name": "Max Active transactions", "value": 1 }
{ "name": "Tx segments sent", "value": 0 },
{ "name": "Tx segment ACKs received", "value": 0 },
{ "name": "Tx segment NAKs received", "value": 0 },
{ "name": "Rx segments received", "value": 0 },
{ "name": "Rx segment ACKs sent", "value": 0 },
{ "name": "Duplicate Rx segment ACKs sent", "value": 0 },
{ "name": "Rx segment NAKs sent", "value": 0 },
{ "name": "Confirmed transactions sent", "value": 0 },
{ "name": "Confirmed transactions received", "value": 0 },
{ "name": "Tx segment timeouts", "value": 0 },
{ "name": "Rx segment timeouts", "value": 0 },
{ "name": "Implicit deletes", "value": 0 },
{ "name": "Tx timeout deletes", "value": 0 },
{ "name": "Rx timeout deletes", "value": 0 },
{ "name": "Tx aborts received", "value": 0 },
{ "name": "Rx aborts received", "value": 0 },
{ "name": "Transaction aborts sent", "value": 0 },
{ "name": "Transaction rejects sent", "value": 0 },
{ "name": "Transaction errors sent", "value": 0 },

]

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 78 (150)

“bacnetaplclientstats”

[
{ "name": "Active transactions", "value": 0 },
{ "name": "Max Active transactions", "value": 1 }
{ "name": "Tx segments sent", "value": 0 },
{ "name": "Tx segment ACKs received", "value": 0 },
{ "name": "Tx segment NAKs received", "value": 0 },
{ "name": "Rx segments received", "value": 0 },
{ "name": "Rx segment ACKs sent", "value": 0 },
{ "name": "Duplicate Rx segment ACKs sent", "value": 0 },
{ "name": "Rx segment NAKs sent", "value": 0 },
{ "name": "Confirmed transactions sent", "value": 0 },
{ "name": "Confirmed transactions received", "value": 0 },
{ "name": "Tx segment timeouts", "value": 0 },
{ "name": "Rx segment timeouts", "value": 0 },
{ "name": "Implicit deletes", "value": 0 },
{ "name": "Tx timeout deletes", "value": 0 },
{ "name": "Rx timeout deletes", "value": 0 },
{ "name": "Tx aborts received", "value": 0 },
{ "name": "Rx aborts received", "value": 0 },
{ "name": "Transaction aborts sent", "value": 0 },
{ "name": "Transaction rejects sent", "value": 0 },
{ "name": "Transaction errors sent", "value": 0 },

]

“bacnetalarmstats”

[
{ "name": "COV Active subscriptions", "value": 0 },
{ "name": "COV Max active subscriptions", "value": 1 }
{ "name": "COV Lifetime subscriptions", "value": 0 },
{ "name": "COV Confirmed resumes", "value": 0 },
{ "name": "COV Unconfirmed resumes", "value": 0 },
{ "name": "COV Confirmed notifications sent", "value": 0 },
{ "name": "COV Unconfirmed notifications sent", "value": 0 },
{ "name": "COV Confirmed notification errors", "value": 0 },
{ "name": "AE Active events", "value": 0 },
{ "name": "AE Active NC recipients", "value": 0 },
{ "name": "AE Confirmed resumes", "value": 0 },
{ "name": "AE UnConfirmed resumes", "value": 0 },
{ "name": "AE Confirmed notifications sent", "value": 0 },
{ "name": "AE UnConfirmed notifications sent", "value": 0 },
{ "name": "AE Confirmed notification errors", "value": 0 },
{ "name": "AE DAB lookup errors", "value": 0 },

]

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 79 (150)

“eplifcounters”

[
{ "name": "In Octets", "value": 22967 },
{ "name": "In Ucast Packets", "value": 121 }
{ "name": "In NUcast Packets", "value": 31 },
{ "name": "In Discards", "value": 0 },
{ "name": "In Errors", "value": 0 },
{ "name": "In Unknown Protos", "value": 0 },
{ "name": "Out Octets", "value": 169323 },
{ "name": "Out Ucast Packets", "value": 168 },
{ "name": "Out NUcast Packets", "value": 16 },
{ "name": "Out Discards", "value": 0 },
{ "name": "Out Errors", "value": 0 },

]

“ectstats”

[
{ "name": "Logical EoE port link", "value": "Yes" },
{ "name": "Invalid frame counter IN port", "value": 1 }
{ "name": "Rx error counter IN port", "value": 1 },
{ "name": "Forwarded error counter IN port", "value": 1 },
{ "name": "Lost link counter IN port", "value": 1 },
{ "name": "Invalid frame counter OUT port", "value": 1 },
{ "name": "Rx error counter OUT port", "value": 1 },
{ "name": "Forwarded error counter OUT port", "value": 1 },
{ "name": "Lost link counter OUT port", "value": 1 },

]

“eoeifcounters”

[
{ "name": "In Octets", "value": 22967 },
{ "name": "In Ucast Packets", "value": 121 }
{ "name": "In NUcast Packets", "value": 31 },
{ "name": "In Discards", "value": 0 },
{ "name": "In Errors", "value": 0 },
{ "name": "In Unknown Protos", "value": 0 },
{ "name": "Out Octets", "value": 169323 },
{ "name": "Out Ucast Packets", "value": 168 },
{ "name": "Out NUcast Packets", "value": 16 },
{ "name": "Out Discards", "value": 0 },
{ "name": "Out Errors", "value": 0 },

]

“pnpof”

[
{ "name" : "Port 1 Temperature (C)", "value" : "41.37" },
{ "name" : "Port 1 Power Budget (dB)", "value" : "23.0" },
{ "name" : "Port 1 Power Budget Status", "value" : "OK" },
{ "name" : "Port 2 Temperature (C)", "value" : "40.57" },
{ "name" : "Port 2 Power Budget (dB)", "value" : "0.0" },
{ "name" : "Port 2 Power Budget Status", "value" : "OK" }

]

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 80 (150)

9.2.4 Services
smtp.json

GET services/smtp.json

Password is not returned when retrieving the settings.

Name Data Type Note

server String IP address or name of mail server, e.g. “mail.hms.se”

user String -

[
{ "server": "192.168.0.55"},
{ "user": "test"}

]

Set:

Form data:

[
[server=192.168.0.56]&[user=test2]&[password=secret],

]

9.2.5 Hex Format Explained
The metadata max, min, and default fields and the ADI values are ASCII hex encoded binary data.
If the data type is an integer, the endianness used is determined by the dataformat field found in
adi/info.json.

Examples:

The value 5 encoded as a UINT16, with dataformat = 0 (little endian):

0500

The character array “ABC” encoded as CHAR[3] (dataformat is not relevant for CHAR):

414243

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

JSON 81 (150)

9.3 Example
This example shows how to create a web page that fetches Module Name and CPU load from the
module and presents it on the web page. The file, containing this code, has to be stored in the
built-in file system, and the result can be seen in a common browser.

<html>
<head>

<title>Anybus CompactCom</title>

<!-- Imported libs -->
<script type="text/javascript" src="vfs/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="vfs/js/tmpl.js"></script>

</head>
<body>

<div id="info-content"></div>
<script type="text/x-tmpl" id="tmpl-info">

From info.json

Module name:
{%=o.modulename%}

CPU Load:
{%=o.cpuload%}%

</script>
<script type="text/javascript">

$.getJSON("/module/info.json", null, function(data){
$("#info-content").html(tmpl("tmpl-info", data));

});
</script>

</body>
</html>

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 82 (150)

10 Anybus Module Objects
10.1 General Information

This chapter specifies the Anybus Module Object implementation and how they correspond to
the functionality in the Anybus CompactCom 40 BACnet/IP.

Standard Objects:

• Anybus Object (01h), p. 83

• Diagnostic Object (02h), p. 84

• Network Object (03h), p. 85

• Network Configuration Object (04h), p. 87

Network Specific Objects:

• Socket Interface Object (07h), p. 98

• SMTP Client Object (09h), p. 115

• File System Interface Object (0Ah), p. 120

• Network Ethernet Object (0Ch), p. 121

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 83 (150)

10.2 Anybus Object (01h)
Category
Basic, extended

Object Description
This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Module type Get UINT16 0403h (Standard Anybus CompactCom 40)

2... 11 - - - Consult the general Anybus CompactCom 40 Software Design
Guide for further information.

12 LED colors Get struct of: Value: Color:
UINT8 (LED1A) 01h Green

UINT8 (LED1B) 02h Red

UINT8 (LED2A) 01h Green

UINT8 (LED2B) 02h Red

13... 16 - - - Consult the general Anybus CompactCom 40 Software Design
Guide for further information.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 84 (150)

Extended

Name Access Type Value

17 Virtual attributes Get/Set - Consult the general Anybus CompactCom 40 Software Design
Guide for further information.18 Black list/White list Get/Set

19 Network time Get UINT64 Value of the internal Real Time Clock (RTC). Can be based on
the host application RTC or time synchronization from the
network. Format is specified below.

Network Time Format
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Year – 1900
(e.g year
2016 is
represented
as 116.)

Month
(January = 1)

Day of month Day of week
(Monday = 1)

Hour (24
hour system)

Minutes of
the hour

Seconds of
the minute

Hundredths
of the second

10.3 Diagnostic Object (02h)
Consult the Anybus CompactCom 40 Software Design Guide for information.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 85 (150)

10.4 Network Object (03h)
Category
Basic

Object Description
For more information regarding this object, consult the general Anybus CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Map_ADI_Write_Area

Map_ADI_Read_Area

Map_ADI_Write_Ext_Area

Map_ADI_Read_Ext_Area

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 86 (150)

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Network type Get UINT16 009Ah

2 Network type string Get Array of CHAR “BACnet/IP”

3 Data format Get ENUM 01h (MSB first)

4 Parameter data support Get BOOL True

5 Write process data size Get UINT16 Current write process data size (in bytes)
Updated on every successful Map_ADI_Write_Area. (Consult the
general Anybus CompactCom 40 Software Design Guide for further
information.)

6 Read process data size Get UINT16 0.
(The Anybus CompactCom 40 BACnet/IP does not support read
process data.)

7 Exception Information Get UINT8 Additional information available if the module has entered the
EXCEPTION state.
Value: Meaning:

00h No information available
01h The Get_All_BACnet_Object_Instances service request

for analog value objects failed.

02h The Get_All_BACnet_Object_Instances service request
for binary value objects failed.

03h The Get_All_BACnet_Object_Instances service request
for multistate value objects failed.

04h An ADI mapped on process data could not be resolved as
a BACnet object during start up

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 87 (150)

10.5 Network Configuration Object (04h)
Category
Extended

Object Description
This object holds network specific configuration parameters that may be set by the end user. A reset command
(factory default) issued towards this object will result in all instances being set to their default values.

If the settings in this object do not match the configuration used, the Module Status LED will flash red to
indicate a minor error.

The object is described in further detail in the Anybus CompactCom 40 Software Design Guide.

As soon as the used combination of IP address, Subnet mask and Gateway is changed, the module informs the
application by writing the new set to instance #1, attribute #16 in the Ethernet Host Object (F9h).

See also...

• Communication Settings, p. 22

•

E-mail Client, p. 41

• Ethernet Host Object (F9h), p. 129

Supported Commands

Object: Get_Attribute

Reset

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Object Attributes (Instance #0)
Name Access Data Type Description

1 Name Get Array of CHAR “Network Configuration”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0015h (21)

4 Highest instance
number

Get UINT16 0019h (25)

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 88 (150)

Instance Attributes (Instance #3, IP Address)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “IP address”
(Multilingual, see page 97)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #4, Subnet Mask)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Subnet mask”
(Multilingual, see page 97)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #5, Gateway Address)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Gateway”
(Multilingual, see page 97)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 89 (150)

Instance Attributes (Instance #6, DHCP Enable)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “DHCP”
(Multilingual, see page 97)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Any change is valid after reset.
(Multilingual, see page 97)

Value String Meaning

00h “Disable” DHCP disabled
01h “Enable” DHCP enabled (default)

6 Value Get/Set ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value String Meaning

00h “Disable” DHCP disabled
01h “Enable” DHCP enabled (default)

Instance Attributes (Instance #7 Ethernet Communication Settings 1)
Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “Comm 1”
(Multilingual, see page 97)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value String Meaning
(Multilingual, see page 97)

00h “Auto” Auto negotiation (default)

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

6 Value Get/Set ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value String Meaning

(Multilingual, see page 97)

00h “Auto” Auto negotiation (default)

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 90 (150)

Instance Attributes (Instance #8 Ethernet Communication Settings 2)
Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “Comm 2”
(Multilingual, see page 97)

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value String Meaning
(Multilingual, see page 97)

00h “Auto” Auto negotiation (default)

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

6 Value Get/Set ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value String Meaning

(Multilingual, see page 97)

00h “Auto” Auto negotiation (default)

01h “10 HDX” 10Mbit, half duplex

02h “10 FX” 10Mbit, full duplex

03h “100HDX” 100Mbit, half duplex

04h “100FX” 100Mbit, full duplex

Instance Attributes (Instance #9, DNS1)
This instance holds the address to the primary DNS server. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “DNS1”
(Multilingual, see page 97)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 91 (150)

Instance Attributes (Instance #10, DNS2)
This instance holds the address to the secondary DNS server. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “DNS2”
(Multilingual, see page 97)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 Any change is valid after reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #11, Host name)
This instance holds the host name of the module. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “Host name”
(Multilingual, see page 97)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
Host name, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Host name, 64 characters

Instance Attributes (Instance #12, Domain name)
This instance holds the domain name. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “Host name”
(Multilingual, see page 97)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 30h (48 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
Domain name, 48 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Domain name, 48 characters

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 92 (150)

Instance Attributes (Instance #13, SMTP Server)
This instance holds the SMTP server address. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP server”
(Multilingual, see page 97)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP server address, 64 characters.

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP server address, 64 characters.

Instance Attributes (Instance #14, SMTP User)
This instance holds the user name for the SMTP account. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP user”
(Multilingual, see page 97)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP account user name, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP account user name, 64 characters

Instance Attributes (Instance #15, SMTP Password)
This instance holds the password for the SMTP account. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP Pswd”
(Multilingual, see page 97)

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR Any change is valid after reset.
SMTP account password, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP account password, 64 characters

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 93 (150)

Instance Attributes (Instance #16, MDI 1 Settings)
This instance holds the settings for MDI/MDIX 1. Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “MDI 1”

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

5 Value Get/Set ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

Instance Attributes (Instance #17, MDI 2 Settings)
This instance holds the settings for MDI/MDIX 2. Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “MDI 2”

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

5 Value Get/Set ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

Instance Attributes (Instances #18 and #19)
These instances are reserved for future attributes.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 94 (150)

Instance Attributes (Instance #20, Device Instance)
This instance maps to the Object_Identifier property of the Device Object. Changes have immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “Device Inst”
(Multilingual, see page 97)

2 Data type Get UINT8 06h (= UINT32)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set UINT32 Min = 0
Max = 3FFFFEh
Default = (Module serial number & 3FFFFEh)
The value is stored in Non-Volatile storage

6 Configured Value Get UINT32 Configured value of attribute 5 stored for use in case of reset.

Instance Attributes (Instance #21, UDP port)
This instance holds the settings for the UDP port. Valid after reset.

Name Access Data Type Description

1 Name Get Array of CHAR “UDP port”
(Multilingual, see page 97)

2 Data type Get UINT8 05h (= uint16)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set UINT16 Min = 1, Max = 65535
Default = BAC0h
The value is stored in Non-Volatile storage

6 Configured Value Get UINT16 Configured value of attribute 5 stored for use in case of reset.

Instance Attributes (Instance #22, Process Active Timeout)
This instance specifies the Process Active Timeout. Changes take immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “Process tmo”
(Multilingual, see page 97)

2 Data type Get UINT8 05h (= UINT16)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set UINT16 Default = 0
The value is stored in Non-Volatile storage

6 Configured Value Get UINT16 Since the value is used directly when changed this attribute always
has the same value as attribute #5.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 95 (150)

Instance Attributes (Instance #23, Foreign Device Registration IP Address)
This instance gives the IP address for where the BBMD to register as foreign device. Changes take immediate
effect.

Name Access Data Type Description

1 Name Get Array of CHAR “FDR IP address”
(Multilingual, see page 97)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)
Byte order:
Example – 10.10.12.13
IP address byte #0: 10
IP address byte #1: 10
IP address byte #2 : 12
IP address byte #3: 13

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set UINT8 Valid range: 0.0.0.0 – 255.255.255.255
0.0.0.0 = Default
The value is stored in Non-Volatile storage
When written with a valid value the module will un-register with the
current BBMD (if any) and send a Register-Foreign-Device request to
the new BBMD.

6 Configured Value Get UINT8 Since the value is used directly when changed this attribute always
has the same value as attribute #5.

Instance Attributes (Instance #24, Foreign Device Registration UDP Port)
This instance gives the UDP port to use for foreign device registration. Changes take immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “FDR UDP port”
(Multilingual, see page 97)

2 Data type Get UINT8 05h (= UINT16)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set UINT16 Min = 1
Max = 65535
Default = BAC0h
The value is stored in Non-Volatile storage
When written with a valid value the module will un-register with the
current BBMD (if any) and send a Register-Foreign-Device request to
the new BBMD. This will only be done if the value attribute of
instance #23 is set to a valid value.

6 Configured Value Get UINT16 Since the value is used directly when changed this attribute always
has the same value as attribute #5.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 96 (150)

Instance Attributes (Instance #25, Foreign Device Registration Time to Live Value)
This instance gives the foreign device registration time to live. Changes take immediate effect.

Name Access Data Type Description

1 Name Get Array of CHAR “FDR TTL valuet”
(Multilingual, see page 97)

2 Data type Get UINT8 05h (= UINT16)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set UINT16 Min = 0 sec
Max = 65535 sec
Default = 0 sec
The value is stored in Non-Volatile storage
When written with a valid value the module will send a Register-
Foreign-Device with the new time to live value. This will only be done
if the value attribute of instance 23 is set to a valid value.

6 Configured Value Get UINT16 Since the value is used directly when changed this attribute always
has the same value as attribute #5.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 97 (150)

Multilingual Strings
The instance names and enumeration strings in this object are multilingual, and are translated based on the
current language settings as follows:

Instance English German Spanish Italian French

3 IP address IP-Adresse Dirección IP Indirizzo IP Adresse IP
4 Subnet mask Subnetzmaske Masac. subred Sottorete Sous-réseau
5 Gateway Gateway Pasarela Gateway Passerelle

6 DHCP DHCP DHCP DHCP DHCP
Enable Einschalten Activado Abilitato Activé
Disable Ausschalten Desactivado Disabilitato Désactivé

7 Comm 1 Komm 1 Comu 1 Connessione 1 Comm 1
Auto Auto Auto Auto Auto
10 HDX 10 HDX 10 HDX 10 HDX 10 HDX
10 FDX 10 FDX 10 FDX 10 FDX 10 FDX
100 HDX 100 HDX 100 HDX 100 HDX 100 HDX
100 FDX 100FDX 100 FDX 100 FDX 100 FDX

8 Comm 2 Komm 2 Comu 2 Connessione 2 Comm 2
Auto Auto Auto Auto Auto
10 HDX 10 HDX 10 HDX 10 HDX 10 HDX
10 FDX 10 FDX 10 FDX 10 FDX 10 FDX
100 HDX 100 HDX 100 HDX 100 HDX 100 HDX
100 FDX 100FDX 100 FDX 100 FDX 100 FDX

9 DNS1 DNS 1 DNS Primaria DNS1 DNS1
10 DNS2 DNS 2 DNS Secundia. DNS2 DNS2
11 Host name Host name Nombre Host Nome Host Nom hôte
12 Domain name Domain name Nobre Domain Nome Dominio Dom Domaine
13 SMTP Server SMTP Server Servidor SMTP Server SMTP SMTP serveur
14 SMTP User SMTP User Usuario SMTP Utente SMTP SMTP utilisa.
15 SMTP Pswd SMTP PSWD Clave SMTP Password SMTP SMTP mt passe

20 Device inst Geraetenumm-
er

Istanc.Dispos Dispositivo Inst produit

21 UDP port UDP Port Puerto UDP Porta UDP Port UDP

22 Process tmo Prozess Tmo Tout Proceso Tout Processo Process tmo
23 FDR IP address FDR IP-Adr. Dir. IP FDR Indir. IP FDR Adresse IP FDR
24 FDR UDP port FDR UDP-Port Puerto UDP FDR Porta UDP FDR Port UDP FDR

25 FDR TTL value FDR TTL-Wert Valor FDR TTL Val. TTL FDR Valeur TTL FDR

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 98 (150)

10.6 Socket Interface Object (07h)
Category
Extended

Object Description
This object provides direct access to the TCP/IP stack socket interface, enabling custom protocols to be
implemented over TCP/UDP.

Note that some of the commands used when accessing this object may require segmentation. A message will
be segmented if the amount of data sent or received is larger than the message channel can handle. For more
information, see Message Segmentation, p. 113.

The use of functionality provided by this object should only be attempted by users who are already familiar with socket
interface programming and who fully understands the concepts involved in TCP/IP programming.

Supported Commands

Object: Get_Attribute

Create (See below)

Delete (See below)

DNS_Lookup (See below)

Instance: Get_Attribute

Set_Attribute

Bind (See below)

Shutdown (See below)

Listen (See below)

Accept (See below)

Connect (See below)

Receive (See below)

Receive_From (See below)

Send (See below)

Send_To (See below)

P_Add_membership (See below)

IP_Drop_membership (See below)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Socket interface”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of opened sockets

4 Highest instance no. Get UINT16 Highest created instance number

11 Max. no. of instances Get UINT16 0008h (8 instances): BACnet/IP

0014h (20 instances): All other industrial Ethernet
networks

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 99 (150)

Instance Attributes (Sockets #1...Max. no. of instances)
Extended

Name Access Data Type Description

1 Socket Type Get UINT8 Value: Socket Type

00h SOCK_STREAM, NONBLOCKING (TCP)

01h SOCK_STREAM, BLOCKING (TCP)

02h SOCK_DGRAM, NONBLOCKING (UDP)

03h SOCK_DGRAM, BLOCKING (UDP)

2 Port Get UINT16 Local port that the socket is bound to

3 Host IP Get UINT32 Host IP address, or 0 (zero) if not connected

4 Host port Get UINT16 Host port number, or 0 (zero) if not connected

5 TCP State Get UINT8 State (TCP sockets only):

Value State/Description

00h CLOSED Closed
01h LISTEN Listening for connection

02h SYN_SENT Active, have sent and received SYN

03h SYN_RECEIVED Have sent and received SYN

04h ESTABLISHED Established.
05h CLOSE_WAIT Received FIN, waiting for close

06h FIN_WAIT_1 Have closed, sent FIN

07h CLOSING Closed exchanged FIN; await FIN ACK

08h LAST_ACK Have FIN and close; await FIN ACK

09h FIN_WAIT_2 Have closed, FIN is acknowledged

Ah TIME_WAIT Quiet wait after close

6 TCP RX bytes Get UINT16 Number of bytes in RX buffers (TCP sockets only)

7 TCP TX bytes Get UINT16 Number of bytes in TX buffers (TCP sockets only)

8 Reuse address Get/Set BOOL Socket can reuse local address
Value
1
0

Meaning
Enabled
Disabled (default)

9 Keep alive Get/Set BOOL Protocol probes idle connection (TCP sockets only).
If the Keep alive attribute is set, the connection will be probed for the
first time after it has been idle for 120 minutes. If a probe attempt
fails, the connection will continue to be probed at intervals of 75s.
The connection is terminated after 8 failed probe attempts.

Value
1
0

Meaning
Enabled
Disabled (default)

10 IP Multicast TTL Get/Set UINT8 IP Multicast TTL value (UDP sockets only).
Default = 1.

11 IP Multicast Loop Get/Set BOOL IP multicast loop back (UDP sockets only)
Must belong to group in order to get the loop backed message

Value
1
0

Meaning
Enabled (default)
Disabled

12 (reserved)

13 TCP No Delay Get/Set BOOL Don’t delay send to coalesce packets (TCP).

Value
1
0

Meaning
Delay (default)
Don’t delay (turn off Nagle’s algorithm on socket)

14 TCP Connect
Timeout

Get/Set UINT16 TCP Connect timeout in seconds (default = 75s)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 100 (150)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object Instance

Description

This command creates a socket.

This command is only allowed in WAIT_PROCESS, IDLE and PROCESS_ACTIVE states.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:
00h
01h
02h
03h

Socket Type:
SOCK_STREAM, NON-BLOCKING (TCP)
SOCK_STREAM, BLOCKING (TCP)
SOCK_DGRAM, NON-BLOCKING (UDP)
SOCK_DGRAM, BLOCKING (UDP)

• Response Details

Field Contents Comments
Data[0] Instance number (low) Instance number of the created socket.

Data[1] Instance number (high)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 101 (150)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object Instance

Description

This command deletes a previously created socket and closes the connection (if connected).

• If the socket is of TCP-type and a connection is established, the connection is terminated with the RST-flag.

• To gracefully terminate a TCP-connection, it is recommended to use the ‘Shutdown’-command (see
below) before deleting the socket, causing the connection to be closed with the FIN-flag instead.

• Command Details

Field Contents Comments

CmdExt[0] Instance number to delete (low) Instance number of socket that shall be deleted.

CmdExt[1] Instance number to delete (high)

• Response Details

(no data)

Command Details: Bind
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command binds a socket to a local port.

• Command Details

Field Contents Comments

CmdExt[0] Requested port number (low) Set to 0 (zero) to request binding to any free port.

CmdExt[1] Requested port number (high)

• Response Details

Field Contents Comments

CmdExt[0] Bound port number (low) Actual port that the socket was bound to.

CmdExt[1] Bound port number (high)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 102 (150)

Command Details: Shutdown
Category

Extended

Details

Command Code 11h

Valid for: Instance

Description

This command closes a TCP-connection using the FIN-flag. Note that the response does not indicate if the
connection actually shut down, which means that this command cannot be used to poll non-blocking sockets,
nor will it block for blocking sockets.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:
00h
01h
02h

Mode:
Shutdown receive channel
Shutdown send channel
Shutdown both receive- and send channel

• Response Details

(no data)

The recommended sequence to gracefully shut down a TCP connection is described below.

Application initiates shutdown:

1. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send channel,
note that the receive channel will still be operational.

2. Receive data on socket until error message Object specific error (EPIPE (13)) is received, indicating that
the host closed the receive channel. If host does not close the receive channel use a timeout and progress
to step 3.

3. Delete the socket instance. If step 2 timed out, RST-flag will be sent to terminate the socket.

Host initiates shutdown:

1. Receive data on socket, if zero bytes received it indicates that the host closed the receive channel of the
socket.

2. Try to send any unsent data to the host.

3. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send channel.

4. Delete the socket instance.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 103 (150)

Command Details: Listen
Category

Extended

Details

Command Code 12h

Valid for: Instance

Description

This command puts a TCP socket in listening state.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] (reserved)

• Response Details

(no data)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 104 (150)

Command Details: Accept
Category

Extended

Details

Command Code 13h

Valid for: Instance

Description

This command accepts incoming connections on a listening TCP socket. A new socket instance is created for
each accepted connection. The new socket is connected with the host and the response returns its instance
number.

NONBLOCKING mode This command must be issued repeatedly (polled) for incoming connections. If no incoming
connection request exists, the module will respond with error code 0006h (EWOULDBLOCK).

BLOCKING mode This command will block until a connection request has been detected.

This command will only be accepted if there is a free instance to use for accepted connections. For blocking
connections, this command will reserve an instance.

• Command Details

(no data)

• Response Details

Field Contents

Data[0] Instance number for the connected socket (low byte)

Data[1] Instance number for the connected socket (high byte)

Data[2] Host IP address byte 4

Data[3] Host IP address byte 3

Data[4] Host IP address byte 2

Data[5] Host IP address byte 1

Data[6] Host port number (low byte)

Data[7] Host port number (high byte)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 105 (150)

Command Details: Connect
Category

Extended

Details

Command Code 14h

Valid for: Instance

Description

For SOCK-DGRAM-sockets, this command specifies the peer with which the socket is to be associated (to which
datagrams are sent and the only address from which datagrams are received).

For SOCK_STREAM-sockets, this command attempts to establish a connection to a host.

SOCK_STREAM-sockets may connect successfully only once, while SOCK_DGRAM-sockets may use this service
multiple times to change their association. SOCK-DGRAM-sockets may dissolve their association by connecting
to IP address 0.0.0.0, port 0 (zero).

NON-BLOCKING mode: This command must be issued repeatedly (polled) until a connection is connected, rejected or timed
out. The first connect-attempt will be accepted, thereafter the command will return error code 22
(EINPROGRESS) on poll requests while attempting to connect.

BLOCKING mode: This command will block until a connection has been established or the connection request is
cancelled due to a timeout or a connection error.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Host IP address byte 4

Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

• Response Details

(no data)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 106 (150)

Command Details: Receive
Category

Extended

Details

Command Code 15h

Valid for: Instance

Description

This command receives data from a connected socket. Message segmentation may be used to receive up to
1472 bytes (for more information, see Message Segmentation, p. 113).

For SOCK-DGRAM-sockets, the module will return the requested amount of data from the next received
datagram. If the datagram is smaller than requested, the entire datagram will be returned in the response
message. If the datagram is larger than requested, the excess bytes will be discarded.

For SOCK_STREAM-sockets, the module will return the requested number of bytes from the received data
stream. If the actual data size is less than requested, all available data will be returned.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

If the module responds successfully with 0 (zero) bytes of data, it means that the host has closed the
connection. The send channel may however still be valid and must be closed using Shutdown and/or Delete.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 113

Data[0] Receive data size (low) Only used in the first segment

Data[1] Receive data size (high)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p. 113).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 113

Data[0...n] Received data -

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 107 (150)

Command Details: Receive_From
Category

Extended

Details

Command Code 16h

Valid for: Instance

Description

This command receives data from an unconnected SOCK_DGRAM-socket. Message segmentation may be used
to receive up to 1472 bytes (For more information, see Message Segmentation, p. 113).

The module will return the requested amount of data from the next received datagram. If the datagram is
smaller than requested, the entire datagram will be returned in the response message. If the datagram is
larger than requested, the excess bytes will be discarded.

The response message contains the IP address and port number of the sender.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 113

Data[0] Receive data size (low byte) Only used in the first segment

Data[1] Receive data size (high byte)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p. 113).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 113

Data[0] Host IP address byte 4 The host address/port information is only included in the first
segment. All data thereafter will start at Data[0]Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

Data[6...n] Received data

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 108 (150)

Command Details: Send
Category

Extended

Details

Command Code 17h

Valid for: Instance

Description

This command sends data on a connected socket. Message segmentation may be used to send up to 1472
bytes (For more information, see Message Segmentation, p. 113).

NON-BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will respond with error
code 0006h (EWOULDBLOCK)

BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will block until there is.

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 113).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control (For more information, see Message Segmentation, p. 113)

Data[0...n] Data to send -

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low) Only valid in the last segment

Data[1] Number of sent bytes (high)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 109 (150)

Command Details: Send_To
Category

Extended

Details

Command Code 18h

Valid for: Instance

Description

This command sends data to a specified host on an unconnected SOCK-DGRAM-socket. Message segmentation
may be used to send up to 1472 bytes (For more information, see appendix For more information, see
Message Segmentation, p. 113).

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 113).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control For more information, see Message Segmentation, p. 113

Data[0] Host IP address byte 4 The host address/port information shall only be included in
the first segment. All data thereafter must start at Data[0]Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

Data[6...n] Data to send

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low byte) Only valid in the last segment

Data[1] Number of sent bytes (high byte)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 110 (150)

Command Details: IP_Add_Membership
Category

Extended

Details

Command Code 19h

Valid for: Instance

Description

This command assigns the socket an IP multicast group membership. The module always joins the “All hosts
group” automatically, however this command may be used to specify up to 20 additional memberships.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Group IP address byte 4

Data[1] Group IP address byte 3

Data[2] Group IP address byte 2

Data[3] Group IP address byte 1

• Response Details

(no data)

Command Details: IP_Drop_Membership
Category

Extended

Details

Command Code 1Ah

Valid for: Instance

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 111 (150)

Description

This command removes the socket from an IP multicast group membership.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Group IP address byte 4

Data[1] Group IP address byte 3

Data[2] Group IP address byte 2

Data[3] Group IP address byte 1

• Response Details

(no data)

Command Details: DNS_Lookup
Category

Extended

Details

Command Code 1Bh

Valid for: Object

Description

This command resolves the given host name and returns the IP address.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0... N] Host name Host name to resolve

• Response Details (Success)

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] IP address byte 4 IP address of the specified host

Data[1] IP address byte 3

Data[2] IP address byte 2

Data[3] IP address byte 1

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 112 (150)

Socket Interface Error Codes (Object Specific)
The following object-specific error codes may be returned by the module when using the socket interface
object.

Error Code Name Meaning

1 ENOBUFS No internal buffers available
2 ETIMEDOUT A timeout event occurred
3 EISCONN Socket already connected

4 EOPNOTSUPP Service not supported

5 ECONNABORTED Connection was aborted
6 EWOULDBLOCK Socket cannot block because unblocking socket type

7 ECONNREFUSED Connection refused
8 ECONNRESET Connection reset
9 ENOTCONN Socket is not connected
10 EALREADY Socket is already in requested mode

11 EINVAL Invalid service data
12 EMSGSIZE Invalid message size

13 EPIPE Error in pipe

14 EDESTADDRREQ Destination address required

15 ESHUTDOWN Socket has already been shutdown

16 (reserved) -

17 EHAVEOOB Out of band data available
18 ENOMEM No internal memory available

19 EADDRNOTAVAIL Address is not available
20 EADDRINUSE Address already in use

21 (reserved) -

22 EINPROGRESS Service already in progress

28 ETOOMANYREFS Too many references

101 Command aborted If a command is blocking on a socket, and that socket is closed using the Delete
command, this error code will be returned to the blocking command.

102 DNS name error Failed to resolve the host name (name error response from DNS server.

103 DNS timeout Timeout when performing a DNS lookup.

104 DNS command failed Other DNS error.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 113 (150)

Message Segmentation
General

Category: Extended

The maximum message size supported by the Anybus CompactCom 40 is normally 1524 bytes. In some
applications a maximum message size of 255 bytes is supported, e.g. if an Anybus CompactCom 40 is to
replace an Anybus CompactCom 30 without any changes to the application. The maximum socket message size
is 1472. To ensure support for socket interface messages larger than 255 bytes a segmentation protocol is used.

The segmentation bits have to be set for all socket interface messages, in the commands where segmentation can be
used, whether the messages have to be segmented or not.

The segmentation protocol is implemented in the message layer and must not be confused with the
fragmentation protocol used on the serial host interface. Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

The module supports 1 (one) segmented message per instance

Command Segmentation

When a command message is segmented, the command initiator sends the same command header multiple
times. For each message, the data field is exchanged with the next data segment.

Command segmentation is used for the following commands (Socket Interface Object specific commands):

• Send

• Send To

When issuing a segmented command, the following rules apply:

• When issuing the first segment, FS must be set.

• When issuing subsequent segments, both FS and LS must be cleared.

• When issuing the last segment, the LF-bit must be set.

• For single segment commands (i.e. size less or equal to the message channel size), both FS and LS must be
set.

• The last response message contains the actual result of the operation.

• The command initiator may at any time abort the operation by issuing a message with AB set.

• If a segmentation error is detected during transmission, an error message is returned, and the current
segmentation message is discarded. Note however that this only applies to the current segment;
previously transmitted segments are still valid.

Segmentation Control Bits (Command)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero)

Segmentation Control Bits (Response)

Bit Contents Meaning

0... 7 (reserved) Ignore

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 114 (150)

Response Segmentation

When a response is segmented, the command initiator requests the next segment by sending the same
command multiple times. For each response, the data field is exchanged with the next data segment.

Response segmentation is used for responses to the following commands (Socket Interface Object specific
commands):

• Receive

• Receive From

When receiving a segmented response, the following rules apply:

• In the first segment, FS is set.

• In all subsequent segment, both FS and LS are cleared.

• In the last segment, LS is set.

• For single segment responses (i.e. size less or equal to the message channel size), both FS and LS are set.

• The command initiator may at any time abort the operation by issuing a message with AB set.

Segmentation Control bits (Command)

Bit Contents Meaning

0 (reserved) (set to zero)
1
2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero)

Segmentation Control bits (Response)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2...7 (reserved) Set to 0 (zero)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 115 (150)

10.7 SMTP Client Object (09h)
Category
Extended

Object Description
This object groups functions related to the SMTP client.

Supported Commands

Object: Get_Attribute

Create

Delete

Send e-mail from file (see below)

Instance: Get_Attribute

Set_Attribute

Send e-mail (see below)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “SMTP Client”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0006h
12 Success count Get UINT16 Reflects the no. of successfully sent messages

13 Error count Get UINT16 Reflects the no. of messages that could not be delivered

Instance Attributes (Instance #1)
Instances are created dynamically by the application.

Name Access Data Type Description

1 From Get/Set Array of CHAR e.g. “someone@somewhere.com”

2 To Get/Set Array of CHAR e.g.“ someone.else@anywhere.net”

3 Subject Get/Set Array of CHAR e.g. “Important notice”

4 Message Get/Set Array of CHAR e.g.“Shut down the system”

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 116 (150)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object

Description

This command creates an e-mail instance.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Instance number low byte

Data[1] high byte

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 117 (150)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object

Description

This command deletes an e-mail instance.

• Command Details

Field Contents Comments

CmdExt[0] E-mail instance number low byte

CmdExt[1] high byte

• Response Details

(no data)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 118 (150)

Command Details: Send E-mail From File
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command sends an e-mail based on a file in the file system.

The file must be a plain ASCII-file in the following format:

[To]
recipient

[From]
sender

[Subject]
email subject

Se [Headers]
extra headers, optional

[Message]
actual email message

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0... n] Path + filename of message file

• Response Details

(no data)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 119 (150)

Command Details: Send E-mail
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command sends the specified e-mail instance.

• Command Details

(no data)

• Response Details

(no data)

Object Specific Error Codes
Error Codes Meaning

1 SMTP server not found
2 SMTP server not ready

3 Authentication error
4 SMTP socket error
5 SSI scan error
6 Unable to interpret e-mail file

255 Unspecified SMTP error

(other) (reserved)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 120 (150)

10.8 File System Interface Object (0Ah)
Category
Extended

Object Description
This object provides an interface to the built-in file system. Each instance represents a handle to a file stream
and contains services for file system operations.

This object is thoroughly described in Anybus CompactCom 40 Software Design Guide.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Anybus Module Objects 121 (150)

10.9 Network Ethernet Object (0Ch)
Category
Extended

Object Description
This object provides Ethernet-specific information to the application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Network Ethernet”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

Instance Attributes (Instance #1)
Name Access Data Type Description

1 MAC Address Get Array of UINT8 Current MAC address.
See also “Ethernet Host Object (F9h)”

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 122 (150)

11 Host Application Objects
11.1 General Information

This chapter specifies the host application object implementation in the module. The objects
listed here may be implemented within the host application firmware to expand the BACnet/IP
implementation.

Standard Objects

• “ Application File System Object (EAh)” (see Anybus CompactCom 40 Software Design
Guide)

• “ Application Object (FFh)” (see Anybus CompactCom 40 Software Design Guide)

• “Application Data Object (FEh)” (see Anybus CompactCom 40 Software Design Guide)

Network Specific Objects:

• BACnet Host Object (EFh), p. 123

• Ethernet Host Object (F9h), p. 129

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 123 (150)

11.2 BACnet Host Object (EFh)
Object Description
This object implements BACnet specific features in the host application. If attribute #7 (Support Advanced
Mapping) is enabled, the application can define the ADI mapping of the module to suit the application.

The implementation of this object is optional; the host application can support none, some, or all of the
attributes specified below. The module will attempt to retrieve the values of these attributes during startup; if
an attribute is not implemented in the host application, simply respond with an error message (06h, “Invalid
CmdExt[0]”). In such cases, the module will use its default value.

If the module attempts to retrieve a value of an attribute not listed below, respond with an error message
(06h, “Invalid CmdExt[0]”).

See also...

• Anybus CompactCom 40 Software Design Guide, “Error Codes”

• Device Object, p. 11

Supported Commands

Object: Get_Attribute

Get_ADI_By_BACnet_Object_Instance

Get_ADI_By_BACnet_Name

Get_All_BACnet_Object_Instances

Get_BACnet_Object_Instance_By_ADI

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “BACnet”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 124 (150)

Instance Attributes (Instance #1)
Name Access Data Type Default Value Comment

1 Object Name Get/Set Array of CHAR “CompactCom
40 BACnet/IP”

Changes the Object_Name property of the BACnet Device
Object
Max 64 bytes.
Both Get and Set are optional. If Set is implemented Get is
required.

2 Vendor Name Get Array of CHAR “HMS
Industrial
Networks”

Changes the Vendor_Name property of the BACnet Device
Object
Max 64 bytes.
Both Get and Set are optional. If Set is implemented Get is
required.

3 Vendor Identifier Get UINT16 486 Changes the Vendor_Identifier property of the BACnet Device
Object.

4 Model Name Get Array of CHAR “CompactCom
40 BACnet/IP”

Changes the Model_Name property of the BACnet Device
Object and the product name, displayed on the web pages and
in HICP responses.

5 Firmware Revision Get Array of CHAR The modules
firmware
revision

Changes the Firmware_Revision property of the BACnet Device
Object
Max 16 bytes.

6 Application_
Software_Version

Get Array of CHAR The modules
firmware
revision

Changes the Application_Software_Version property of the
BACnet Device Object
Max 16 bytes.

7 Support advanced
mapping

Get BOOL False If true, the application supports advanced BACnet to ADI
mapping schema and must support all related commands.

8 Current date and
time

Get/Set Struct of: Sanity checks will be done when this value is read. If invalid
values are detected the whole struct will be set to 0.
If the Anybus CompactCom 40 BACnet/IP receives a date/time
update from the network it will write updated date/time to
this attribute.

UINT16 0 Current year

UINT8 0 Current month
UINT8 0 Current day

UINT8 0 Current hour
UINT8 0 Current minute
UINT8 0 Current second

9 Password Get Array of CHAR “Admin” Password used for the ReinitializeDevice and
DeviceCommunicationControl commands.
Max 20 bytes.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 125 (150)

Command Details: Get_ADI_By_BACnet_Object_Instance
Category

Extended

Details

Command Code 10h

Valid for: Object

Description

By setting the attribute Support advanced mapping (#7), all requests to BACnet data objects will be translated
to ADIs using this service.

The service is used to translate from BACnet addressing to Anybus CompactCom addressing. Request to
supported BACnet object classes are forwarded to the application, so that it can return the corresponding ADI.

For information about BACnet object classes, see BACnet/IP Implementation, p. 10.

• Command Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0,1] BACnet Object BACnet object class

MsgData[2... 5] BACnet Instance -

• Response Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0,1] ADI ADI that corresponds to the requested BACnet Object
Instance

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 126 (150)

Command Details: Get_ADI_By_BACnet_Name
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

By setting the attribute Support advanced mapping (#7), all requests to BACnet data objects by name will be
translated to ADIs using this service.

The service is used to translate from BACnet addressing to Anybus CompactCom addressing. Request to
supported BACnet object classes are forwarded to the application, so that it can return the corresponding ADI.

For information about BACnet object classes, see BACnet/IP Implementation, p. 10.

• Command Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0....
N]

BACnet Object_Name This field holds a string containing the BACnet object name

• Response Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0,1] ADI ADI that corresponds to the requested BACnet Object Name

MsgData[2,3] BACnet object class The BACnet object class that corresponds to the BACnet
Object_Name requested

MsgData[4... 7] BACnet Instance The BACnet Instance that corresponds to the BACnet Object_
Name requested.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 127 (150)

Command Details: Get_All_BACnet_Object_Instances
Category

Extended

Details

Command Code 12h

Valid for: Object

Description

If the attribute Support advanced mapping (#7) is set, the Object_List attribute in the Device Object will be
populated during initialization using this service. The response returns a bit array of 2040 entries. A set bit
indicates that the corresponding instance is implemented within the application.

The example in the table below, shows the first two bytes in the application response. Instances 1, 4, 10, 12,
and 13 are implemented in the application.

Byte Value

0 12h (0001 0010b)

1 34h (0011 0100b)

For information about BACnet object classes, see BACnet/IP Implementation, p. 10.

By setting the attribute Support advanced mapping (#7), this service must be implemented. When the mapping
of write process data has been performed, it is not possible for the module to know which ADI corresponds to
which BACnet object identifier. This service finds that information by translating from an ADI to a BACnet
object identifier.

For information about BACnet object classes, see BACnet/IP Implementation, p. 10.

• Command Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0, 1] BACnet Object BACnet object class

• Response Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0...
254]

Object List Bit array indicating implemented BACnet objects
corresponding to the requested BACnet object class.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 128 (150)

Command Details: Get_BACnet_Object_Instance_By_ADI
Category

Extended

Details

Command Code 13h

Valid for: Object

Description

If the attribute Support advanced mapping (#7) is set, this service must be implemented. When the mapping of
write process data has been performed, it is not possible for the module to know which ADI corresponds to
which BACnet object identifier. This service finds that information by translating from an ADI to a BACnet
object identifier.

For information about BACnet object classes, see BACnet/IP Implementation, p. 10.

• Command Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0, 1] ADI The ADI for which the application wants to find the BACnet
object identifier.

• Response Details

Field Contents Comments

CmdExt[0] (reserved)

CmdExt[1]

MsgData[0, 1] BACnet object class The BACnet object class used for the ADI supplied in the
command. (UINT16)

MsgData[2... 5] BACnet Instance The BACnet instance corresponding to the ADI supplied in
the command. (UINT32)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 129 (150)

11.3 Ethernet Host Object (F9h)
Object Description
This object implements Ethernet features in the host application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Ethernet”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
• If an attribute is not implemented, the default value will be used.

• The module is preprogrammed with a valid MAC address. To use that address, do not implement attribute
#1.

• Do not implement attributes #9 and #10, only used for PROFINET devices, if the module shall use the
preprogrammed MAC addresses.

• If new MAC addresses are assigned to a PROFINET device, these addresses (in attributes #1, #9, and #10)
have to be consecutive, e.g. (xx:yy:zz:aa:bb:01), (xx:yy:zz:aa:bb:02), and (xx:yy:zz:aa:bb:03) with the first
five octets not changing.

Name Access Data Type Default Value Comment

1 MAC address Get Array of UINT8 - 6 byte physical address value; overrides the preprogrammed
Mac address. Note that the new Mac address value must be
obtained from the IEEE.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

2 Enable HICP Get BOOL True (Enabled) Enable/Disable HICP

3 Enable Web Server Get BOOL True (Enabled) Enable/Disable Web Server
(Not used if Transparent Ethernet is enabled.)

4 (reserved) Reserved for Anybus CompactCom 30 applications.

5 Enable Web ADI
access

Get BOOL True (Enabled) Enable/Disable Web ADI access
(Not used if Transparent Ethernet is enabled.)

6 Enable FTP server Get BOOL True (Enabled) Enable/Disable FTP server
(Not used if Transparent Ethernet is enabled.)

7 Enable admin
mode

Get BOOL False
(Disabled)

Enable/Disable FTP admin mode
(Not used if Transparent Ethernet is enabled.)

8 Network Status Set UINT16 - See below.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 130 (150)

Name Access Data Type Default Value Comment

9 Port 1 MAC address Get Array of UINT8 - Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 1 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

10 Port 2 MAC address Get Array of UINT8 - Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 2 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

11 Enable ACD Get BOOL True (Enabled) Enable/Disable ACD protocol.
If ACD functionality is disabled using this attribute, the ACD
attributes in the CIP TCP/IP object (F5h) are not available.

12 Port 1 State Get ENUM 0 (Enabled) The state of Ethernet port 1.

• This attribute is not read by EtherCAT and Ethernet
POWERLINK devices, where Port 1 is always enabled.

• This attribute is not used by PROFINET and Ethernet
POWERLINK

00h: Enabled
01h: Disabled.

The port is treated as existing. References to the
port can exist, e.g. in network protocol or on
website.

13 Port 2 State Get ENUM 0 (Enabled) The state of Ethernet port 2.

• This attribute is not read by EtherCAT and Ethernet
POWERLINK devices, where Port 2 is always enabled.

• This attribute is not used by PROFINET

00h: Enabled
01h: Disabled.

The port is treated as existing. References to the
port can exist, e.g. in network protocol or on
website.

02h: Inactive.
The attribute is set to this value for a device that
only has one physical port. All two-port
functionality is disabled. No references can be
made to this port.
Note: This functionality is available for Ethernet/
IP and Modbus-TCP devices.

14 (reserved)

15 Enable reset from
HICP

Get BOOL 0 = False Enables the option to reset the module from HICP.

16 IP configuration Set Struct of:
UINT32 (IP
address)
UINT32
(Subnet mask)
UINT32
(Gateway)

N/A Whenever the configuration is assigned or changed, the
Anybus CompactCom module will update this attribute.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 131 (150)

Name Access Data Type Default Value Comment

17 IP address byte 0–2 Get Array of UINT8
[3]

[0] = 192
[1] = 168
[2] = 0

First three bytes in IP address. Used in standalone shift register
mode if the configuration switch value is set to 1-245. In that
case the IP address will be set to:
Y[0].Y[1].Y[2].X
Where Y0-2 is configured by this attribute and the last byte X
by the configuration switch.

18 Ethernet PHY
Configuration

Get Array of BITS16 0x0000 for
each port

Ethernet PHY configuration bit field. The length of the array
shall equal the number of Ethernet ports of the product. Each
element represents the configuration of one Ethernet port
(element #0 maps to Ethernet port #1, element #1 maps to
Ethernet port #2 and so on).
Note: Only valid for EtherNet/IP and Modbus-TCP devices.

Bit 0: Auto negotiation fallback duplex
0 = Half duplex
1 = Full duplex

Bit 1–15: Reserved
20 SNMP read-only

community string
Get Array of CHAR “public” Note: This attribute is only valid for PROFINET devices.

Sets the SNMP read-only community string. Max length is 32.

21 SNMP read-write
community string

Get Array of CHAR “private” Note: This attribute is only valid for PROFINET devices.
Sets the SNMP read-write community string. Max length is 32.

22 DHCP Option 61
source

Get ENUM 0 (Disabled) Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

23 DHCP Option 61
generic string

Get Array of UINT8 N/A Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

24 Enable DHCP Client Get BOOL 1 = True Note: This attribute is currently valid for Ethernet/IP and
PROFINET devices.
Enable/disable DHCP Client functionality

0: DHCP Client functionality is disabled

1: DHCP Client functionality is enabled

Network Status
This attribute holds a bit field which indicates the overall network status as follows:

Bit Contents Description Comment

0 Link Current global link status
1= Link sensed
0= No link

1 IP established 1 = IP address established
0 = IP address not established

2 (reserved) (mask off and ignore)

3 Link port 1 Current link status for port 1
1 = Link sensed
0 = No link

EtherCAT only: This link status indicates whether the
Anybus CompactCom is able to communicat using
Ethernet over EtherCAT (EoE) or not. That is, it
indicates the status of the logical EoE port link and is
not related to the link status on the physical EtherCAT
ports.

4 Link port 2 Current link status for port 2
1 = Link sensed
0 = No link

Not used for EtherCAT

5... 15 (reserved) (mask off and ignore)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Host Application Objects 132 (150)

DHCP Option 61 (Client Identifier)

Only valid for EtherNet/IP devices

The DHCP Option 61 (Client Identifier) allow the end-user to specify a unique identifier, which has to be unique
within the DHCP domain.

Attribute #22 (DHCP Option 61 source) is used to configure the source of the Client Identifier. The table below
shows the definition for the Client identifier for different sources and their description.

Value Source Description

0 Disable The DHCP Option 61 is disabled. This is the default value if the attribute is not implemented in the
application.

1 MACID The MACID will be used as the Client Identifier
2 Host Name The configured Host Name will be used as the Client Identifier

3 Generic String Attribute #23 will be used as the Client Identifier

Attribute #23 (DHCP Option 61 generic string) is used to set the Client Identifer when Attribute #22 has been
set to 3 (Generic String). Attribute #23 contains the Type field and Client Identifier and shall comply with the
definitions in RFC 2132. The allowed max length that can be passed to the module via attribute #23 is 64 octets.

Example:

If Attribute #22 has been set to 3 (Generic String) and Attribute #23 contains 0x01, 0x00, 0x30, 0x11, 0x33,
0x44, 0x55, the Client Identifier will be represented as an Ethernet Media Type with MACID 00:30:11:33:44:55.

Example 2:

If Attribute #22 has been set to 2 (Host Name) Attribute #23 will be ignored and the Client Identifier will be the
same as the configured Host Name.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix A: Categorization of Functionality 133 (150)

A Categorization of Functionality
The objects, including attributes and services, of the Anybus CompactCom and the application
are divided into two categories: basic and extended.

A.1 Basic
This category includes objects, attributes and services that are mandatory to implement or to use.
They will be enough for starting up the Anybus CompactCom and sending/receiving data with
the chosen network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this
category.

A.2 Extended
Use of the objects in this category extends the functionality of the application. Access is given to
the more specific characteristics of the industrial network, not only the basic moving of data to
and from the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the
available network functionality is enabled and accessible, access to the specification of the
industrial network may be required.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix B: Implementation Details 134 (150)

B Implementation Details
B.1 SUP-Bit Definition

The supervised bit (SUP) indicates that the network participation is supervised by another
network device. In the case of BACnet/IP, this means that the SUP-bit is set when the time (ms)
elapsed since the last BACnet request is less than the value of the parameter“ Process Active
Timeout”, if this parameter value is greater than zero.

B.2 Anybus State Machine
The table below describes how the Anybus state machine relates to the BACnet/IP network

Anybus State Implementation Comment
WAIT_PROCESS The module stays in this state until a BACnet

request arrives.
-

ERROR IP conflict -

PROCESS_ACTIVE BACnet request(s) addressed to this module have
been received within the last “Process Active
Timeout” time.

• If no process active timeout value is
specified (i.e. the parameter is set to
0), the module will remain in this
state after the first BACnet request
has been received.

• The supervised bit is set when the
module is in this state.

IDLE N/A -

EXCEPTION Unexpected error, e.g. watchdog timeout etc. MS LED turns red (to indicate a major
fault)
NS LED is off

B.3 Application Watchdog Timeout Handling
Upon detection of an application watchdog timeout, the module will cease network participation
and shift to state EXCEPTION. No other network specific actions are performed.

B.4 Implemented BACnet BIBBs
The Anybus CompactCom 40 BACnet/IP is implemented as a BACnet Application Specific
Controller (B-ASC). To make the module eligible for certification as a B-ASC, the following BIBBs
(BACnet Interoperability Building Blocks) are implemented:

BIBB Corresponding BACnet Service(s)

Data Sharing-ReadProperty-B (DS-RP-B) ReadProperty (Execute)

Data Sharing-ReadPropertyMultiple-B (DS-RPM-B) ReadPropertyMultiple (Execute)

Data Sharing-WriteProperty-B (DS-WP-B) WriteProperty (Execute)

Data Sharing-WritePropertyMultiple-B (DS-WPM-B) WritePropertyMultiple (Execute)

Data Sharing-COV-B (DS-COV-B) SubscribeCOV (Execute)
ConfirmedCOVNotification (Initiate)
UnConfirmedCOVNotification (Initiate)

Alarm and Event-Notification Internal-B (AE-N-I-B) ConfirmedEventNotification (Initiate)
UnConfirmedEventNotification (Initiate)

Alarm and Event-ACK-B (AE-ACK-B) AcknowledgeAlarm (Execute)

Alarm and Event-Alarm Summary-B (AE-ASUM-B) GetAlarmSummary (Execute)

Alarm and Event-Information-B (AE-INFO-B) GetEventInformation (Execute)

Device Management-Dynamic Device Binding-A (DM-DDB-A) Who-Is (Initiate)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix B: Implementation Details 135 (150)

BIBB Corresponding BACnet Service(s)

I-Am (Execute)

Device Management-Dynamic Device Binding-B (DM-DDB-B) Who-Is (Execute)
I-Am (Initiate)

Device Management-Dynamic Object Binding-B (DM-DDB-B) Who-Has (Execute)
I-Have (Initiate)

Device Management-Device Communication Control-B (DM-DCC-B) DeviceCommunicationControl (Execute)

Device Management-TimeSynchronization-B (DM-TS-B) TimeSynchronization (Execute)

Device Management-ReinitializeDevice-B (DM-RD-B) ReinitializeDevice (Execute)

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

C Secure HICP (Secure Host IP Configuration Protocol)
C.1 General

The Anybus CompactCom 40 BACnet/IP supports the Secure HICP protocol used by the Anybus
IPconfig utility for changing settings, e.g. IP address, Subnet mask, and enable/disable DHCP.
Anybus IPconfig can be downloaded free of charge from the HMS website, www.anybus.com.
This utility may be used to access the network settings of any Anybus product connected to the
network via UDP port 3250.

The protocol offers secure authentication and the ability to restart/reboot the device(s).

C.2 Operation
When the application is started, the network is automatically scanned for Anybus products. The
network can be rescanned at any time by clicking Scan.

To alter the network settings of a module, double-click on its entry in the list. A window will
appear, containing the settings for the module.

Fig. 7

Validate the new settings by clicking Set, or click Cancel to cancel all changes. Optionally, the
configuration can be protected from unauthorized access by a password. To enter a password,
check the Change password checkbox and enter the password in the New password text field.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix D: Technical Specification 137 (150)

D Technical Specification
D.1 Front View

Item
1 Network Status LED
2 Module Status LED
3 Ethernet Interface, Port 1

4 Ethernet Interface, Port 2

5 Link/Activity Port 1

6 Link/Activity Port 2

D.1.1 Network Status LED
LED State Indication/Description

Off No power or no IP address

Green • On-line, one or more BACnet messages have arrived

• Module has active COV subscriptions

• At least one value object has one or more events enabled

Green, flashing On-line, waiting for first BACnet message.

Red Duplicate IP address, FATAL error

Red, flashing • Connection timeout. No BACnet message has been received within the configured
“process active timeout” time.

• A COV or Alarm/Event notification could not be sent to its recipient.

A test sequence is performed on this LED during startup.

D.1.2 Module Status LED
LED State Indication/Description

Off No power

Green Normal operation

Red/green, alternating Firmware update from file system in progress

Red Major fault (state EXCEPTION, FATAL error etc.)

Red, flashing Recoverable fault(s)

A test sequence is performed on this LED during startup.

D.1.3 Link/Activity LED 5/6
LED State Indication/Description

Off No link, no activity

Green Link (100 Mbit/s) established

Green, flickering Activity (100 Mbit/s)

Yellow Link (10 Mbit/s) established

Yellow, flickering Activity (10 Mbit/s)

1 2

3

5 6

4

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix D: Technical Specification 138 (150)

D.1.4 Ethernet Interface
The Ethernet interface supports autonegotiation and Auto MDI-X, with 10/100Mbit, full or half
duplex operation.

D.2 Functional Earth (FE) Requirements
In order to ensure proper EMC behavior, the Anybus CompactCom 40 BACnet/IP must be
properly connected to functional earth via the FE pad / FE mechanism described in the general
Anybus CompactCom M40 Hardware Design Guide. If the brick version is used, please make sure
that the hardware is properly connected to FE.

HMS Industrial Networks does not guarantee proper EMC behavior unless these FE requirements
are fulfilled.

D.3 Power Supply
D.3.1 Supply Voltage

The module requires a regulated 3.3V power source as specified in the general Anybus
CompactCom M40 Hardware Design Guide.

D.3.2 Power Consumption
The Anybus CompactCom 40 BACnet/IP is designed to fulfil the requirements of a Class B module.
For more information about the power consumption classification used on the Anybus
CompactCom platform, consult the general Anybus CompactCom M40 Hardware Design Guide.

The current hardware design consumes up to 380 mA (RMS).

It is strongly advised to design the power supply in the host application based on the power consumption
classifications described in the general Anybus CompactCom M40 Hardware Design Guide, and not on
the exact power requirements of a single product.

In line with HMS policy of continuous product development, we reserve the right to change the exact
power requirements of this product without prior notification.

D.4 Environmental Specification
Consult the Anybus CompactCom M40 Hardware Design Guide for further information.

D.5 EMC Compliance
Consult the Anybus CompactCom M40 Hardware Design Guide for further information.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 139 (150)

E Backward Compatibility
The Anybus CompactCom M40 series of industrial network modules have significantly better
performance and include more functionality than the modules in the Anybus CompactCom 30
series. The 40 series is backward compatible with the 30 series in that an application developed
for the 30 series should be possible to use with the 40 series, without any major changes. Also it
is possible to mix 30 and 40 series modules in the same application.

This appendix presents the backwards compatibility issues that have to be considered for Anybus
CompactCom 40 BACnet/IP, when designing with both series in one application, or when
adapting a 30 series application for the 40 series.

E.1 Initial Considerations
There are two options to consider when starting the work to modify a host application
developed for Anybus CompactCom 30-series modules to also be compatible with the 40-series
modules:

• Add support with as little work as possible i.e. reuse as much as possible of the current
design.

– This is the fastest and easiest solution but with the drawback that many of the new
features available in the 40-series will not be enabled (e.g. enhanced and faster
communication interfaces, larger memory areas, and faster communication protocols).

– You have to check the hardware and software differences below to make sure the host
application is compatible with the 40-series modules. Small modifications to your
current design may be needed.

• Make a redesign and take advantage of all new features presented in the 40-series.

– A new driver and host application example code are available at
www.anybus.com/starterkit40 to support the new communication protocol. This driver
supports both 30-series and 40-series modules.

– You have to check the hardware differences below and make sure the host application
is compatible with the 40-series modules.

This information only deals with differences between the 30-series and the 40-series.

Link to support page: www.anybus.com/support.

E.2 Hardware Compatibility
Anybus CompactCom is available in three hardware formats; Module, Chip, and Brick.

E.2.1 Module
The modules in the 30-series and the 40-series share physical characteristics, like dimensions,
outline, connectors, LED indicators, mounting parts etc. They are also available as modules
without housing.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

http://www.anybus.com/starterkit40
http://www.anybus.com/support

Appendix E: Backward Compatibility 140 (150)

Fig. 8 Anybus CompactCom M30/M40

E.2.2 Chip
The chip (C30/C40) versions of the Anybus CompactCom differ completely when it comes to
physical dimensions.

There is no way to migrate a chip solution from the 30-series to the 40-series without a
major hardware update.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 141 (150)

E.2.3 Brick
The Anybus CompactCom B40-1 does not share dimensions with the Anybus CompactCom B30.
The B40-1 is thus not suitable for migration. However HMS Industrial Networks has developed a
separate brick version in the 40-series, that can be used for migration. This product, B40-2,
shares dimensions etc. with the B30. Please contact HMS Industrial Networks for more
information on the Anybus CompactCom B40-2.

Fig. 9 Anybus CompactCom B30

Fig. 10 Anybus CompactCom B40–1 (not for migration)

Fig. 11 Anybus CompactCom B40–2

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 142 (150)

E.2.4 Host Application Interface

25
50

1
26

MD
1

A1 A3 A5 A7 A9 A1
1

A1
3

D6 D4 D2 D0 VD
D

VS
S

OM
1

CE IR
Q

RE
SE

T
GO

P0
GI

P0
LE

D2
B

LE
D1

B
Tx

/O
M3

MI
1

VS
S

VS
S A0 A2 A4 A6 A8 A1
0

A1
2 D7 D5 D3 D1 VD
D

VS
S

OM
0

OM
2

R/
W OE

GO
P1

GI
P1

LE
D2

A
LE

D1
A Rx MI
0

MD
0

Fig. 12

Some signals in the host application interface have modified functionality and/or functions which
must be checked for compatibility. See the following sections.

Tx/OM3

In the 30-series, this pin is only used for Tx. It is tri-stated during power up, and driven by the
Anybus CompactCom UART after initialization. In the 40-series this pin is used as a fourth
operating mode setting pin (OM3). During startup after releasing the reset, this pin is read to
determine the operating mode to use. The pin is then changed to a Tx output.

In the 40-series, this pin has a built-in weak pull-up. If this pin, on a 30-series module or brick is
unconnected, pulled high, or connected to a high-Z digital input on the host processor, it will be
compatible with the 40-series. An external pull-up is recommended, but not required.

If this pin is pulled low by the host during startup in a 30-series application, any 40-series
module or brick, substituted in the application, will not enter the expected operating
mode.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“Application Connector Pin Overview”

Module Identification (MI[0..1])

These pins are used by the host application (i.e. your product) to identify what type of Anybus
CompactCom that is mounted. The identification differs between the 30-series and the 40-series.

If your software use this identification you need to handle the new identification value.

MI1 MI0 Module Type

LOW LOW Active Anybus CompactCom 30

HIGH LOW Active Anybus CompactCom 40

MI[0..1] shall only be sampled by the application during the time period from power up to the
end of SETUP state. The pins are low at power up and before reset release.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“Settings/Sync”.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 143 (150)

GIP[0..1]/LED3[A..B]

These pins are tri-stated inputs by default in the 30-series. In the 40-series, these pins are tri-
stated until the state NW_INIT. After that they become open-drain, active low LED outputs
(LED3A/LED3B).

No modification of the hardware is needed, if your current design has

• tied these pins to GND

• pulled up the pins

• pulled down the pins

• left the pins unconnected

However, if the application drive the pins high, a short circuit will occur.

If you connect the pins to LEDs, a pull-up is required.

In the 40-series, there is a possibility to set the GIP[0..1] and GOP[0..1] in high impedance state
(tri-state) by using attribute #16 (GPIO configuration) in the Anybus object (01h). I.e. if it is not
possible to change the host application hardware, this attribute can be configured for high
impedance state of GIP and GOP before leaving NW_INIT state.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“LED Interface/D8-D15 (Data Bus)”.

GOP[0..1]/LED4[A..B]

These pins are outputs (high state) by default in the 30-series. In the 40-series, these pins are tri-
stated until the state NW_INIT, and after that they become push-pull, active low LED outputs
(LED4A/LED4B).

This change should not affect your product.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
3.2.3, “LED Interface/D8-D15 (Data Bus)”.

Address Pins A[11..13]

The address pins 11, 12, and 13 are ignored by the 30-series. These pins must be high when
accessing the 40-series module in backwards compatible 8-bit parallel mode. If you have left
these pins unconnected or connected to GND, you need to make a hardware modification to tie
them high.

Max Input Signal Level (VIH)

The max input signal level for the 30-series is specified as VIH=VDD+0,2 V, and for the 40-series as
VIH=3.45 V. Make sure that you do not exceed 3.45 V for a logic high level.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 144 (150)

RMII Compatibility

If the RMII mode is being used on an Anybus CompactCom 40 module and it is desired to remain
compatible with the 30 series, it is important to disable this connection when switching to an
Anybus CompactCom 30 module due to pin conflicts. The RMII port of the host processor should
be set to tristate by default, and only be enabled if an RMII capable Anybus CompactCom 40 is
detected. In case the RMII connection cannot be disabled through an internal hardware control
on the host processor, it will be necessary to design in external hardware (i.e. a FET bus switch)
to prevent short circuits

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
3.2.5, “RMII — Reduced Media-Independent Interface”.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 145 (150)

E.3 General Software
E.3.1 Extended Memory Areas

The memory areas have been extended in the 40-series, and it is now possible to access larger
sizes of process data (up to 4096 bytes instead of former maximum 256 bytes) and message data
(up to 1524 bytes instead of former maximum 255 bytes). The 30-series has reserved memory
ranges that the application should not use. The 40-series implements new functionality in some
of these memory areas.

To use the extended memory areas you need to implement a new communication protocol which is not
part of this document.

Memory areas not supported by the specific network cannot be used. Make sure you do not access these
areas, e.g. for doing read/write memory tests.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), Section
“Memory Map”

E.3.2 Faster Ping-Pong Protocol
The ping-pong protocol (the protocol used in the 30-series) is faster in the 40-series. A 30-series
module typically responds to a so called ping within 10-100 µs. The 40-series typically responds
to a ping within 2 µs.

Interrupt-driven applications (parallel operating mode) may see increased CPU load due to the
increased speed.

E.3.3 Requests from Anybus CompactCom to Host Application During Startup
All requests to software objects in the host application must be handled and responded to (even
if the object does not exist). This applies for both the 30-series and the 40-series. The 40-series
introduces additional objects for new functionality.

There may also be additional commands in existing objects added to the 40-series that must be
responded to (even if it is not supported).

If your implementation already responds to all commands it cannot process, which is the
expected behavior, you do not need to change anything.

E.3.4 Anybus Object (01h)
Attribute 30-series 40-series Change/Action/Comment

#1, Module Type 0401h 0403h Make sure the host application accepts the new
module type value for the 40-series.

#15, Auxiliary Bit Available Removed It is not possible to turn off the “Changed Data
Indication” in the 40-series. Also see “Control
Register CTRL_AUX-bit” and “Status Register
STAT_AUX-bit” below.

#16, GPIO Configuration Default: General
input and output
pins

Default: LED3 and
LED4 outputs

See also ..

• GIP[0..1]/LED3[A..B], p. 143

• GOP[0..1]/LED4[A..B], p. 143

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 146 (150)

E.3.5 Control Register CTRL_AUX-bit

30-series The CTRL_AUX bit in the control register indicates to the Anybus CompactCom if the process data
in the current telegram has changed compared to the previous one.

40-series The value of the CTRL_AUX bit is always ignored. Process data is always accepted.

All released Anybus CompactCom 30 example drivers from Anybus CompactCom comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

E.3.6 Status Register STAT_AUX-bit

30-series The STAT_AUX bit in the status register indicates if the output process data in the current
telegram has changed compared to the previous one. This functionality must be enabled in the
Anybus object (01h), Attribute #15. By default, the STAT_AUX bit functionality is disabled.

40-series The STAT_AUX bit indicates updated output process data (not necessarily changed data) from the
network compared to the previous telegram. The functionality is always enabled.

All released Anybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Status Register”.

E.3.7 Control Register CTRL_R-bit

30-series The application may change this bit at any time.

40-series For the 8-bit parallel operating mode, the bit is only allowed to transition from 1 to 0 when the
STAT_M-bit is set in the status register. When using the serial operating modes, it is also allowed
to transition from 1 to 0 in the telegram immediately after the finalizing empty fragment.

All released Anybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

E.3.8 Modifications of Status Register, Process Data Read Area, and Message Data
Read Area
In the 40-series, the Status Register, the Process Data Read Area, and the Message Data Read
Area are write protected in hardware (parallel interface). If the software for some reason writes
to any of those areas, a change is needed.

All releasedAnybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix E: Backward Compatibility 147 (150)

E.4 Network Specific — BACnet/IP
E.4.1 Network Configuration Object (04h)

The instances in the Network Configuration Object have been rearranged for the Ethernet based
modules for consistency. Network specific instances are moved to instance number 20 and
onwards. This is done to increase the number of instances in the section that is not network
specific.

If the host application is using any of the parameters below, the software must be updated to
use the new instance numbers.

Parameter Name 30-series Instance # 40-series Instance #
Device Instance 3 20
UDP Port 4 21
Process Active Timeout 5 22
IP Address 6 3

Subnet Mask 7 4

Gateway Address 8 5

DHCP Enable 9 6
Comm 1 Settings 10 7

Comm 2 Settings 11 8

DNS1 12 9
DNS2 13 10
Host Name 14 11
Domain Name 15 12
SMTP Server 16 13
SMTP User 17 14
SMTP Password 18 15
Foreign Device Registration IP 19 23

Foreign Device Registration UDP Port 20 24

Foreign Device Registration Time to Live Value 21 25

E.4.2 Reduced Network Resources Due to Memory Constraints
The Anybus CompactCom 40 BACnet/IP will have reduced network resources compared to the
Anybus CompactCom 30 due to memory constraints.

Network Resource 30-series 40-series

Maximum size of BACnet NPDU 1476 1024

Maximum number of active server requests 10 5

Number of supported COV server subscriptions 60 60

Maximum number of Network Configuration object
recipients supported

60 18

Number of client requests 120 78

Number of supported Network Configuration events 256 64

Maximum size of APDU service payload with
segmentation included

32 kB 5 kB

Number of BACnet objects (advanced mode) 6120 768

Number of BAPL DeviceAddressBindings supported 18 60 18

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix F: Copyright Notices 148 (150)

F Copyright Notices
This product includes software developed by Carnegie Mellon, the Massachusetts Institute of
Technology, the University of California, and RSA Data Security:

Copyright 1986 by Carnegie Mellon.

Copyright 1983,1984,1985 by the Massachusetts Institute of Technology

Copyright (c) 1988 Stephen Deering.

Copyright (c) 1982, 1985, 1986, 1992, 1993

The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Stephen Deering of Stanford
University.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Neither the name of the University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' ANDANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright (C) 1990-2, RSA Data Security, Inc. All rights reserved.

License to copy and use this software is granted provided that it is identified as the "RSA Data
Security, Inc. MD4 Message-Digest Algorithm" in all material mentioning or referencing this
software or this function.

License is also granted to make and use derivative works provided that such works are identified
as "derived from the RSA Data Security, Inc. MD4 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of this
software or the suitability of this software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

Appendix F: Copyright Notices 149 (150)

These notices must be retained in any copies of any part of this documentation and/or software.

Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

License to copy and use this software is granted provided that it is identified as the "RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing this
software or this function.

License is also granted to make and use derivative works provided that such works are identified
as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of this
software or the suitability of this software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this documentation and/or software.

Anybus® CompactCom™ 40 BACnet/IP w. IT Functionality Network Guide SCM-1202–040 1.4 en-US

last page

© 2019 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se SCM-1202–040 1.4 en-US / 2019-03-01 / 12093

	1 Preface
	1.1 About this document
	1.2 Related Documents
	1.3 Document History
	1.4 Document Conventions
	1.5 Document Specific Conventions
	1.6 Trademark Information

	2 About the Anybus CompactCom 40 BACnet/IP
	2.1 General
	2.2 Features
	2.3 Fieldbus Conformance Notes
	2.4 Certification

	3 Basic Operation
	3.1 General Information
	3.1.1 Software Requirements

	3.2 Device Customization
	3.2.1 Network Identity
	3.2.2 Web Interface
	3.2.3 Socket Interface (Advanced Users Only)

	3.3 BACnet/IP Implementation
	3.3.1 Device Object
	3.3.2 Analog Value Object
	3.3.3 Binary Value Object
	3.3.4 Multi-State Value Object
	3.3.5 Notification Class Object
	3.3.6 Supported BACnet Services
	3.3.7 BACnet Error Codes

	3.4 Communication Settings
	3.5 Diagnostics
	3.6 Network Data Exchange
	3.6.1 Application Data (ADIs)
	3.6.2 Translation of Data Types
	3.6.3 Mapping of BACnet Objects to Anybus CompactCom
	3.6.4 Process Data

	3.7 File System
	3.7.1 Overview
	3.7.2 General Information
	3.7.3 System Files

	4 COV Notifications, Alarms and Events
	4.1 General
	4.2 COV (Change of Value) Notifications
	4.3 Alarm/Event Functionality
	4.3.1 Analog Value Object Alarm/Event Functionality
	4.3.2 Binary Value Object Alarm/Event Functionality
	4.3.3 Multi-State Value Object Alarm/Event Functionality
	4.3.4 Summary of States and Events for the Value Objects

	4.4 Setup of Alarm and Events
	4.4.1 Notification Class Object
	4.4.2 Analog Value Object
	4.4.3 Binary Value Object
	4.4.4 Multi-state Value Object

	5 FTP Server
	5.1 General Information
	5.2 User Accounts
	5.3 Session Example

	6 Web Server
	6.1 General Information
	6.2 Default Web Pages
	6.2.1 Network Configuration
	6.2.2 Ethernet Statistics Page

	6.3 Server Configuration
	6.3.1 General Information
	6.3.2 Index page
	6.3.3 Default Content Types
	6.3.4 Authorization

	7 E-mail Client
	7.1 General Information
	7.2 How to Send E-mail Messages

	8 Server Side Include (SSI)
	8.1 General Information
	8.2 Include File
	8.3 Command Functions
	8.3.1 General Information
	8.3.2 GetConfigItem()
	8.3.3 SetConfigItem()
	8.3.4 SsiOutput()
	8.3.5 DisplayRemoteUser
	8.3.6 ChangeLanguage()
	8.3.7 IncludeFile()
	8.3.8 SaveDataToFile()
	8.3.9 printf()
	8.3.10 scanf()

	8.4 Argument Functions
	8.4.1 General Information
	8.4.2 ABCCMessage()

	8.5 SSI Output Configuration

	9 JSON
	9.1 General Information
	9.1.1 Encoding
	9.1.2 Access
	9.1.3 Error Response

	9.2 JSON Objects
	9.2.1 ADI
	9.2.2 Module
	9.2.3 Network
	9.2.4 Services
	9.2.5 Hex Format Explained

	9.3 Example

	10 Anybus Module Objects
	10.1 General Information
	10.2 Anybus Object (01h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	10.3 Diagnostic Object (02h)
	10.4 Network Object (03h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	10.5 Network Configuration Object (04h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #3, IP Address)
	Instance Attributes (Instance #4, Subnet Mask)
	Instance Attributes (Instance #5, Gateway Address)
	Instance Attributes (Instance #6, DHCP Enable)
	Instance Attributes (Instance #7 Ethernet Communication Settings 1)
	Instance Attributes (Instance #8 Ethernet Communication Settings 2)
	Instance Attributes (Instance #9, DNS1)
	Instance Attributes (Instance #10, DNS2)
	Instance Attributes (Instance #11, Host name)
	Instance Attributes (Instance #12, Domain name)
	Instance Attributes (Instance #13, SMTP Server)
	Instance Attributes (Instance #14, SMTP User)
	Instance Attributes (Instance #15, SMTP Password)
	Instance Attributes (Instance #16, MDI 1 Settings)
	Instance Attributes (Instance #17, MDI 2 Settings)
	Instance Attributes (Instances #18 and #19)
	Instance Attributes (Instance #20, Device Instance)
	Instance Attributes (Instance #21, UDP port)
	Instance Attributes (Instance #22, Process Active Timeout)
	Instance Attributes (Instance #23, Foreign Device Registration IP Address)
	Instance Attributes (Instance #24, Foreign Device Registration UDP Port)
	Instance Attributes (Instance #25, Foreign Device Registration Time to Live Value)
	Multilingual Strings

	10.6 Socket Interface Object (07h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Sockets #1...Max. no. of instances)
	Command Details: Create
	Command Details: Delete
	Command Details: Bind
	Command Details: Shutdown
	Command Details: Listen
	Command Details: Accept
	Command Details: Connect
	Command Details: Receive
	Command Details: Receive_From
	Command Details: Send
	Command Details: Send_To
	Command Details: IP_Add_Membership
	Command Details: IP_Drop_Membership
	Command Details: DNS_Lookup
	Socket Interface Error Codes (Object Specific)
	Message Segmentation

	10.7 SMTP Client Object (09h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Create
	Command Details: Delete
	Command Details: Send E-mail From File
	Command Details: Send E-mail
	Object Specific Error Codes

	10.8 File System Interface Object (0Ah)
	Category
	Object Description

	10.9 Network Ethernet Object (0Ch)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	11 Host Application Objects
	11.1 General Information
	11.2 BACnet Host Object (EFh)
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Get_ADI_By_BACnet_Object_Instance
	Command Details: Get_ADI_By_BACnet_Name
	Command Details: Get_All_BACnet_Object_Instances
	Command Details: Get_BACnet_Object_Instance_By_ADI

	11.3 Ethernet Host Object (F9h)
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Network Status
	DHCP Option 61 (Client Identifier)

	A Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B Implementation Details
	B.1 SUP-Bit Definition
	B.2 Anybus State Machine
	B.3 Application Watchdog Timeout Handling
	B.4 Implemented BACnet BIBBs

	C Secure HICP (Secure Host IP Configuration Protocol)
	C.1 General
	C.2 Operation

	D Technical Specification
	D.1 Front View
	D.1.1 Network Status LED
	D.1.2 Module Status LED
	D.1.3 Link/Activity LED 5/6
	D.1.4 Ethernet Interface

	D.2 Functional Earth (FE) Requirements
	D.3 Power Supply
	D.3.1 Supply Voltage
	D.3.2 Power Consumption

	D.4 Environmental Specification
	D.5 EMC Compliance

	E Backward Compatibility
	E.1 Initial Considerations
	E.2 Hardware Compatibility
	E.2.1 Module
	E.2.2 Chip
	E.2.3 Brick
	E.2.4 Host Application Interface

	E.3 General Software
	E.3.1 Extended Memory Areas
	E.3.2 Faster Ping-Pong Protocol
	E.3.3 Requests from Anybus CompactCom to Host Application During Startup
	E.3.4 Anybus Object (01h)
	E.3.5 Control Register CTRL_AUX-bit
	E.3.6 Status Register STAT_AUX-bit
	E.3.7 Control Register CTRL_R-bit
	E.3.8 Modifications of Status Register, Process Data Read Area, and Message Data Read Area

	E.4 Network Specific — BACnet/IP
	E.4.1 Network Configuration Object (04h)
	E.4.2 Reduced Network Resources Due to Memory Constraints

	F Copyright Notices

