
Anybus®

Safety Interface Guide

SCM-1202-024 1.4 en-US ENGLISH

Important User Information
Disclaimer
The information in this document is for informational purposes only. Please inform HMS Networks of any
inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any
errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development.
The information in this document shall therefore not be construed as a commitment on the part of HMS Networks
and is subject to change without notice. HMS Networks makes no commitment to update or keep current the
information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data,
examples or illustrations included in this document nor for any damages incurred during installation of the product.
Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product
is used correctly in their specific application and that the application meets all performance and safety requirements
including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances
assume liability or responsibility for any problems that may arise as a result from the use of undocumented features
or functional side effects found outside the documented scope of the product. The effects caused by any direct or
indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability
issues.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Table of Contents Page

1 Preface ... 3
1.1 Related Documents ..3

1.2 Document History ..3

1.3 Document Conventions ...3

1.4 Acronym List ...4

1.5 Trademark Information ...4

2 About the Anybus Safety Interface Guide ... 5
2.1 General ..5

2.2 Communication Settings..5

2.3 Endianness ...5

2.4 Safety Processors ...5

2.5 CRC Calculation ...5

3 Bootloader Mode .. 6
3.1 Start-up Tasks..7

4 System Start .. 11
4.1 The Start-up Telegram .. 12

5 Cyclic Telegrams .. 13
5.1 The Anybus Telegram Structure .. 13

5.2 The Safety Module Telegram Structure .. 15

6 Messages ... 16
6.1 Message Header .. 17

6.2 Error Response .. 17

6.3 Anybus CompactCom Messages.. 18

6.4 Safety Module Messages ... 20

7 PROFIsafe Specific Details... 21
7.1 CompactCom Messages .. 21

7.2 Safety Module Messages ... 24

8 FSoE Specific Details.. 26
8.1 CompactCom Messages .. 26

8.2 Safety Module Messages ... 33

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

9 CIP Safety Specific Details... 34
9.1 HalcCsalMessage.. 34

9.2 HalcCsalMessage Structure .. 34

9.3 SetInitData.. 35

9.4 GetClassIDs ... 36

9.5 GetAssemblyInstIDs.. 37

9.6 LinkStatus ... 38

9.7 HalcCssMessage... 39

9.8 HalcCssMessage Structure ... 39

9.9 LEDstate ... 40

9.10 SafetyReset... 41

9.11 SPDU ... 42

9.12 SPDU Calculations and Examples... 46

Preface 3 (50)

1 Preface
1.1 Related Documents

Document Author
Anybus CompactCom 40 Software Design Guide HMS

Anybus CompactCom M40 Hardware Design Guide HMS

Anybus CompactCom Host Application Implementation Guide HMS

CIP Safety on EtherNet/IP, Generic Porting Guide HMS / IXXAT

1.2 Document History
Version Date Description

1.0 2016-11-16 First Release
1.1 2016–12–06 PROFIsafe chapter added. Minor changes.

1.2 2017-09-29 Fail Safe over EtherCAT (FSoE) chapter added. Minor changes.

1.3 2019-03-07 Updated trademark information
Rebranded

1.4 2020-12-21 Added the Read_Vendor_Block bootloader command.
Added the PROFIsafe GetSupportedSpdus command.
Updated SafetyReset command.
Minor changes.

1.3 Document Conventions
Numbered lists indicate tasks that should be carried out in sequence:

1. First do this

2. Then do this

Bulleted lists are used for:

• Tasks that can be carried out in any order

• Itemized information

► An action

→ and a result

User interaction elements (buttons etc.) are indicated with bold text.

Program code and script examples

Cross-reference within this document: Document Conventions, p. 3

External link (URL): www.hms-networks.com

WARNING
Instruction that must be followed to avoid a risk of death or serious injury.

Caution
Instruction that must be followed to avoid a risk of personal injury.

Instruction that must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

http://www.hms-networks.com

Preface 4 (50)

Additional information which may facilitate installation and/or operation.

1.4 Acronym List
Acronym Description

CSAL CIP Safety Adaptation Layer

CSS CIP Safety Stack

HALC Hardware Abstraction Layer Communication

PDO Process Data Object

PDU Process Data Unit
SDO Service Data Object

SPDU Safe Process Data Unit

1.5 Trademark Information
Anybus® is a registered trademark of HMS Networks.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.

Safety over EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff
Automation GmbH, Germany.

All other trademarks are the property of their respective holders.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

About the Anybus Safety Interface Guide 5 (50)

2 About the Anybus Safety Interface Guide
2.1 General

The Anybus Safety Interface Guide describes the communication between an Anybus
CompactCom device and a safety module. This guide is aimed for all users who will need to
interface with the Anybus safety channel, either by developing a safety module or by developing
a communication interface.

Using a safety module, it is possible for the application to transmit and receive safe I/Os and
messages, embedded in a safety protocol suitable for the network.

2.2 Communication Settings
The network related communication settings should be set to the following:

• UART

• 8-bit data, no parity, 1 stop bit

• Serial communication bit order, LSB first

• No hardware flow control signals

• Baud rate accuracy should be within ±2% of configured baud rate

2.3 Endianness
All CompactCom and safety module telegrams should be transferred in a little-endian format.

2.4 Safety Processors
It is assumed that μC1 has address 0xA5 and μC2 has address 0xAA.

2.5 CRC Calculation
The polynomial value used for the 16-bit CRC calculation is 0xA001. The initial value is 0xFFFF.

For more information and examples concerning the CRC calculation, see the CRC Calculation (16-
bit) chapter in the Anybus CompactCom 40 Software Design Guide.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Bootloader Mode 6 (50)

3 Bootloader Mode
The Anybus CompactCom device will assume that the safety module starts up in bootloader
mode. It is important that the safety module and the CompactCom device are powered on and
reset at the same time, by the host application. In bootloader mode, the safety module can
perform start-up tasks and system tests. The safety module must stay in bootloader mode until
the CompactCom has sent an exit bootloader command.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Bootloader Mode 7 (50)

3.1 Start-up Tasks
During bootloader mode, the CompactCom device will send commands to the safety module that
it needs to be able to handle and respond to. They will be repeated every 100 ms for a total
maximum of 10 times. If the safety module fails to respond during this time, the CompactCom
will enter exception. The commands, and the command and response telegram structures, are
listed in the tables below.

When all commands have been handled and properly responded to, the CompactCom will signal
the end of bootloader mode by issuing the Exit_BL command to each of the two safety
processors μC1 and μC2.

These are the commands that the safety module needs to be able to respond to during
bootloader mode.

Command Code Name Description

0x02 Read_BL_
Version

Reads the software version of the bootloader.

0x03 Read_Appl_
Version

Reads the software version of the application software in the flash.

0x09 Exit_BL Exit bootloader.

0x0A Read_Module_
Type

Reads the hardware (the type of safety module).

0x0B Read_Vendor_
Block

Reads vendor-specific information. Optional.

If the safety module receives an unknown or an unsupported command from the CompactCom, the
bootloader should respond with the message “unknown command”.

3.1.1 Read_BL_Version
Command
Byte Name Value Description

0 Start byte Adr. μC1/
μC2

Processor address

1 — 2 Length 0x03 Length of telegram (including CRC)

3 Command
code

0x02 Command to read bootloader version

4 — 5 CRC N/A 16 bit CRC

Response

Byte Name Value Description

0 Start byte Adr. μC1/μC2 Processor address

1 — 2 Length 0x06 Length of telegram (including CRC)

3 Command-
response

0x82 This value should be calculated as the command code added by the most
significant bit of the byte, eg. for command 0x02 the command-response
is 0x82

4 Response
code

N/A See Response Codes, p. 10

5 — 6 Data N/A Two bytes SW version of bootloader

7 — 8 CRC N/A 16 bit CRC

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Bootloader Mode 8 (50)

3.1.2 Read_Appl_Version
Command
Byte Name Value Description

0 Start byte Adr. μC1/
μC2

Processor address

1 — 2 Length 0x03 Length of telegram (including CRC)

3 Command
code

0x03 Command to read version of application SW

4 — 5 CRC N/A 16 bit CRC

Response

Byte Name Value Description

0 Start byte Adr. μC1/μC2 Processor address

1 — 2 Length 0x07 Length of telegram (including CRC)

3 Command-
response

0x83 This value should be calculated as the command code added by the most
significant bit of the byte, eg. for command 0x03 the command-response
is 0x83

4 Response
code

N/A See Response Codes, p. 10

5 — 7 Data N/A Three bytes SW version of application SW. If no valid SW is found in flash,
values should be 0 and the response code should be set accordingly

8— 9 CRC N/A 16 bit CRC

3.1.3 Exit_BL
Command
Byte Name Value Description

0 Start byte Adr. μC1/
μC2

Processor address

1 — 2 Length 0x04 Length of telegram (including CRC)

3 Command
code

0x09 Command to exit bootloader mode

4 - - Reserved
5 — 6 CRC N/A 16 bit CRC

Response

Byte Name Value Description

0 Start byte Adr. μC1/μC2 Processor address

1 — 2 Length 0x04 Length of telegram (including CRC)

3 Command-
response

0x89 This value should be calculated as the command code added by the most
significant bit of the byte, eg. for command 0x09 the command-response
is 0x89

4 Response
code

N/A See Response Codes, p. 10

5 — 6 CRC N/A 16 bit CRC

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Bootloader Mode 9 (50)

3.1.4 Read_Module_Type
Command
Byte Name Value Description

0 Start byte Adr. μC1/
μC2

Processor address

1 — 2 Length 0x03 Length of telegram (including CRC)

3 Command
code

0x0A Command to read module type

4 — 5 CRC N/A 16 bit CRC

Response

Byte Name Value Description

0 Start byte Adr. μC1/μC2 Processor address

1 — 2 Length 0x0E Length of telegram (including CRC)

3 Command-
response

0x8A This value should be calculated as the command code added by the most
significant bit of the byte, eg. for command 0x0A the command-response
is 0x8A

4 Response
code

N/A See Response Codes, p. 10

5 — 6 Module type N/A Two byte module type
Vendor specific value, provided by HMS

7 — 8 Network type N/A Two byte network type
0x00A6 for Safety over EtherCAT
0x00A5 for CIP Safety on EtherNet/IP
0x00A1 for PROFIsafe on PROFINET

9 — 10 HW ID N/A Two byte hardware ID

11 — 14 Serial
number

N/A Four byte serial number

15 — 16 CRC N/A 16 bit CRC

3.1.5 Read_Vendor_Block
Command
Byte Name Value Description

0 Start byte Adr. μC1/
μC2

Processor address

1 — 2 Length 0x03 Length of telegram (including CRC)

3 Command
code

0x0B Command to read Vendor Data Block

4 — 5 CRC N/A 16 bit CRC

Response

Byte Name Value Description

0 Start byte Adr. μC1/μC2 Processor address

1 — 2 Length 4+n Length of telegram (including CRC)

3 Command-
response

0x8B This value should be calculated as the command code added by the most
significant bit of the byte, eg. for command 0x0B the command-response
is 0x8B

4 Response
code

N/A See Response Codes, p. 10

5 —4 + n Vendor
specific

N/A Vendor specific data, where n = number of vendor specific bytes and
n > 0.
The information in this response is mapped to attribute 12 and 13 in the
Functional Safety Module object in CompactCom.

5 + n — 6 +
n

CRC N/A 16 bit CRC

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Bootloader Mode 10 (50)

3.1.6 Response Codes
Value Description

0x00 Command successful
0x01 Command in progress

0x02 Error, unknown command

0x03 Checksum error of the Intel HEX file
0x04 Error, invalid/no application software in the flash memory

0x06 Error, unable to access flash memory

0x07 Error, invalid parameter

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

System Start 11 (50)

4 System Start
The following figure depicts the boot and start-up process.

In the example, an IXXAT Safe T100 safety module from HMS is used. For that module, the start-
up telegram is sent every 25 ms. For the T100, the configured cycle time for cyclic telegrams is 2
ms.

Host application

Safety Enabled?

Set Network specific address

Set Set-up completed

Network communication starts

Startup Telegram

Startup Telegram

Startup Telegram

Boot

Startup Telegram sent every
25ms until a normal telegram

is received as response

acknowledges the
S

tartup Telegram by sending
normal telegrams with the
correct length (with 2ms

cycle)

.

.

.

Exit Boot loader

IXXAT Safe T100 CompactCom

CompactCom

Startup tasks should be performed here
See chapter 3.1 for details

Fig. 1 Network communication using a CompactCom and an IXXAT Safe T100 safety module

The safety module should exit the bootloader mode after the CompactCom device has sent the
exit bootloader command. After exit, the safety module should send a start-up telegram to the
CompactCom, with information about itself and input and output data sizes. This telegram
should be sent repeatedly, with a delay of between 10 and 100 ms, until the safety device
receives a correct response telegram, with the correct output data size, from the CompactCom
device.

If the CompactCom does not receive a start-up telegram within 1000 ms after receiving the exit
bootloader response, the device will enter Exception mode.

This marks the end of the start-up phase, and normal safe communication can start.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

System Start 12 (50)

4.1 The Start-up Telegram
Byte Name Value

0–1 Vendor ID Identifies vendor.
Apply at HMS for a unique Vendor ID.

2–3 IO Channel ID IO configuration descriptor.
Vendor specific. Refer to the safety module documentation for details.

4–6 Firmware version The firmware version number of the safety module. The version 1.12.03
corresponds to 0x03, 0x0C, 0x01.

7–10 Serial number Vendor specific 32-bit unique serial number.

11 Safe output PDU size Size (in bytes) for the safe output PDU data transferred from the PLC to
the CompactCom device.

12 Output data size Data size in bytes of the safety module’s safe outputs.

13 Safe input PDU size Size (in bytes) for the safe input PDU data transferred from the
CompactCom device to the PLC.

14 Input data size Data size in bytes of the safety module’s safe inputs.

15-16 CRC -

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Cyclic Telegrams 13 (50)

5 Cyclic Telegrams
The data frames transferred on the serial line between the Anybus CompactCom device and the
safety module will be called telegrams.

These telegrams are produced cyclically by both the CompactCom device and the safety module.
The communication between the devices does not require synchronization.

5.1 The Anybus Telegram Structure
After the initial phase, where the I/O lengths are determined, the Anybus CompactCom device
will transfer the following telegram.

Name Size in Bytes Description

Ctrl/Status 1 Control and status information. See table below.

Msg 16 Message part of the telegram. It is used as a fragmented protocol on
top of the cyclical data exchange. Refer to Messages, p. 16.

SPDU SPDU_OUT_LEN Safety protocol data unit from the network. Size specified in startup
telegram.

CRC 2 16-bit CRC field.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Cyclic Telegrams 14 (50)

5.1.1 Ctrl/Status Byte Information
The Ctrl/Status byte consists of the following.

Bit Name Description

0-2 Anybus State State of the Anybus device. See the Anybus State tables below.

3-5 Reserved -

6 MsgFragSafe Bit used for fragmentation of messages. Refer to Messages, p. 16.

7 MsgFragAnybus Bit used for fragmentation of messages. Refer to Messages, p. 16.

Anybus State

In the Anybus State field, the CompactCom device informs the safety module which state it
expects the safety module to be in.

Anybus State for PROFIsafe on PROFINET

Value State Description

0 R_PRM New parameterization data shall be allowed. I/O data is not valid.

1 R_STOP Connected to PLC. I/O data is not valid.

2 R_RUN Connected to PLC. I/O data is valid.

3..7 Reserved -

Anybus State for Fail Safe over EtherCAT (FSoE)

Value State Description

0 R_BOOT Requests to transit to Bootstrap state

1 R_INIT Requests to transit to Init state

2 R_PREOP Requests to transit to Preoperational state

3 R_SAFEOP Requests to transit to Safe-operational state

4 R_OP Requests to transit to Operational state

5..7 Reserved -

Anybus State for CIP Safety on EtherNet/IP

Value State Description

0 R_NO No request

1 R_ABORT Requests to transit to abort state

3..7 Reserved -

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Cyclic Telegrams 15 (50)

5.2 The Safety Module Telegram Structure
After the initial phase, where the I/O lengths are determined, the safety module shall transfer
the following telegram.

Name Size in bytes Description

Ctrl/Status 1 Control and status information

Msg 16 Message part of the telegram.

SPDU SPDU_IN_LEN Safety protocol data unit to the network. Size specified in startup
telegram.

Data In DATA_IN_LEN Value of safe inputs. Size specified in startup telegram.

Data Out DATA_OUT_LEN Value of safe outputs. Size specified in startup telegram.

CRC 2 16-bit CRC field

5.2.1 Ctrl/Status
The Ctrl/Status byte consists of the following:

Bit Name Description

0-3 State State of the safety module. See the safety module state tables below.

4-5 Reserved -

6 MsgFragSafe Bit used for fragmentation of messages. Refer to Messages, p. 16.

7 MsgFragAnybus Bit used for fragmentation of messages. Refer to Messages, p. 16.

Safety Module State

In the State field, the safety module informs the CompactCom device which state it expects the
CompactCom device to be in.

The safety module may send other states, but those below are the only ones the CompactCom
device acknowledges.

Safety Module State for PROFIsafe on PROFINET

Value State Description

15 FAIL SAFE Fail safe state.
The transition to this state may happen at any time, also during an ongoing fragmented
message transfer. In order to detect this, the CompactCom aborts this fragmented transfer.

Safety Module State for Fail Safe over EtherCAT (FSoE)

Value State Description

15 FAIL SAFE Fail safe state.
The transition to this state may happen at any time, also during an ongoing fragmented
message transfer. In order to detect this, the CompactCom aborts this fragmented transfer.

Safety Module State for CIP Safety on EtherNet/IP

Value State Description

3 WAIT_TUNID Waiting for TUNID state.

13 ABORT Abort state.
15 FAIL SAFE Fail safe state.

The transition to this state may happen at any time, also during an ongoing fragmented
message transfer. In order to detect this, the CompactCom aborts this fragmented transfer.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Messages 16 (50)

6 Messages
For acyclic data exchange, where time is noncritical, a fragmented message protocol is available.
A message part is embedded in all telegrams transferred between the CompactCom device and
the safety module.

In the Ctrl/Status word, there are two bits that are used to control message fragmentation:
MsgFragSafe and MsgFragAnybus. These bits are used in pairs, to indicate new fragments and
the valid reception of fragments. The MsgFragSafe bit pair is used for messages transferred by
the safety module, and the MsgFragAnybus bit pair for messages transferred by the Anybus
CompactCom.

A new fragment may only be transferred, if the bits are equal. If they are equal, the transmitting
part puts the next fragment into the telegram to be sent, and toggles the corresponding bit in
the Ctrl/Status byte. That same fragment must then be sent in every telegram, until the receiving
part acknowledges the reception by toggling the corresponding bit so that both the receiving
part’s bit and the transmitting part’s bit has the same value.

A message may consist of 1 to several fragments. The maximum amount of fragments is network
specific.

To be able to know when a message has been received in full, the length of all received
fragments should be calculated and matched towards the length of the message.

A response to a specific message should not be generated until the message has been received
in full.

The message header should only be part of the first fragment.

An error response can be issued for any request. See Error Response, p. 17.

MsgFrgSafe=0, MsgFrgAnybus=0
MsgFrgSafe=0, MsgFrgAnybus=0

MsgFrgSafe=0, MsgFrgAnybus=1 + Frag #1

MsgFrgSafe=0, MsgFrgAnybus=0

MsgFrgSafe=0, MsgFrgAnybus=1

MsgFrgSafe=0, MsgFrgAnybus=1 + Frag #1

MsgFrgSafe=0, MsgFrgAnybus=0 + Frag #2

MsgFrgSafe=0, MsgFrgAnybus=0

Fragment #1 accepted

Fragment #2 accepted

MsgFrgSafe=0, MsgFrgAnybus=0 + Frag #2

MsgFrgSafe=0, MsgFrgAnybus=0

MsgFrgSafe=0, MsgFrgAnybus=1 + Frag #3

MsgFrgSafe=0, MsgFrgAnybus=0

MsgFrgSafe=0, MsgFrgAnybus=1

Fragment #3 accepted

Anybus start sending a
command to the

Fragment #1

Fragment #2

Fragment #3 (Last)

MsgFrgSafe=0, MsgFrgAnybus=1 + Frag #3

MsgFrgSafe=0, MsgFrgAnybus=1

MsgFrgSafe=1, MsgFrgAnybus=1 + Frag #1

MsgFrgSafe=0, MsgFrgAnybus=1

MsgFrgSafe=1, MsgFrgAnybus=1

Fragment #1 accepted

MsgFrgSafe=1, MsgFrgAnybus=1

MsgFrgSafe=1, MsgFrgAnybus=1

.

.

.

.

.

.

CompactComSafety Module

Safety module starts sending a
response: Fragment #1

safety module

Fig. 2 Fragmentation Example

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Messages 17 (50)

6.1 Message Header
Name Size in bytes Description

ID 1 The ID is used to tie a request to a corresponding response, in case there
are several simultaneous requests at the same time.
The CompactCom device and the safety module may use the ID byte
independently from each other. This means that the CompactCom can
use ID = 1 for a request, even though the safety module has already
issued a request with ID = 1.
For more information about the limitations concerning the number of
simultaneous requests, see the respective user manuals.

Req/Rsp 2 Describes what is contained in the data part of the message. See the
table below

Length 1–2 (Network specific) Amount of bytes in the data field (0-255/0-65535: Network specific)

Data Length Message specific information.

6.1.1 Request/Response
Bit Name Description

15 ERR Error bit which can be set in a response message in case of error message

14 CMD Bit set to indicate that this is a command request. Cleared for a response
message.

13-8 Reserved Reserved for future use. Set to zero.
7-0 Function Number of the function. Mirrored in the response.

6.2 Error Response
Byte Name Value Description

1 ID ID Mirrored from request

2-3 Req/Rsp 0x80XX XX = Function code mirrored from request

4 Length 0x02 2 bytes of error code following

5-6 Data 0xYYXX Error code. See table below for response error codes.

Response Error Codes

Value Error code Description

0x0001 Unsupported function The received request with the specified function code is not supported

0x0002 Invalid request length The length of the received request didn’t match the expected length.

0x0003 Invalid data The data passed is invalid in some way (e.g., out-of-range).

0x0004 Invalid state The responder is in a state where the function cannot be accepted.

0x0005 Out of resources There are no resources left to handle this request at the moment.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Messages 18 (50)

6.3 Anybus CompactCom Messages
The messages below can be sent from the CompactCom device to the safety module at any time
during normal operation.

6.3.1 GetStatus
This message reads the current status from the safety module.

Request

Byte Name Value

1 ID -

2-3 Request 0x4000

4 Length 0x00

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0000

4 Length 0x0C

5–16 Status Data Bytes:
5–6: Error counter, DR
7–8: Error counter, SE
9–10: Event information, event 1 (newest event)
11–12: Event information, event 2
13–14: Event information, event 3
15–16: Event information. event 4 (oldest event)

For information about the error counters DR and SE, see the Functional Safety Module
Object (11h) chapter in the Anybus CompactCom 40 Software Design Guide. Every safety
module can have its own representation of the error counters.

6.3.2 SetConfigString
With this message, it is possible to configure the safety module’s safety parameter sets. This
message is safety protocol specific.

The intention with this configuration string is to provide an alternate method of providing setup
parameters for the configuration of the safe application. This string is normally not something
the end-user is able to change, but is more a method of letting the manufacturer hard-code
certain settings. Normally these parameters are transferred from the safety PLC (where the end-
user can configure these parameters) to the safety module during establishment of the safe
connection.

The host application can use this functionality to transfer application specific, safety-related
configuration data from the non-safe host to the safety module. Setup and coding of the data is
completely (safe) application specific.

Request

Byte Name Value

1 ID -

2-3 Request 0x4001

4 Length n

5–(5+n) Config string Byte string of n bytes. Length and content evaluated by the safety module.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Messages 19 (50)

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0001

4 Length 0x00

6.3.3 ErrorConfirmation
This message is used to initiate an error confirmation from the host application.

When received by the safety module, the safety module shall try to reset any errors unless
prohibited by safety constraints or prohibited by the local configuration of the safety module.

For more information, see the Functional Safety Module Object (11h) in the Anybus
CompactCom 40 Software Design Guide.

Request

Byte Name Value

1 ID -

2-3 Request 0x4002

4 Length 0x00

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0002

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

Messages 20 (50)

6.4 Safety Module Messages
The messages below can be sent from the safety module to the CompactCom device at any time
during normal operation.

6.4.1 FatalErrorEntry
This message is sent to the CompactCom device when the safety module encounters a fatal error.
Since the safety module might be in a non-communicating state after sending this message, the
CompactCom device may omit the response.

Request

Byte Name Value

1 ID -

2-3 Request 0x4000

4 Length 0x02

5–6 Event
information

Error type for the event causing the fatal error entry.

Response (Optional)

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0000

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

PROFIsafe Specific Details 21 (50)

7 PROFIsafe Specific Details
7.1 CompactCom Messages
7.1.1 SetFAddress

With this request, the desired F-address for the safety module is set. This request is always sent
during start-up phase. The originator of the F-address is the host application (for example, a
switch, or a keypad parameter), using the CompactCom Network Configuration Object (04h),
Instance #21. The F-address is an alias address used during the connection phase. The value of
this parameter must match what is set by the end user in the configuration tool (e.g. Step7),
otherwise the PROFIsafe communication cannot be established.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4080

4 Length 0x02

5-6 FAddress F-address to be used. Valid range: 1 – 65534

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0080

4 Length 0x00

7.1.2 WriteAcyclicRecord
When an acyclic request to write data to the safety module is received by the CompactCom from
the IO controller, this request is sent to the safety module.

This request can, for example, be used to set the F-parameters (F_Destination_Add, F_Source_
Add, F_Wd_Time, F_SIL_Level, F_CRC1).

Please note that the “Data” part of network specific telegrams may be coded in a different endianness.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4081

4 Length Depending on passed data length (2 + passed data length)

5-6 Index The index to write (will signify the kind of data that is passed)

7-(7+n) Data Data of n bytes. Length and content evaluated by the safety module

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0081

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

PROFIsafe Specific Details 22 (50)

7.1.3 ReadAcyclicRecord
When an acyclic request to read data from the safety module is received by the CompactCom
from the IO controller, this request is sent to the safety module.

Please note that the “Data” part of network specific telegrams may be coded in a different endianness.

This command is optional to implement.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4082

4 Length 6

5-6 Index The index to read (will signify the kind of data that is passed)

7-10 Max data
length

The max amount of data which the IO Controller will read (that is, the number of bytes
returned can be equal than or less to this value)

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0082

4 Length n

5-(5+n) Data Data of n bytes

7.1.4 GetSupportedSpdus
This request is sent to the safety module to receive a list of information of the supported SPDUs.

At least one SPDU must be supported by the safety module. If the safety module supports only
one SPDU, the command is optional to implement. If multiple SPDUs are supported, the
command is mandatory to implement.

If the GetSupportedSpdus command is not supported, or the response is empty, the SPDU ID will
be 0 and the I/O lengths will be set according to the Start-up telegram. See The Start-up
Telegram, p. 12.

The SPDUs are identified by 32–bit unique SubModuleIdentNumbers. When multiple SPDU
configurations are supported, the active configuration is selected by the controller through the
SubModuleIdentNumber of the expected identification. The SPDU IDs are represented in bits 24–
31 of each SubModuleIdentNumber defined for the safety module.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4083

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

PROFIsafe Specific Details 23 (50)

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0083

4 Length Length of Data, 3*n (n – number of supported SPDUs, n>=1)

5-(4+3*n) Data See the Response Data, p. 23 table

Response Data

Byte Name Value

1 SPDU #1 ID Identifies SPDU #1
2 SPDU #1

input length
Input SPDU length of SPDU #1

3 SPDU #1
output
length

Output SPDU length of SPDU #1

...
3*(n-1)+1 SPDU #n ID Identifies SPDU #n

3*(n-1)+2 SPDU #n
input length

Input SPDU length of SPDU #n

3*(n-1)+3 SPDU #n
output
length

Output SPDU length of SPDU #n

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

PROFIsafe Specific Details 24 (50)

7.2 Safety Module Messages
7.2.1 SendChannelDiagAlarm

This request is sent to the CompactCom when there is a need to transmit an alarm message to
the connected IO controller.

If the max number of active alarms for the CompactCom is reached, the CompactCom will reject
the message with error code “Out-of-resources”.

The maximum number of active alarms the CompactCom supports, is specified in the Network
Guide.

This command is optional to implement.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4081

4 Length 6

5-6 Channel
Number

0...0x7FFF: Channel number
0x8000: Refers to the submodule itself, not a specific channel

7 Channel
Properties

0: Other
1: 1-bit
2: 2-bit
3: 4-bit
4: Byte
5: Word (2 bytes)
6: Double Word (4 bytes)
7: Long Word (8 bytes)

8 Channel
Direction

0: Manufacturer specific
1: Input (data to I/O controller)
2: Output (data from I/O controller)
3: Input/output (data to/from I/O controller)

9-10 Channel
Error

Safety layer diagnosis messages (sent transparently to the I/O controller)
Predefined values, to be implemented in the safety module, can be found in the PROFIsafe
specification.

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0081

4 Length 1

5 Alarm ID This ID is used when the alarm is removed

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

PROFIsafe Specific Details 25 (50)

7.2.2 RemoveAlarm
This request is sent to the CompactCom when an alarm shall be removed.

If the SendChannelDiagAlarm command is implemented in the safety module, this command is
mandatory to implement.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4082

4 Length 0x01

5 Alarm ID Reference to the Alarm which shall be removed

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0082

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 26 (50)

8 FSoE Specific Details
8.1 CompactCom Messages
8.1.1 SetFsoeSlaveAddress

With this request, the FSoE slave address for the safety module is set. This request is always sent
during the start-up phase. The origin of this address is the host application, using the
CompactCom Network Configuration Object (04h), Instance #21. The FSoE slave address is an
alias address used during the connection phase. The value of this parameter must match what is
set by the end user in the configuration tool, otherwise the FSoE communication cannot be
established.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4080

4 Length 0x02

5-6 FsoeSlaveAd-
dress

FSoE slave address to be used. Valid range: 1 – 65535

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0080

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 27 (50)

8.1.2 GetCoeObjects
This request is sent from the CompactCom to receive a list of all objects implemented inside the
safety module. The information returned by this command will be used to implement the
EtherCAT service “Get OD list”.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4083

4 Length 0x02

5-6 ListType Requested List type:
0x00: List of list-length shall be delivered
0x01: ALL (all objects shall be delivered)
0x02: RX (objects mappable in a RxPDO shall be delivered)
0x03: TX (objects mappable in a TxPDO shall be delivered)
0x04: BU (objects for backup / device replacement shall be delivered)
0x05: ST (objects used as startup parameter shall be delivered)

Response (ListType 0x00)

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0083

4-5 Length 0x000A

6-7 Length ALL Byte length of list for ListType 0x01 (ALL) (number of object IDs*2)

8-9 Length RX Byte length of list for ListType 0x02 (RX) (number of object IDs*2)

10-11 Length TX Byte length of list for ListType 0x03 (TX) (number of object IDs*2)

12-13 Length BU Byte length of list for ListType 0x04 (BU) (number of object IDs*2)

14-15 Length ST Byte length of list for ListType 0x05 (ST) (number of object IDs*2)

Response (ListType 0x01 - 0x05)

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0083

4-5 Length Depending on the number of object IDs (2 * n)

6-7 Object ID 1 Object Index 1

8-9 Object ID 2 Object Index 2
...
(2*n+4) –
(2*n+5)

Object ID n Object Index n

The size of the response will typically exceed the maximum size allowed for the message. This means
that the response will be sent in more than one fragment.

The object indices added in this list must be entered in ascending order. If they are not in ascending
order, they will not be visible on the EtherCAT network.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 28 (50)

8.1.3 GetPdoMapping
This request is sent from the CompactCom to receive the PDO mapping information for RxPDO
and TxPDO. The information returned by this command will be used to implement the PDO
mapping objects (e.g. 0x1600 and 0x1A00).

The safety module mapping is for information only. The mapping itself is already done on the safety
module. This means that the SPDU sent from the safety module to the CompactCom contains the
mapped PDO to be copied 1:1 to the network.

Dynamic mapping of the safety module is not supported. The PDO mapping objects are read-only.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4084

4 Length 0x01

5 Direction 0x00: RxPDO mapping
0x01: TxPDO mapping

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0084

4 Length Depending on the number of mapped objects (2 + (4 * n))

5-6 ObjectIndex Object index of the PDO mapping object (e.g. 0x1600 for Rx and 0x1A00 for Tx)

7-10 MappedOb-
ject 1

Mapped object #1. Corresponds to subindex 1
E.g. 0x70010120 to map object 0x7001, subindex 0x01 with size 0x20 (32) bits

11-14 MappedOb-
ject 2

Mapped object #2. Corresponds to subindex 2

(4*n+3) -
(4*n+6)

MappedOb-
ject n

Mapped object #n. Corresponds to subindex n

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 29 (50)

8.1.4 GetObjectInfo
This request is sent from the CompactCom to receive detailed information about a single object.
The information returned by this command will be used to implement the EtherCAT service “Get
object description”.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4085

4 Length 0x02

5-6 Index The index of the object which info is to be read

Response (Success)

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0085

4 Length Depending on name length (8 + name length)

5-8 Status 0 - No error
9-10 DataType Data type of this object

11 MaxSubIn-
dex

Greatest subindex number of this object

12 ObjectCode Object code of this object
0x07: VAR
0x08: ARRAY
0x09: RECORD

13-n Name Name of this object (character string without null terminator)

Response (Error)

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0085

4 Length 4

5-8 Status SDO Abort Code

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 30 (50)

8.1.5 GetEntryInfo
This request is sent from the CompactCom to receive detailed information about a single entry.
The information returned by this command will be used to implement the EtherCAT service “Get
entry description”.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4086

4 Length 0x03

5-6 Index The index of the object which entry info is to be read

7 Subindex The subindex of the object which entry info is to be read

Response (Success)

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0086

4 Length Depending on name length (10 + name length)

5-8 Status 0 - No error
9-10 DataType Data type of this entry

11-12 BitLength Length in bits of the object entry value

13-14 Object
Access

Access rights of this entry:
Bit 0: read access in Pre-Operational state
Bit 1: read access in Safe-Operational state
Bit 2: read access in Operational state
Bit 3: write access in Pre-Operational state
Bit 4: write access in Safe-Operational state
Bit 5: write access in Operational state
Bit 6: object is mappable in RxPDO
Bit 7: object is mappable in TxPDO
Bit 8: object can be used for backup
Bit 9: object can be used for settings
Bit10: object is mappable in SafeInputs
Bit11: object is mappable in SafeOutputs
Bit12: object is mappable in Safety Parameter Set, writeable only via safe configuration
Bit 13-15: reserved

15-n Name Name of this entry (character string without null terminator)
Note: The entry name for subindex 0 of an ARRAY object or a RECORD object is fixed and
assigned by the CompactCom (“Number of entries”). The transferred name is not used here

Response (Error)

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0086

4 Length 4

5-8 Status SDO Abort Code

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 31 (50)

8.1.6 SdoDownload
This request is sent to the safety module when an acyclic SDO write access request to write data
to the safety module from the EtherCAT master is received.

Since the CompactCom does not do any access right validation, this is the task of the safety
module when the service is requested.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4081

4-5 Length 4+n

6-7 Index The index to write (will signify what kind of data that is passed)

8 Subindex The subindex to write (will signify what kind of data that is passed)

9 Flags Bit 0:

• 1 = Object shall be written completely

• 0 = Index with subindex is written

Bit 1-7: Reserved
10-(9+n) Data Data of n bytes

Length and content is evaluated by the safety module

If the value n (data length) is 0 (zero), data does not exist

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0081

4 Length 4

5-8 Status 0 - No error
Any other value represents an SDO Abort Code

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 32 (50)

8.1.7 SdoUpload
This request is sent to the safety module when an acyclic SDO request to read data from the
safety module from the EtherCAT master is received.

Since the CompactCom does not do any access right validation, this is task of the safety module
when the service is requested.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4082

4 Length 0x06

5-6 Index The index to read (will signify what kind of data that is passed)

7 Subindex The subindex to read (will signify what kind of data that is passed)

8 Flags Bit 0:

• 1 = Object shall be read completely

• 0 = Index with subindex is read

Bit 1-7: Reserved
9-10 Request

length
The maximum amount of data which will be read (the number of bytes returned can be
equal or less to this value)

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0082

4-5 Length 4+n

6-9 Status 0 - No error
Any other value represents an SDO Abort Code

10-(9+n) Data Data of n bytes
Data is only sent if the Status field equals 0 (No error)

If the value n (data length) is 0 (zero), data does not exist

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

FSoE Specific Details 33 (50)

8.2 Safety Module Messages
8.2.1 LEDstate

The safety module can provide state information that can be used to implement a FSoE status
LED. The state is transmitted on change.

Request

Byte Name Value / Description

1 ID -

2-3 Request 0x4080

4 Length 0x01

5 Status LED 0x00: Initializing
0x01: Ready/Start-Up
0x02: Normal operation
0x03: Failsafe Data
0x04: Unspecified FSoE connection error
0x05: Communication parameter error
0x06: Application parameter error
0x07: Wrong Safety Address
0x08: Wrong Command
0x09: Watchdog error
0x0A: CRC error
0xFE: Reserved (for CompactCom usage e.g. to host)
0xFF: Reserved (for CompactCom usage e.g. to host)

Response

Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0080

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 34 (50)

9 CIP Safety Specific Details
The data exchange between the CIP Safety Stack (CSS) and the non-safe CIP stack (CSAL (CIP
Safety Adaptation Layer)) is handled by Hardware Abstraction Layer — Communication (HALC)
messages.

For a complete HALC command reference, see the CIP Safety on EtherNet/IP, Generic Porting
Guide from HMS / IXXAT.

9.1 HalcCsalMessage
All HALC messages that are sent from the non-safe part, running on the CompactCom, to the
safe part, running on the safety module, should be transmitted using HalcCsalMessages.

The only exception to this rule are messages with the HALC command identifier CSOS_k_CMD_
IXCO_IO_DATA. They contain cyclical safety data and will be transferred using the SPDU (Safety
Process Data Unit) part of the message.

9.2 HalcCsalMessage Structure
The length field of the HalcCsalMessage is 2 bytes instead of 1 byte, because HALC messages can
be larger than 255 bytes.

For more information, see Message Header, p. 17.

9.2.1 Request

HALCS_t_MSG is a structure used in the IXXAT CIP Safety stack. For other CIP Safety stacks, an
adaptation layer implementation might be necessary.

Byte Name Value / Description HALCS_t_MSG

1 ID - -

2-3 Request 0x4080 -

4–5 Length x (length of HALC command and HALC addInfo + n
(data length))

u16_len

6–7 HALC
command

HALC command identifier u16_cmd

8–11 HALC
addInfo

Additional information field of the HALC message u32_addInfo

12–(11+n) Data Data field of the HALC message
If the value n (data length) is 0 (zero), data does
not exist.

pb_data: Pointer to data

9.2.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0080

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 35 (50)

9.3 SetInitData
This message is sent from the CompactCom device with the purpose of initializing the safety
module. It contains data CSS needs for start-up. Safe communication is only possible after the
safety module has received this command.

9.3.1 Request
Byte Name Value

1 ID -

2-3 Request 0x4081

4 Length 18

5–8 Serial
number

This identifies the product on the network. It shall be a unique number per unit, together
with the vendor ID.
The CompactCom will provide the serial number.

9–12 Node ID The IP address of the CompactCom device.

13–14 Vendor ID User defined.
The CompactCom will provide the vendor ID.

15–16 Device type Device type (product type).
The CompactCom will provide the device type.

17–18 Product code User defined.
The CompactCom will provide the product code.

19–20 Incarnation
ID

Incarnation ID of EtherNet/IP.

21 Major
revision

User defined.
The CompactCom will provide the major revision value.

22 Minor
revision

User defined.
The CompactCom will provide the minor revision value.

9.3.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0081

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 36 (50)

9.4 GetClassIDs
This message is sent from the CompactCom device to the safety module, with the purpose of
receiving a list of all objects implemented in the safety module.

This information is needed for the CompactCom to be able to route explicit requests to these
objects to the safety module.

It is mandatory to list the Safety Supervisor Object and the Safety Validator Object. More objects
can be added as needed.

The Assembly Class (ID 4) shall not be included in this list. Requests to Assembly Instances
according to the GetAssemblyInstIDs response will be routed to the safety module
automatically.

9.4.1 Request
Byte Name Value

1 ID -

2-3 Request 0x4082

4 Length 0x00

9.4.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0082

4 Length n (length of the following part in bytes)
The CompactCom can handle up to 20 registered classes.

5–6 Class ID 1 -

7–8 Class ID 2 -
...
(n+3)-(n+4) Class ID m -

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 37 (50)

9.5 GetAssemblyInstIDs
This message is sent by the CompactCom device, with the purpose of receiving a list of all
assembly instances inside the safety module.

This information is needed for the CompactCom to be able to route explicit requests to these
objects to the safety module.

In the case that the safety module does not support Assembly Instance IDs, it shall respond to
the request with a zero length response.

9.5.1 Request
Byte Name Value

1 ID -

2-3 Request 0x4084

4 Length 0x00

9.5.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0084

4 Length n (length of the following part in bytes)
The CompactCom can handle up to 20 registered assembly instances.

5–6 Assembly
Instance ID 1

-

7–8 Assembly
Instance ID 2

-

...
(n+3)-
(n+4)

Assembly
Instance ID
m

-

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 38 (50)

9.6 LinkStatus
This message is sent by the CompactCom device to report the link status. Using this command,
the Link Object (TCP/IP object) can report to the safety module that the underlying network
status has changed.

9.6.1 Request
Byte Name Value / Description

1 ID -

2-3 Request 0x4083

4 Length 0x01

5 Link Status 0: link is down / not available
1: link is up / available

9.6.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0083

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 39 (50)

9.7 HalcCssMessage
All HALC messages that are sent from the safe part, running on the safety module, to the non-
safe part, running on the CompactCom device, should be transmitted using HalcCssMessages.

The only exception to this rule are messages with the HALC command identifier CSOS_k_CMD_
IXCO_IO_DATA. They contain cyclical safety data and will be transferred using the SPDU part of
the message.

9.8 HalcCssMessage Structure

The length field of the HalcCssMessage is 2 bytes instead of 1 byte, because HALC
messages can be larger than 255 bytes.

9.8.1 Request

HALCS_t_MSG is a structure used in the IXXAT CIP Safety stack. For other CIP Safety stacks, an
adaptation layer implementation might be necessary.

Byte Name Value / Description HALCS_t_MSG

1 ID - -

2-3 Request 0x4080 -

4–5 Length x (length of HALC command and HALC addInfo + n
(data length))

u16_len

6–7 HALC
command

HALC command identifier u16_cmd

8–11 HALC
addInfo

Additional information field of the HALC message u32_addInfo

12–(11+n) Data Data field of the HALC message
If the value n (data length) is 0 (zero), data does
not exist.

pb_data: Pointer to data

9.8.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0080

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 40 (50)

9.9 LEDstate
CSS generates the states for the Module and Network Status LEDs. The LED states are
transmitted on change, from the safety module to the CompactCom device.

9.9.1 Request
Byte Name Value / Description

1 ID -

2-3 Request 0x4081

4 Length 2

5 Module
Status LED

0: Off
1: Solid green
2: Flashing green
3: Flashing red
4: Solid red
5: Flashing red and green

6 Network
Status LED

0: Off
1: Solid green
2: Flashing green
3: Flashing red
4: Solid red
5: Flashing red and green

9.9.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0081

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 41 (50)

9.10 SafetyReset
This message should be sent from the safety module after a ‘Safety Reset Service’ has been
acknowledged by the CSS.

The service shall “Emulate as closely as possible cycling power on the device”, and this is
achieved by sending the ‘SafetyReset’ message to the CompactCom device which forwards the
request to the non-safe host.

The CompactCom device will delay the reset command to the non-safe host for 1000 ms, to
ensure that the ‘Safety Reset Service’ response is sent out on the network before the reset is
executed.

9.10.1 Request
Byte Name Value / Description

1 ID -

2-3 Request 0x4082

4 Length 2

5 Safety reset
type

Safety supervisor safety reset types supported:
0x00: Emulate as closely as possible cycling power on the device.
0x01: Reset values to default configuration, and emulate as closely as possible cycling
power on the device.
0x02: Reset values to default configuration, except the parameters specified in the
attribute bit map, and emulate as closely as possible cycling power on the device.

6 Attribute
bitmap

For safety reset type 0 and 1 this field is not used and is set to 0.
For safety reset type 2 this field is set to the corresponding attribute bitmap parameter
which is received in the safety reset service. The assignments are defined as:

Bit 0 When set, preserve soft-set MAC ID. Processed by the CompactCom.

Bit 1 When set, preserve soft-set baud rate. Processed by the
CompactCom.

Bit 2 When set, preserve the TUNID.

Bit 3 When set, preserve the password.

Bit 4 When set, preserve the CFUNID.

Bit 5 When set, preserve the OCPUNID.

Bit 6 Reserved, always 0.

Bit 7 Use extended map.

9.10.2 Response
Byte Name Value

1 ID Mirrored from request

2-3 Response 0x0082

4 Length 0x00

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 42 (50)

9.11 SPDU
SPDU telegrams are transmitted cyclically, independently of data change, in both directions.
Whenever the SPDU data is updated, a data update indicator is incremented. Only updated data
shall be provided to the safety protocol stacks.

For more information about the SPDU, see The Anybus Telegram Structure, p. 13 and The Safety
Module Telegram Structure, p. 15.

The length of the safe IO data is decided during start-up. See The Start-up Telegram, p. 12 for
more information.

9.11.1 The CompactCom SPDU
The CompactCom SPDU is sent from the CompactCom device to the safety module.

Normally all HALC messages contain a HALC command, but in this case it is implicitly known
(CSOS_k_CMD_IXCO_IO_DATA in IXXAT CSS), and will not be transmitted.

The CIP Safety message is encapsulated inside the HALC message.

A time coordination message will also be sent, and it is placed at the end of the SPDU. The time
coordination message needs a separate HALC addInfo, and this is also placed inside the SPDU.
See the table below.

When a connection is closed, the HALC length field shall be set to the maximally supported
CompactCom SPDU size, and HALC addInfo/HALC addInfo2 shall be set to 0xFFFF.

Anytime a connection does not provide valid data (e.g. when a connection is not open or haven’t
produced any data yet), the data/data2 areas shall be filled with 0xFE values.

When a connection transports less data than the SPDU container maximum, there will be unused
bytes right after the data field. The position of HALC addInfo2 shall stay at its constant position
within the container.

If the safety module only produces safe data, the HALC length shall be set to zero and HALC
addInfo to 0xFFFF. Consequently, the data field shall not be transmitted (i.e. consumer number
and pad byte are also not transmitted).

If the safety module only consumes data, the HALC addInfo2 and data2 fields shall contain values
as if the connection is closed.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 43 (50)

Byte Name Value / Description HALC_t_MSG

FOR IO SAFETY DATA CONSUMER
Not transmitted (fixed value):
CSOS_k_CMD_IXCO_IO_DATA

u16_cmd

1–2 HALC length n (length of data) u16_len

3–4 HALC
addInfo

Safety validator instance ID for
safety IO data: 2 bytes

u16_addInfo

5–(4+n) data Byte 1: consumer number
Byte 2: pad byte
Byte 3–n: data message

Pb_data: pointer to data

FOR IO SAFETY DATA PRODUCER
Not transmitted (fixed value):
CSOS_k_CMD_IXCO_IO_DATA

u16_cmd

Not transmitted (fixed value):
length of data2: 8 bytes

u16_len

(5+n)-
(6+n)

HALC
addInfo2

Safety validator instance ID for
time coordination message: 2
bytes

u16_addInfo

(7+n)-
(14+n)

data2 Byte 1: consumer number
Byte 2: pad byte
Byte 3–8: time coordination
message

Pb_data: pointer to data2

DATA UPDATE INDICATOR FOR SAFETY DATA CONSUMER AND SAFETY DATA PRODUCER
(15+n) DUI_data Data update indicator for data

Incremented when the data field
is updated
After reaching 0xFF, this value
will start again at 0x00

-

(16+n) DUI_data2 Data update indicator for data2
Incremented when the data field
is updated
After reaching 0xFF, this value
will start again at 0x00

-

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 44 (50)

9.11.2 The Safety Module SPDU
The safety module SPDU is sent from the safety module to the CompactCom device.

Normally all HALC messages contain a HALC command, but in this case it is implicitly known
(CSOS_k_CMD_IXSVO_IO_DATA in IXXAT CSS), and will not be transmitted.

The CIP Safety message is encapsulated inside the HALC message.

A time coordination message will also be sent, and it is placed at the end of the SPDU. The time
coordination message needs a separate HALC addInfo, and this is also placed inside the SPDU.
See the table below.

When a connection is closed, the HALC length field shall be set to the maximally supported
safety module SPDU size, and HALC addInfo/HALC addInfo2 shall be set to 0xFFFF.

Anytime a connection does not provide valid data (e.g. when a connection is not open or haven’t
produced any data yet), the data/data2 areas shall be filled with 0xFE values.

When a connection transports less data than the SPDU container maximum, there will be unused
bytes right after the data field. The position of HALC addInfo2 shall stay at its constant position
within the container.

If the safety module only consumes safe data, the HALC length shall be set to zero and HALC
addInfo to 0xFFFF. Consequently, the data field shall not be transmitted.

If the safety module only produces data, the HALC addInfo2 and data2 fields shall contain values
as if the connection is closed.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 45 (50)

Byte Name Value / Description HALCS_t_MSG

FOR IO SAFETY DATA PRODUCER
Not transmitted (fixed value):
CSOS_k_CMD_IXSVO_IO_DATA

u16_cmd

1–2 HALC length n (length of data) u16_len

3–4 HALC
addInfo

Safety validator instance ID for
safety IO data: 2 bytes

u16_addInfo

5–(4+n) data Byte 1–n: data message pb_data: pointer to data

FOR IO SAFETY DATA CONSUMER
Not transmitted (fixed value):
CSOS_k_CMD_IXSVO_IO_DATA

u16_cmd

Not transmitted (fixed value):
length of data2: 6 bytes

u16_len

(5+n)-
(6+n)

HALC
addInfo2

Safety validator instance ID for
time coordination message: 2
bytes

u16_addInfo

(7+n)-
(12+n)

data2 Byte 1–6: time coordination
message

pb_data: pointer to data2

DATA UPDATE INDICATOR FOR SAFETY DATA CONSUMER AND SAFETY DATA PRODUCER
(13+n) DUI_data Data update indicator for data

Incremented when the data field
is updated
After reaching 0xFF, this value
will start again at 0x00

-

(14+n) DUI_data2 Data update indicator for data2
Incremented when the data field
is updated
After reaching 0xFF, this value
will start again at 0x00

-

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 46 (50)

9.12 SPDU Calculations and Examples
The lengths of the input and output SPDUs depend on the safe I/O data lengths to be
transported. There are devices that offer several assemblies with different lengths. Such devices
report the size of the longest assemblies in the startup telegram. During runtime the actual
length in the SPDUs is adjusted to the data length actually used by the corresponding connection.
This is considered as dynamic SPDUs.

The following examples are with “data” equalling 2 bytes and 4 bytes (in reality, at least 7 bytes),
and “data2” equalling 4 bytes (in reality 8 bytes, but reduced due to clarity).

9.12.1 Dynamic CompactCom SPDU
CONNECTION NOT OPENED, INVALID DATA
Byte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Name HALC
length

HALC addInfo data HALC
addInfo2

data2 DUI_
data

DUI_
data2

Value 4 0 0xff 0xff 0xfe 0xfe 0xfe 0xfe 0xff 0xff 0xfe 0xfe 0xfe 0xfe xx xx

CONNECTION NOT OPENED, VALID DATA

Not possible

CONNECTION OPENED, INVALID DATA

4 bytes data (maximum SPDU size)

Byte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Name HALC
length

HALC addInfo data HALC
addInfo2

data2 DUI_
data

DUI_
data2

Value 4 0 1 0 0xfe 0xfe 0xfe 0xfe 2 0 0xfe 0xfe 0xfe 0xfe xx xx

2 bytes data

Byte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Name HALC
length

HALC addInfo data Unused HALC
addInfo2

data2 DUI_
data

DUI_
data2

Value 2 0 1 0 0xfe 0xfe 0 0 2 0 0xfe 0xfe 0xfe 0xfe xx xx

The unused bytes may have any value, but for debugging purposes always using the same value (e.g.
0x00 or 0xFF) would be useful.

CONNECTION OPENED, VALID DATA

Same as CONNECTION OPENED, INVALID DATA, p. 46. Instead of 0xFE, real values are used.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 47 (50)

9.12.2 Producer-Only CompactCom SPDU
When a device only produces data then the HALC length in the CompactCom SPDU is zero and
the data field is not present.

Byte 1 2 3 4 5 6 7 8 9 10 11 12

Name HALC
length

HALC addInfo HALC
addInfo2

data2 DUI_
data

DUI_
data2

Value 0 0 0xff 0xff 1 0 0xfe 0xfe 0xfe 0xfe xx xx

This analogously applies to a Consumer-Only safety module SPDU (not shown here).

9.12.3 SPDU Length Relations
The lengths of the input and output SPDUs depend on the safe I/O data lengths to be
transported. It shall be considered that there are devices that have only inputs, only outputs or
both inputs and outputs. Additionally, CIP Safety uses different frame formats depending on the
length of the safe payload data. Thus the SPDU lengths are determined by the safety module and
communicated to the CompactCom via the Startup telegram.

Example 1

The Startup telegram reports output SPDU length 26 bytes and input SPDU length 22 bytes.
Conclusively, the device has 2 bytes of safe outputs and 2 bytes of safe inputs.

The CompactCom SPDU contents:

HALC length 2 bytes

HALC addInfo 2 bytes

data: consumer number
Pad Byte
Safe Payload
CIP Safety Overhead of 1-2 bytes format

1 byte
1 byte
2 bytes
6 bytes

HALC addInfo2 2 bytes

data 2: consumer number
Pad byte
Time Coordination Message

1 byte
1 byte
6 byte

DUI_data
DUI_data2

1 byte
1 byte

sum 26 bytes

The safety module SPDU contents:

HALC length 2 bytes

HALC addInfo 2 bytes

data: Safe Payload
CIP Safety Overhead of 1-2 bytes format

2 bytes
6 bytes

HALC addInfo2 2 bytes

data 2: Time Coordination Message 6 byte

DUI_data
DUI_data2

1 byte
1 byte

sum 22 bytes

Example 2

The Startup telegram reports output SPDU length 36 bytes and input SPDU length 14 bytes.
Conclusively, the device has 5 bytes of safe outputs and no safe inputs.

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

CIP Safety Specific Details 48 (50)

The CompactCom SPDU contents:

HALC length 2 bytes

HALC addInfo 2 bytes

data: consumer number
Pad Byte
Safe Payload
CIP Safety Overhead of 3-250 bytes format

1 byte
1 byte
5 bytes (=N)
13 bytes (N+8)

HALC addInfo2 2 bytes

data 2: consumer number
Pad byte
Time Coordination Message

1 byte
1 byte
6 byte

DUI_data
DUI_data2

1 byte
1 byte

sum 36 bytes

The safety module SPDU contents:

HALC length 2 bytes

HALC addInfo 2 bytes

data: Safe Payload
CIP Safety Overhead

0 bytes
0 bytes

HALC addInfo2 2 bytes

data 2: Time Coordination Message 6 byte

DUI_data
DUI_data2

1 byte
1 byte

sum 14 bytes

Anybus® Safety Interface Guide SCM-1202-024 1.4 en-US

This page intentionally left blank

last page

© 2020 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se SCM-1202-024 1.4 en-US / 2020-12-21 / 21169

	1 Preface
	1.1 Related Documents
	1.2 Document History
	1.3 Document Conventions
	1.4 Acronym List
	1.5 Trademark Information

	2 About the Anybus Safety Interface Guide
	2.1 General
	2.2 Communication Settings
	2.3 Endianness
	2.4 Safety Processors
	2.5 CRC Calculation

	3 Bootloader Mode
	3.1 Start-up Tasks
	3.1.1 Read_BL_Version
	3.1.2 Read_Appl_Version
	3.1.3 Exit_BL
	3.1.4 Read_Module_Type
	3.1.5 Read_Vendor_Block
	3.1.6 Response Codes

	4 System Start
	4.1 The Start-up Telegram

	5 Cyclic Telegrams
	5.1 The Anybus Telegram Structure
	5.1.1 Ctrl/Status Byte Information

	5.2 The Safety Module Telegram Structure
	5.2.1 Ctrl/Status

	6 Messages
	6.1 Message Header
	6.1.1 Request/Response

	6.2 Error Response
	6.3 Anybus CompactCom Messages
	6.3.1 GetStatus
	6.3.2 SetConfigString
	6.3.3 ErrorConfirmation

	6.4 Safety Module Messages
	6.4.1 FatalErrorEntry

	7 PROFIsafe Specific Details
	7.1 CompactCom Messages
	7.1.1 SetFAddress
	7.1.2 WriteAcyclicRecord
	7.1.3 ReadAcyclicRecord
	7.1.4 GetSupportedSpdus

	7.2 Safety Module Messages
	7.2.1 SendChannelDiagAlarm
	7.2.2 RemoveAlarm

	8 FSoE Specific Details
	8.1 CompactCom Messages
	8.1.1 SetFsoeSlaveAddress
	8.1.2 GetCoeObjects
	8.1.3 GetPdoMapping
	8.1.4 GetObjectInfo
	8.1.5 GetEntryInfo
	8.1.6 SdoDownload
	8.1.7 SdoUpload

	8.2 Safety Module Messages
	8.2.1 LEDstate

	9 CIP Safety Specific Details
	9.1 HalcCsalMessage
	9.2 HalcCsalMessage Structure
	9.2.1 Request
	9.2.2 Response

	9.3 SetInitData
	9.3.1 Request
	9.3.2 Response

	9.4 GetClassIDs
	9.4.1 Request
	9.4.2 Response

	9.5 GetAssemblyInstIDs
	9.5.1 Request
	9.5.2 Response

	9.6 LinkStatus
	9.6.1 Request
	9.6.2 Response

	9.7 HalcCssMessage
	9.8 HalcCssMessage Structure
	9.8.1 Request
	9.8.2 Response

	9.9 LEDstate
	9.9.1 Request
	9.9.2 Response

	9.10 SafetyReset
	9.10.1 Request
	9.10.2 Response

	9.11 SPDU
	9.11.1 The CompactCom SPDU
	9.11.2 The Safety Module SPDU

	9.12 SPDU Calculations and Examples
	9.12.1 Dynamic CompactCom SPDU
	9.12.2 Producer-Only CompactCom SPDU
	9.12.3 SPDU Length Relations

