
Anybus® CompactCom™ 40

SOFTWARE DESIGN GUIDE
HMSI-216-125 4.2 en-US ENGLISH

Important User Information
Disclaimer
The information in this document is for informational purposes only. Please inform HMS Networks of any
inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any
errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development.
The information in this document shall therefore not be construed as a commitment on the part of HMS Networks
and is subject to change without notice. HMS Networks makes no commitment to update or keep current the
information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data,
examples or illustrations included in this document nor for any damages incurred during installation of the product.
Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product
is used correctly in their specific application and that the application meets all performance and safety requirements
including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances
assume liability or responsibility for any problems that may arise as a result from the use of undocumented features
or functional side effects found outside the documented scope of the product. The effects caused by any direct or
indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability
issues.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Table of Contents Page

1 Preface ... 5
1.1 About this Document..5

1.2 Related Documents ..5

1.3 Document History ..5

1.4 Document Conventions ...7

1.5 Document Specific Conventions..7

1.6 Trademarks...8

2 About the Anybus CompactCom 40 ... 9
2.1 General Information ...9

2.2 Features ...9

3 Software Introduction... 10
3.1 Background... 10

3.2 The Object Model .. 12

3.3 Network Data Exchange .. 15

3.4 Diagnostics ... 16

3.5 File System ... 17

3.6 Modular Device ... 19

3.7 SYNC.. 19

3.8 Multilingual Support ... 24

3.9 Firmware Download ... 25

4 Host Communication Layer... 28
4.1 General Information ... 28

4.2 Memory Map .. 29

4.3 Communications Registers... 30

5 Parallel Host Communication ... 35
5.1 Flow Control ... 35

5.2 Anybus Event Driven Watchdog.. 35

5.3 Application Event Driven Watchdog .. 36

6 SPI Host Communication .. 37
6.1 General Information ... 37

6.2 SPI Frame Format... 37

6.3 Interrupts ... 38

6.4 Message Fragmentation .. 38

6.5 SPI Error Handling .. 39

6.6 Application Event Driven Watchdog .. 40

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

7 Shift Register Host Communication ... 41
7.1 General Information ... 41

7.2 Reset ... 41

8 Serial Host Communication (UART).. 42
8.1 General Information ... 42

9 The Anybus State Machine ... 43
9.1 General Information ... 43

9.2 State Dependent Actions ... 44

10 Object Messaging .. 45
10.1 General Information ... 45

10.2 Message Layout... 46

10.3 Message Segmentation ... 46

10.4 Data Format.. 49

10.5 Command Specification... 51

11 Initialization and Startup .. 57
11.1 General Information ... 57

11.2 Startup Procedure .. 57

11.3 Anybus Setup (SETUP State)... 59

11.4 Network Initialization (NW_INIT State)... 60

12 Anybus Module Objects.. 61
12.1 General Information ... 61

12.2 Object Revisions .. 61

12.3 Anybus Object (01h) ... 62

12.4 Diagnostic Object (02h) ... 69

12.5 Network Object (03h) ... 74

12.6 Network Configuration Object (04h) .. 81

12.7 Anybus File System Interface Object (0Ah).. 83

12.8 Functional Safety Module Object (11h) .. 98

12.9 Time Object (13h) .. 105

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

13 Host Application Objects .. 107
13.1 General Information ... 107

13.2 Implementation Guidelines.. 107

13.3 Functional Safety Object (E8h).. 109

13.4 Application Data Object (FEh)... 111

13.5 Application Object (FFh) .. 120

13.6 Application File System Interface Object (EAh) .. 132

13.7 Assembly Mapping Object (EBh) ... 135

13.8 Modular Device Object (ECh) ... 138

13.9 Sync Object (EEh) ... 140

13.10 Host Application Specific Object (80h) ... 142

A Categorization of Functionality .. 143
A.1 Basic .. 143

A.2 Extended .. 143

B Network Comparison .. 144
B.1 Network Specific Comments .. 146

C Industrial Ethernet Network Comparison.. 147

D Object Overview.. 149
D.1 Anybus Module Objects .. 149

D.2 Host Application Objects ... 150

E Conformance Test Information .. 151
E.1 EtherCAT .. 151

E.2 CC-Link... 152

E.3 Ethernet POWERLINK.. 153

E.4 EtherNet/IP... 154

E.5 DeviceNet... 154

E.6 Modbus-TCP ... 154

F Runtime Remapping of Process Data... 156
F.1 SPI Mode.. 156

F.2 Parallel Mode, 8/16 Bits, Event Driven ... 158

F.3 Backwards Compatible Modes.. 159

F.4 Example: Remap_ADI_Write_Area .. 163

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

G CRC Calculation (16–bit) ... 164
G.1 General .. 164

G.2 Example ... 164

G.3 Code Example ... 165

H CRC Calculation (32–bit) ... 167
H.1 Example ... 167

H.2 Code Example ... 167

I Timing & Performance .. 168
I.1 General Information ... 168

I.2 Internal Timing .. 168

J Backward Compatibility.. 170
J.1 Initial Considerations .. 170

J.2 Hardware Compatibility .. 170

J.3 General Software ... 175

Preface 5 (178)

1 Preface
1.1 About this Document

This document is intended to provide a good understanding of the Anybus CompactCom
platform. It does not cover any of the network specific features offered by the Anybus
CompactCom 40 products; this information is available in the appropriate Network Guide.

The reader of this document is expected to be familiar with high level software design and
industrial network communication systems in general. For additional information,
documentation, support etc., please visit the support website at www.anybus.com/support.

1.2 Related Documents
Document Author Document ID

Anybus CompactCom M40 Hardware Design Guide HMS HMSI-216-126

Anybus CompactCom B40 Design Guide HMS HMSI-27-230

Anybus CompactCom Host Application Implementation Guide HMS HMSI-27-334

Anybus CompactCom 40 Network Guides (separate document for
each supported fieldbus or network system)

HMS

1.3 Document History
Version Date Description

0.50 2013-07-02 New document
0.60 2013-12-20 General update

1.00 2014-03-28 Major update

1.10 2014-05-26 Major update

1.20 2014-08-15 Major update

1.21 2014-08-26 Major update

1.20 2014-11-10 Major update

1.31 2015-02-06 Minor update

2.00 2015-09-24 Major update

3.0 2016-08-31 Moved from FM to DOX
Major update

3.1 2017-04-03 CC-Link IE Field added
Misc. updates and corrections

3.2 2017-06-15 BACnet/IP added
Misc. updates and corrections

3.3 2017-07-10 Added attr #7 to Application Object (FFh)
Updated information on LED status register
Added appendix on backward compatibility

3.4 2017-11-28 Added attr #8 - #11 to Application Object (FFh)
Minor updates

3.5 2018-03-09 Misc. updates
Comparison tables updated for EPL and ECT

3.6 2018-05-28 Misc. updates

3.7 2018-09-19 Updates for MQTT support

3.8 2018-10-23 Minor corrections
3.9 2019-03-01 Corrections to Module Device object description

Added info on CANopen module
Minor updates
Rebranded

4.0 2019-11-11 Updated Anybus Ojbect (01h)
Minor updates

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

http://www.anybus.com/support

Preface 6 (178)

Version Date Description

Changed disclaimer

4.1 2021–04–16 Added information about the Name attribute in the Assembly Mapping Object
(EBh)
Added Time Object (13h)

4.2 2021-09-20 Added DOUBLE to Available Data Types
Added exception codes 0Dh and 0Eh in Exception Codes

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Preface 7 (178)

1.4 Document Conventions
Numbered lists indicate tasks that should be carried out in sequence:

1. First do this

2. Then do this

Bulleted lists are used for:

• Tasks that can be carried out in any order

• Itemized information

► An action

→ and a result

User interaction elements (buttons etc.) are indicated with bold text.

Program code and script examples

Cross-reference within this document: Document Conventions, p. 7

External link (URL): www.hms-networks.com

WARNING
Instruction that must be followed to avoid a risk of death or serious injury.

Caution
Instruction that must be followed to avoid a risk of personal injury.

Instruction that must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

Additional information which may facilitate installation and/or operation.

1.5 Document Specific Conventions
• The terms “Anybus” or “module” refers to the Anybus CompactCom module.

• The terms “host” or “host application” refer to the device that hosts the Anybus.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the
hexadecimal value.

• Intel byte order is assumed unless otherwise stated.

• Object Instance equals Instance #0.

• Object Attributes resides in the Object Instance.

• The terms “Anybus implementation” and “Anybus version” generally refers to the
implementation in the Anybus module, i.e. network type and internal firmware revision.

• Unless something is clearly stated to be optional, it shall be considered mandatory.

• When writing, fields declared as “reserved” shall be set to zero.

• When reading, fields bits declared as “reserved” shall be ignored.

• Fields which are declared as “reserved” must not be used for undocumented purposes.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

http://www.hms-networks.com

Preface 8 (178)

• A byte always consists of 8 bits.

• A word always consists of 16 bits.

1.6 Trademarks
• Anybus® is a registered trademark of HMS Industrial Networks.

• EtherNet/IP is a trademark of ODVA, Inc.

• DeviceNet is a trademark of ODVA, Inc.

• EtherCAT® is a registered trademark and
patented technology, licensed by Beckhoff Automation GmbH, Germany.

All other trademarks are the property of their respective holders.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

About the Anybus CompactCom 40 9 (178)

2 About the Anybus CompactCom 40
2.1 General Information

The Anybus CompactCom 40 network communication module is a powerful communication
solution for demanding industrial applications. It is ideal for high performance, synchronized
applications such as servo drive systems. Typical applications are PLCs, HMIs, robotics, AC/DC
and servo drives.

The Anybus CompactCom software interface is designed to be network protocol independent,
allowing the host application to support all major networking systems using the same software
driver, without loss of functionality.

To provide flexibility and room for expansion, an object oriented addressing scheme is used
between the host application and the Anybus module. This allows for a very high level of
integration, since the host communication protocol enables the Anybus module to retrieve
information directly from the host application using explicit object requests rather than memory
mapped data.

The Anybus CompactCom 40 series is backward compatible with the Anybus
CompactCom 30 series though the 40 series has significantly better performance and
include more functionality than the 30 series. The 40 series is backward compatible with
the 30 series in the sense that an application developed for the 30 series should be
possible to use with the 40 series products, even though minor application code changes
may be necessary.

The 40 series products can thus not replace 30 series products as is.

2.2 Features
• Hardware support for triple buffered process data

• Black channel interface, offering a transparent channel for safety communication

• Host interface is network protocol independent

• Multilingual support

• High level of integration

• Synchronization support

• 8-bit and 16-bit parallel modes

• SPI mode

• Stand-alone shift register mode

• Serial interface mode (UART)

• Optional support for advanced network specific features

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 10 (178)

3 Software Introduction
3.1 Background

The primary function of an industrial network interface is to exchange information with other
devices on the network. Traditionally, this has mostly been a matter of exchanging cyclic I/O and
making it available to the host device via two memory buffers.

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data from Fieldbus

Network Interface

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data to Fieldbus

Ne
tw

or
k

Fig. 1

As demand for higher level network functionality increases, the typical role of a network
interface has evolved towards including acyclical data management, alarm handling, diagnostics
etc.

Generally, the way this is implemented differs fundamentally between different networking
systems. This means that supporting and actually taking advantage of this new functionality is
becoming increasingly complex, if not impossible, without implementing dedicated software
support for each network.

By utilizing modern object oriented technology, the Anybus CompactCom provides a simple and
effective way of supporting most networking systems, as well as taking advantage of advanced
network functionality, without having to write separate software drivers for each network.
Acyclic requests are translated in a uniform manner, and dedicated objects provide diagnostic
and alarm handling according to each network standard.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 11 (178)

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data from Fieldbus

Network Interface

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data to Fieldbus

Diagnostic Handling

Cyclic Data

Cyclic Data

Alarm

Diagnostics

Ne
tw

or
k

Acyclic Request

Acyclic Response

Acyclic Handling

Fig. 2

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 12 (178)

3.2 The Object Model
3.2.1 Basics

To provide a flexible and logical addressing scheme for both the host application and the Anybus
module, the software interface is structured in an object structured manner. While this approach
may appear confusing at first, it is nothing more than a way of categorizing and addressing
information.

Related information and services are grouped into entities called ‘Objects’. Each object can hold
subentities called ‘Instances’, which in turn may contain a number of fields called ‘Attributes’.
Attributes typically represents information or settings associated with the Object. Depending on
the object in question, Instances may either be static or created dynamically during runtime.

#1
Attributes:

#2
#3
#4
#5

Instance #1

Instance #2

Instance #3

#1
Attributes:

#2
#3
#4
#5

Object #1
(Instance #0)

Fig. 3

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 13 (178)

3.2.2 Addressing Scheme
Objects, and their contents, are accessed using Object Messaging. Each object message is tagged
with an object number, instance, and attribute, specifying the location of the data or setting
associated with the message.

This addressing scheme applies to both directions; i.e. just like the Anybus module, the
host application must be capable of interpreting incoming object requests and route
them to the appropriate software routines.

Example:

The module features an object called the “Anybus Object”, which groups common settings
relating the Anybus module itself.

In this object, instance #1 contains an attribute called ‘“Firmware version”’ (attribute #2). To
retrieve the firmware revision of the module, the host simply issues a Get Attribute request to
object #1 (Anybus Object), Instance #1, Attribute #2 (Firmware version).

3.2.3 Object Categories
Based on their physical location, objects are grouped into two distinct categories:

Anybus Module Objects These objects are part of the Anybus firmware, and typically controls the behavior of the
module and its actions on the network.

Host Application Objects These objects are located in the host application firmware, and may be accessed by the
Anybus module. This means that the host application must implement proper handling
of incoming object requests.

3.2.4 Standard Object Implementation
The standard object implementation has been designed to cover the needs of all major
networking systems, which means that it is generally enough to implement support for these
objects in order to get sufficient functionality regardless of network type.

Optionally, support for network specific objects can be implemented to gain access to advanced
network specific functionality. Such objects are described separately in each network guide.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 14 (178)

Anybus Module Objects

The following objects are implemented in the standard Anybus CompactCom 40 firmware:

• Anybus Object

• Diagnostic Object

• Network Object

• Network Configuration Object

• File System Interface Object

• Functional Safety Module Object

• Time Object

• Network Specific Objects

Exactly how much support that needs to be implemented for these objects depends on the
requirements of the host application.

See also...

Anybus Module Objects, p. 61

Host Application Objects

The following objects can be implemented in the host application.

• Application Data Object (Mandatory)

• Application Object (Mandatory)

• Sync Object (Optional)

• Modular Device Object (Optional)

• Assembly Mapping Object (Optional)

• File System Interface Object (Optional)

• Energy Control Object (Optional)

• Functional Safety Object (Optional)

• Network Specific Objects (Optional)

It is mandatory to implement the Application Data Object and the Application Object. The exact
implementation however depends heavily on the requirements of the host application.

See also...

Host Application Objects, p. 107

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 15 (178)

3.3 Network Data Exchange
Data that is to be exchanged on the network is grouped in the Application Data Object. This
object shall be implemented in the host application firmware, and each instance within it (from
now on referred to as “ADI”, i.e. Application Data Instance) represents a block of network data.

ADIs are normally associated with acyclic parameters on the network side. For example, on
DeviceNet and EtherNet/IP, ADIs are represented through a dedicated vendor specific CIP object,
while on PROFIBUS, ADIs are accessed through acyclic DP-V1 read/write services. On EtherCAT
and other protocols that are based on the CANopen Object Dictionary, ADIs are mapped to PDOs,
defined in the object dictionary.

ADIs can also be mapped as Process Data, either by the host application or from the network
(where applicable). Process Data is exchanged through a dedicated data channel in the Anybus
CompactCom host protocol, and is normally associated with fast cyclical network I/O. The exact
representation of Process Data is highly network specific; for example on PROFIBUS, Process
Data correlates to IO data.

Translation

Application Parameter

Application Parameter

Process Data Handling

Translation

Host Application0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Process Data Buffer*
(Read)

Object Response

*) These buffers holds data from ADI's that are mapped to Process Data.

Ne
tw

or
k

Acyclic Request

Cyclic Data

Acyclic Response

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Process Data Buffer*
(Write)Cyclic Data

(Dedicated Channel)

Application Data
Object

ADI 1

ADI 2

ADI 3
Application Parameter

Object Request

Fig. 4

Each ADI may be tagged with a name, data type, range and default value, all of which may be
accessed from the network (if supported by the network in question). This allows higher level
network devices (e.g. network masters, configuration tools etc.) to recognize acyclic parameters
by their actual name and type (when applicable), simplifying the network configuration process.

Some networking systems allows both cyclic and acyclic access to the same parameter. In the
case of the Anybus CompactCom 40, this means that an ADI may be accessed via explicit object
requests and Process Data simultaneously. The Anybus module makes no attempt to synchronize
this data in any way; if necessary, the host application must implement the necessary
mechanisms to handle this scenario.

The Anybus interface uses little endian memory addressing. This means that the byte order is
from the least significant byte (LSB) to the most significant byte (MSB). The Anybus will however

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 16 (178)

handle ADI values transparently according to the actual network representation (indicated to the
application during initialization). The application driver is responsible for byte swap if required.
Use of this approach is decided because of the following reasons:

• The Anybus can not hold information about the data type of all ADIs due to memory
limitations and start-up time demands.

• The alternative to read the data type prior to every parameter write or read request would
be too time consuming.

See also...

The Anybus State Machine, p. 43

Network Object (03h), p. 74

Functional Safety Object (E8h), p. 109

3.4 Diagnostics
The Anybus CompactCom 40 features a dedicated object for host related diagnostics. To report a
diagnostic event, the host application shall create an instance within this object. When the event
has been resolved, the host simply removes the diagnostic instance again.

Each event is tagged with an Event Code, which specifies the nature of the event, and a Severity
Code, which specifies the severity of the event. The actual representation of this information is
highly network specific.

Host Application

Ne
tw

or
k

Diagnostics Application Diagnostic & Status Handling

Diagnostic
Object

Event

Event

Event

Fig. 5

See also...

Diagnostic Object (02h), p. 69

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 17 (178)

3.5 File System
The modules in the Anybus CompactCom 40 series have a built-in file system.

For modules not supporting FTP, this makes it possible to store firmware files in the firmware
directory using the File System Interface Object (0Ah). No other access to or use of the file
system is possible for these modules.

For modules supporting FTP, the in-built file system can be accessed from the application and
from the network. The file system can not be deleted.

Three directories are predefined:

VFS The virtual file system that e.g. holds the web pages of the module.

Application This directory provides access to the application file system through the Application File
System Interface Object (EAh) (optional). The directory can not be accessed from the
application, only from the network.

Firmware Firmware updates are stored in this directory.

In the firmware folder, it is not possible to use append mode when writing a file. Use
write mode only.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 18 (178)

Anybus
CompactCom
File system

File 1

File 2

VFS

File 1

File 2

Application

Application
File system

File A1

File A2

Directory A1

File A1:1

File A1:2

The Anybus CompactCom accesses
the application file system through the
Application File System Interface Object.

Anybus CompactCom Application

Firmware*

* The firmware folder is available to the application
 for firmware download in all modules.

Fig. 6

See also...

Anybus File System Interface Object (0Ah), p. 83

Application File System Interface Object (EAh), p. 132

Firmware Download, p. 25

Anybus CompactCom 40 Network Guides, available at www.anybus.com

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 19 (178)

3.6 Modular Device
The modular device functionality makes it possible to model a structure of the process data on
to a number of modules of different types within an application, e.g. for handling digital input or
output, analog input or output, or drives. The ADIs are distributed among the modules and the
number of ADIs per module is configurable. The modules are physically connected to a
backplane, with a number of slots. The first slot is occupied by the coupler, which contains the
Anybus CompactCom module. All other slots may be empty or occupied by modules. When
mapping ADIs to process data, the application shall map the process data of each module in slot
order.

See also:

• Modular Device Object (ECh), p. 138

• Anybus CompactCom 40 Network Guides

3.7 SYNC
3.7.1 General Information

Automation systems involving many devices often require a way to synchronize events. To
achieve this, the devices in the system can share a common timing signal. The Anybus
CompactCom 40 supports a SYNC mechanism via the SYNC object, that is optional to implement
in the application.

The following Anybus CompactCom 40 modules support the SYNC functionality:

• Ethernet POWERLINK

• PROFINET-IRT

• EtherCAT

See also:

• Sync Object (EEh), p. 140.

• Application Status Register, p. 30

• The Anybus State Machine, p. 43 for information of the different states of the Anybus
CompactCom module.

3.7.2 Functionality
For a successful SYNC implementation, there are a number of things to implement and consider.

The network master will configure attributes #1-3 and #7 of the SYNC object through the Anybus
CompactCom module before entering state IDLE or PROCESS_ACTIVE. If the module attempts to
set attributes #1-3 in state IDLE or PROCESS_ACTIVE, the application must respond with error
code 0Dh (Invalid state). For unsupported values for the attributes, the application must respond
with a suitable error code (11h (Value too high), 12h (Value too low) or 0Ch (Value out of range)).

If there is a problem with the configuration as a whole, the application must indicate this in the
application status register. See Application Status Register, p. 30.

The application must indicate its minimum supported cycle time and the required input/output
processing times in attributes #4-6 of the SYNC object at all times. The value of these attributes
can be constant or vary, reflecting the timing required for the current process data mapping.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 20 (178)

3.7.3 Synchronization Lock
If the application needs time to lock on the SYNC signal, it must write 0001h (“Application not
yet synchronized”) to the application status register. When synchronization lock has been
achieved, and there are no configuration errors, the application must write 0000h to the
application status register and then accept a transition to PROCESS_ACTIVE.

Whenever the application is not locked on the SYNC signal, and attribute #7 “Sync mode” in the
SYNC object is set to “1”, the application must write the most accurate nonzero status code to
the application status register.

See also

Application Status Register, p. 30

3.7.4 SYNC Pulse
The SYNC signal, available from the module’s application connector, indicates the synchronization
event to the application by a positive pulse once every cycle. The positive edge of the SYNC pulse
indicates the synchronization event.

The width of the SYNC pulse is at least 5 µs, with a maximum width of 50% of the cycle time.

The SYNC event is also available to the application as a maskable interrupt. See Interrupt Status
Register, p. 32.

3.7.5 Network Translation
Ethernet POWERLINK does not in itself support synchronization functionality. The SYNC signal
from the module is sent once for each cycle, and can as such be used by the application.

In Anybus CompactCom 40 EtherCAT, parameters and settings are stored in CoE objects 1C32h
and 1C33h.

The Anybus CompactCom 40 PROFINET IRT supports both isochronous and non-isochronous
modes.

For more information, please consult the respective network guides.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 21 (178)

3.7.6 Anybus CompactCom 40 SYNC Implementation
The Goal of SYNC

To set output data to
different devices
simultaneously.

The PLC will tell all devices in the network to set the next set of available output data at
the application, when the SYNC signal is sent.

The time when the output data is set at the application is called the Output Valid Point.

To capture input data from
different devices
simultaneously.

The time when the input data is available is called the Input Capture Point.

Cycle time

MI0/SYNC Signal

Input Capture

Output Valid

Min: “Output
Processing”

Max: “Input
Processing”

WRPD (Write Process Data)
Written to Anybus

Input Capture
Point

Output Valid
Point

RDPDI
(Read Process
Data Interrupt
From Anybus)

Fig. 7

Handling of Output Data

Each device needs time to handle the new output data before it can be set in the application.
This time is not constant.

The device has to follow these steps:

1. Wait for indication of new output data (indicated by the Anybus CompactCom 40 through
the RDPDI (Read Process Data Interrupt).

2. Read the output data from the Anybus CompactCom 40 when receiving the RDPDI.

3. Process the new output data so that it can be used by the host application

– copy data

– process output variables

– do calculations

– etc

4. Wait for the SYNC signal.

5. When the SYNC signal arrives:

– If “Output Valid” = 0, activate the outputs to the host application.

– If “Output Valid” > 0, start a hardware or a software timer on the positive edge of the
SYNC signal. Activate the outputs to the host application when the timer has reached
“Output Valid”.

See Buffer Control Register, p. 31 and Interrupt Status Register, p. 32 for more information on
RDPD (Read Process Data) and RPDPI (Read Process Data Interrupt)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 22 (178)

Handling of Input Data

Each device needs time to capture, prepare and send new input data. This time is not constant.

The device has to follow these steps:

1. Wait for the SYNC signal.

2. When the SYNC signal arrives (“Input Capture” point):

– If “Input Valid” = 0, capture the current input process variables of the host application.

– If “Input Valid” > 0, start a hardware or a software timer on the positive edge of the
SYNC signal. Capture the current input process data when the timer has reached “Input
Valid”.

3. Prepare the new input process data so that it can be written to theAnybus CompactCom 40.

4. Write the new process input data to theAnybus CompactCom 40.

Host Application Programming Guidelines

See Sync Object (EEh), p. 140 for more information.

1. Implement the SYNC Object (part 1)

7 Sync mode Get/Set UINT16 This attribute is used to select synchronization
mode. It enumerates the bits in attribute 8
0: Non synchronous operation. (Default value if
non synchronous operation is supported)
1: Synchronous operation
2 - 65535: Reserved. Any attempt to set sync
mode to an unsupported value shall generate
an error response

8 Supported sync modes Get UINT16 A list of the synchronization modes the
application supports. Each bit corresponds to a
mode in attribute 7
Bit 0: 1 = Non synchronous mode supported
Bit 1: 1 = Synchronous mode supported
Bit 2 - 15: Reserved (0)

2. Implement the SYNC Object (part 2)

4 Output processing Get UINT32 Minimum required time, in nanoseconds,
between RDPDI interrupt and “Output valid”

5 Input processing Get UINT32 Maximum required time, in nanoseconds, from
“Input capture” until write process data has been
completely written to the Anybus CompactCom
40

6 Min cycle time Get UINT32 Minimum cycle time supported by the
application (in nanoseconds)

The time elapsed between receiving an RDPDI interrupt and when the process output
variables have been taken over by the application has to be measured. The maximum time
must be provided by the application when the Anybus CompactCom 40 asks for attribute #4
“Output processing”. The network master has to make sure that the minimum output
processing time is longer than the maximum time measured.

The time elapsed between capturing the input process variables and when the input process
data is written to the CompactCom 40 must be measured. The maximum time must be
provided by the application when the Anybus CompactCom 40 asks for attribute #5 “Input
processing”.

The host application must measure the maximum time needed to handle all process data
(the time from receiving the RDPDI interrupt until the write process data has been written
to the Anybus CompactCom 40). This value must be provided by the application when the
Anybus CompactCom 40 asks for attribute #6 “Min cycle time”.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 23 (178)

3. Implement the SYNC Object (part 3)

1 Cycle time Get/Set UINT32 Application cycle time in nanoseconds

2 Output valid Get/Set UINT32 Output valid point relative to SYNC events, in
nanoseconds
Default value: 0

3 Input capture Get/Set UINT32 Input capture point relative to SYNC events, in
nanoseconds
Default value: 0

These three attributes can all be set by the Anybus CompactCom 40.

Using attribute #1, “Cycle time”, theAnybus CompactCom 40 informs the host application
about the real used cycle time (by the Set_Attribute command). This value must be
evaluated by the host application and refused if not acceptable (not suitable, e.g. in conflict
with other cyclic tasks of the host application or not within the defined range). If refused,
the Anybus CompactCom 40 will report this to the PLC.

Attributes #2 and #3 reflect functionality present on some networks (e.g. EtherCAT, SERCOS
and PROFINET), where the input capture and output valid points can be fine-tuned. This can
be used to offset one device relative to another by a small amount of time. To support
values other than zero (0), timers will have to be implemented in the application.

4. Implement the Application Status Register

See Application Status Register, p. 30 for more information.

5. Act upon receiving an RDPDI and a SYNC signal

When receiving an RDPDI interrupt, read the output process data from the Anybus
CompactCom 40, prepare it (handle and assign it to process output variables) so that it can
be activated when receiving a SYNC signal.

When receiving a SYNC signal, do the following:

a. Transfer the output process variables to the application immediately.

b. Capture all input process variables immediately.

c. Prepare and assign the input process variables to the input process data.

d. Write the input process data to the CompactCom.

Steps b, c and d must be done within the time specified by attribute #5 “Input processing”.

Steps a and b assumes Output Valid and Input Capture to be zero (0).

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 24 (178)

The Easiest Realization of a Synchronous Application

Cycle time

MI0/SYNC Signal

Max: “Input
Processing”

WRPD Written to
Anybus

Output Valid Point
and
Input Capture Point

Fig. 8

The following steps show how to create a very simple synchronous application.

1. Set up an interrupt routine triggered by the positive SYNC edge. Disable the RDPDI interrupt.

2. In the SYNC interrupt routine:

– Sample the input data and write it to the Anybus CompactCom 40.

– Read the output data from the Anybus CompactCom 40 and start using it immediately.

3. For this application, attribute #4 “Output processing” in the SYNC object should be set to
zero (0). No measurement needed.

4. Attribute #5 “Input processing” must be determined. It can probably be hard coded to a
fixed value, but this is application specific and depend on the complexity of the SYNC
interrupt routine and the application processor performance.

5. For attributes #2 “Output valid” and #3 “Input capture”, only the value zero (0) will be
accepted by the application.

This simple step-by-step method will work in all applications where the process data handling
can be made fast and simple.

3.8 Multilingual Support
Where applicable, the Anybus CompactCom 40 supports multiple languages. This mainly affects
instance names and enumeration strings, and is based on the current language setting in the
Anybus Object. Note that this also applies to Host Application Objects, which means that the
host application should be capable of changing the language of enumeration strings etc.
accordingly.

When applicable, the Anybus CompactCom 40 forwards change-of-language-requests from the
network to the Application Object. It is then up to the host application to grant or reject the
request, either causing the module to change its language settings or to reject the original
network request.

Supported languages:

• English (default)

• German

• Spanish

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 25 (178)

• Italian

• French

See also...

Application Object (FFh), p. 120

3.9 Firmware Download
Download and upgrade of network communication firmware for a specific fieldbus or industrial
network can be performed in different ways, depending on which Anybus CompactCom 40 that
is to be upgraded.

3.9.1 Important
When the Anybus CompactCom 40 is restarted after a firmware download, the application must
wait for the installation to finish before initialization is started. The Anybus CompactCom 40 is
protected against power failure during download and/or installation and will recover upon
restart.

• If download through e.g. Firmware Manager or FTP, is interrupted, please restart the
firmware download process from the beginning.

• To install the new firmware after download is completed, reset the Anybus CompactCom 40.
If the installation of the new firmware is interrupted, e.g. due to power loss, please restart
the Anybus CompactCom 40. The installation process will automatically start from the
beginning and the new firmware will be installed without any further action.

For more information see, Startup Procedure, p. 57

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 26 (178)

3.9.2 Using Firmware Manager II
This tool is available without cost from www.anybus.com. It can be used to download new
firmware for any Anybus CompactCom 40.

Fig. 9

Using the tool, perform the following steps to download new firmware to the module.

1. Connect a computer with the Firmware Manager II software installed to the network
containing the module.

2. Start the Firmware Manager II tool.

3. Scan the network and find the module.

4. Click the Firmware Repository icon in the menu, to open the Firmware Repository window.
Drag the firmware folder into the window to add the new firmware to the repository. Close
the Firmware Repository window.

5. In the scan window, under the “Available Networks” tab, select the appropriate firmware
for the module. Click the Change Network button. A confirmation window will appear. Click
Yes to start the download of the new firmware. Please make sure that download is
completely finished before continuing.

6. After download, a restart of the module is needed to install the new firmware. If the
application allows it, it is possible to restart the module via the Restart Module button in
the Firmware Manager II tool. If the application does not allow restart from the network, a
manual restart of the module is needed.

For more information, see the help file in the Firmware Manager II software.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Software Introduction 27 (178)

3.9.3 Using the Internal File System
The internal file system can be accessed via the File System Interface Object. Interfacing this
object from the host application, makes it possible to store the new firmware in the /firmware
directory in the internal file system. The next time the module is started the firmware will be
upgraded. After the firmware is installed, the firmware file is deleted from the /firmware
directory.

In the firmware folder, it is not possible to use append mode when writing a file. Be sure
to use write mode only.

See also ...

• Application File System Interface Object (EAh), p. 132

3.9.4 Using FTP
If the module supports FTP, this can be used to access the file system and upload the new
firmware directly to the /firmware directory. The next time the module is started the firmware
will be upgraded. After the firmware is installed, the firmware file is deleted from the /firmware
directory.

See also ...

• Application File System Interface Object (EAh), p. 132

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Communication Layer 28 (178)

4 Host Communication Layer
4.1 General Information

The main communication layer is used by the 8-bit/16-bit parallel modes and the SPI mode. It is
divided into process data read/write areas, message data read/write areas and a number of
control registers.

Below is a detailed description of the memory map and the different control registers.

4.1.1 Communication Basics
The communication between the host and the Anybus CompactCom 40 is simple, fast and
flexible.

The host can read or write process data at any time. It can check for incoming data via the buffer
control register or by enabling appropriate interrupts via the interrupt mask register.

Attempts to access reserved registers will produce unpredictable results. Attempts to
write to a read-only register will produce unpredictable results. Reserved bits shall be
written with zeros (0). Reading reserved bits returns undefined values.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Communication Layer 29 (178)

4.2 Memory Map
The address offset specified below is relative to the base address of the module, i.e. from the
beginning of the area in host application memory space where the interface has been
implemented.

The memory area is not available during reset.

The shaded areas and registers are used for backward compatibility with the Anybus
CompactCom 30 series.

Byte Address Word Address Area Bytes Access,
seen from
host

Notes

0000h - 0FFFh 0000h - 07FFh Process data, write
area

4096 R/W This is the total size of the
area. The actual size
depends on the network.
For network specific
process area sizes, see
Network Comparison, p.
144.
Applicable to all protocols

1000h - 1FFFh 0800h - 0FFFh Process data, read area 4096 R

2000h - 25FFh 1000h - 12FFh Message data, write
area

1536 R/W Applicable to all protocols

2600h - 2FFFh 1300h - 17FFh Reserved 2560 -

3000h - 35FFh 1800h - 1AFFh Message data, read
area

1536 R

3600h - 37FFh 1B00h - 1BFFh Reserved 512 -

3800h - 38FFh 1C00h - 1C7Fh Process data, write
area

256 R/W

3900h - 39FFh 1C80h - 1CFFh Process data, read area 256 R

3A00h - 3AFFh 1D00h - 1D7Fh Reserved 256 -

3B00h - 3C06h 1D80h - 1E03h Message data, write
area

263 R/W

3C07h - 3CFFh 1E04h - 1E7Fh Reserved 249 -

3D00h - 3E06h 1E80h - 1F03h Message data, read
area

263 R

3E07h - 3FE7h 1F04h - 1FF3h Reserved 481 -

3FE8h - 3FEFh 1FF4h - 1FF7h Current network time 8 R

3FF0h - 3FF1h 1FF8h Module capability
register

2 R

3FF2h - 3FF3h 1FF9h LED status register 2 R

3FF4h - 3FF5h 1FFAh Application status
register

2 R/W Applicable to the event
driven protocol.

3FF6h - 3FF7h 1FFBh Anybus CompactCom
module status register

2 R

3FF8h - 3FF9h 1FFCh Buffer control register 2 R/W

3FFAh - 3FFBh 1FFDh Interrupt mask register 2 R/W

3FFCh - 3FFDh 1FFEh Interrupt status
register

2 R/W

3FFEh 1FFFh Control register 1 R/W Applicable to the half
duplex protocol

3FFFh Status register 1 R

If an application is to use “current network time”, the network time must first be sampled. This is
performed by writing to this register. The register will be updated with the actual value from the
network, which then can be read by the application.

C-programmers are reminded to declare the entire shared memory area as volatile.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Communication Layer 30 (178)

4.3 Communications Registers
4.3.1 Module Capability Register

The module capability register contains one of the values below, indicating module type. The
application should determine the module type by examining the low byte only. The high byte is
reserved for future use.

Value Module Type

0000h Active Anybus CompactCom 30 series module, supporting the half duplex protocol only
8 bit parallel and serial modes

000Bh Active Anybus CompactCom 40 series module, supporting the event driven as well as the half
duplex protocol
8 bit/16 bit parallel, shift register, SPI and serial modes

000Ch Active Anybus IP with parallel AXI bus

0101h Passive RS232

0202h Passive RS422

0303h Passive USB

0404h (reserved)

0505h Passive Bluetooth
0606h - 0909h (reserved)

0A0Ah Passive RS485

0C0Ch - 0F0Fh (reserved)

All passive modules belong to the Anybus CompactCom 30-series. There are no passive modules in the
Anybus CompactCom 40-series.

4.3.2 LED Status Register
The first 8 bits of this register reflect the LED status, as represented by the value of the instance
attribute LED status (#13) in the Anybus Object. See Anybus Object (01h), p. 62 for more
information. The following for bits reflect status of the signals LED5A, LED5B, LED6A and LED6B.

If a bit is set to 1, the status of the corresponding LED is ON.

Bit LED Signal

0 LED1A
1 LED1B
2 LED2A
3 LED2B
4 LED3A
5 LED3B
6 LED4A
7 LED4B
8 LED5A
9 LED5B
10 LED6A
11 LED6B
12–15 (none)

4.3.3 Application Status Register
The application status register is primarily used in SYNC applications. It is used in applications
where the network in question supports the ability to indicate critical process data errors to the
master. If this is supported, the Anybus CompactCom 40 module will accept and handle the
below listed status codes written by the application.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Communication Layer 31 (178)

This register is optional to use. For networks which do not support indications of critical process
data errors, the module will ignore this register.

The register contains an 8 bit value. When the register is accessed from the parallel interface, the
value is provided as a word aligned value with the upper 8 bits always set to 0. See Memory Map,
p. 29.

Value Error Description

00h No error Ready for transition to state PROCESS_ACTIVE
(Default)

01h Not yet synchronized Not ready for transition to state PROCESS_ACTIVE

02h Sync configuration error A problem with the current attribute values in the Sync object
prevents the transition to state PROCESS_ACTIVE

03h Read process data configuration
error

A problem with the current read process data mapping prevents
the transition to state PROCESS_ACTIVE

04h Write process data configuration
error

A problem with the current write process data mapping prevents
the transition to state PROCESS_ACTIVE

05h Synchronization loss The application has lost synchronization lock
If the Anybus CompactCom is in the state PROCESS_ACTIVE, it will
change to a lower state

06h Excessive data loss The application has detected a significant loss of process data from
the network
If the Anybus CompactCom is in the state PROCESS_ACTIVE, it will
change to a lower state

07h Output error Application malfunction
If the Anybus CompactCom is in the state PROCESS_ACTIVE, it will
change to a lower state

The Anybus state machine is described in The Anybus State Machine, p. 43

4.3.4 Anybus CompactCom Module Status Register
This register contains the current Anybus CompactCom module state, and a supervised bit
indicated by the Anybus CompactCom module. The Anybus state machine is described in The
Anybus State Machine, p. 43

Bit Name Description

0 - 2 S[0..2] The current Anybus CompactCom module state

3 Supervised bit 1 = Supervised by another network device
0 = Not supervised by another network device
See Supervised Bit (SUP), p. 34.

4 - 15 - Reserved (0)

4.3.5 Buffer Control Register
This register is used by the application to control the event driven communication with the
Anybus CompactCom module.

By writing to this register, it is possible to trigger appropriate events. Write “1” to trigger bits,
and “0” to leave bits unaffected.

Reading this register gives the current status of the different memory areas.

For more information about how to implement and use bits 0–3, seeCommunication Basics, p. 35

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Communication Layer 32 (178)

Bit Name Description

0 WRPD
(Write Process Data)

The application shall write “1” to this bit when new data has been written.

1 RDPD
(Read Process Data)

When the module has updated the read process data, this bit will be read as
“1”.
The application shall write “1” to this bit to request the latest read process
data. By doing this the bit is cleared.

Note: “updated” data does not necessarily mean “changed” data.

2 WRMSG
(Write Message Data)

This bit is read as “1” when the write message area is occupied.
This bit is cleared by the module when the write message area is available for
a new message.
When the application sends a write message to the module, it shall write “1”
to this bit.
The application is only allowed to write to the write message area while this
bit is “0”.
Note: it is only allowed to write command messages when the ANBR bit is also
set.

3 RDMSG
(Read Message Data)

This bit will be read as “1” when the module has posted a new read message.
The application writes “1” to this bit to acknowledge the message. By doing
this the bit is cleared.
The application is only allowed to read the read message area while this bit is
“1”.

4 ANBR
(Anybus Ready)

This bit is set to “1” when the module is ready to receive a new command
message.
The application is only allowed to send command messages while this bit is “1”.
This bit can only change from “1” to “0” while WRMSG is “1”.
It can change from “0” to “1” at any time.

5 APPR
(Application Ready)

The application writes ‘1’ to this bit when it is ready to receive a new
command message.
The module will only send command messages while this bit is “1”.
Use APPRCLR to set this bit to “0”.

6 APPRCLR
(Application Ready
Clear)

The application can write “1” to this bit to clear the APPR bit. This is only
allowed when RDMSG is “1”.

7 - 15 - Reserved

4.3.6 Interrupt Mask Register
This register makes it possible for the application to enable or disable individual interrupts,
according to the table below.

Bit Name Description

0 RDPDIEN Set this bit to “1” to enable interrupt for when the RDPD bit in the buffer
control register transitions from “0” to “1”.

1 RDMSGIEN Set this bit to “1” to enable interrupt for when the RDMSG bit in the buffer
control register transitions from “0” to “1”.

2 WRMSGIEN Set this bit to “1” to enable interrupt for when the WRMSG bit in the buffer
control register transitions from “1” to “0”.

3 ANBRIEN Set this bit to “1” to enable interrupt for when the ANBR bit in the buffer
control register transitions from “0” to “1”.

4 STATUSIEN Set this bit to “1” to enable interrupt for an Anybus CompactCom module
status register change.

5 - Reserved
6 SYNCIEN Set this bit to “1” to enable interrupt for a SYNC event.

7 - 15 - Reserved

4.3.7 Interrupt Status Register
The module indicates the pending interrupts in this register, according to the table below.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Communication Layer 33 (178)

Bit Name Description

0 RDPDI This bit is set to “1” when RDPD in the buffer control register transitions from
“0” to “1”.
The application shall write “1” to this bit to set it to “0”.

1 RDMSGI This bit is set to “1” when RDMSG in the buffer control register transitions
from “0” to “1”.
The application shall write “1” to this bit to set it to “0”.

2 WRMSGI This bit is set to “1” when WRMSG in the buffer control register transitions
from “1” to “0”.
The application shall write “1” to this bit to set it to “0”.

3 ANBRI This bit is set to “1” when ANBR in the buffer control register transitions from
“0” to “1”.
The application shall write “1” to this bit to set it to “0”.

4 STATUSI This bit is set to “1” on an Anybus CompactCom module status register change.
The application shall write “1” to this bit to set it to “0”.

5 PWRI This bit is set to “1” when the module is ready to start communication after a
power-up or a hardware reset.
The application shall write “1” to this bit to set it to “0”.

6 SYNCI This bit is set to “1” on each SYNC event.
The application shall write “1” to this bit to set it to “0”.

7 - 15 - Reserved

4.3.8 Control Register (Read/Write)

Only used for the half duplex (ping/pong) protocol.

This register controls the communication towards the Anybus CompactCom.

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

CTRL_T CTRL_M CTRL_R CTRL_AUX - - - -

Bit Description

CTRL_T The host application shall toggle this bit when sending a new telegram. CTRL_T must be set to “1” in the
initial telegram sent by the application to the module.

CTRL_M If set, the message subfield in the current telegram is valid.

CTRL_R If set, the host application is ready to receive a new command.

CTRL_AUX (ignored)
- (reserved, set to zero)

4.3.9 Status Register (Read Only)

Only used for the half duplex (ping/pong) protocol.

This register holds the current status of the Anybus CompactCom.

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

STAT_T STAT_M STAT_R STAT_AUX SUP S2 S1 S0

Bit Description

STAT_T When the module issues new telegrams, this bit will be set to the same value as CTRL_T in the last
telegram received from the host application.

STAT_M If set, the message subfield in the current telegram is valid.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Communication Layer 34 (178)

Bit Description

STAT_R If set, the Anybus module is ready to process incoming commands.

STAT_AUX See Auxiliary Bit (STAT_AUX, CTRL_AUX), p. 34.

SUP Value: Meaning:

0: Module is not supervised.

1: Module is supervised by another network device.

See Supervised Bit (SUP), p. 34.

S[0... 2] These bits indicates the current state of the module (see also The Anybus State Machine, p. 43).

S2 S1 S0 Anybus State

0 0 0 SETUP
0 0 1 NW_INIT

0 1 0 WAIT_PROCESS

0 1 1 IDLE
1 0 0 PROCESS_ACTIVE

1 0 1 ERROR
1 1 0 (reserved)

1 1 1 EXCEPTION

The Status Register shall be regarded as cleared at start-up. The first telegram issued by the host
application must therefore not contain a valid message subfield since STAT_R is effectively
cleared (0).

4.3.10 Supervised Bit (SUP)
While the Anybus State Machine reflects the state of the cyclic data exchange, the SUP-bit
indicates the overall status of the network communication, including acyclic communication. For
example, on CIP, this bit indicates that the master has a connection towards the module. This
connection may be an I/O connection, or an acyclic (explicit) connection. In case of the latter, the
communication will be “silent” for extended periods of time, and the state machine will indicate
that the network is Idle. The SUP-bit will however indicate that there still is a connection towards
the module.

Exactly how this functionality should be handled, the offered level of security, and how to
correctly activate it is network specific and often depends on external circumstances, e.g.
configuration of the network as well as other network devices. Whether use of the SUP-bit is
appropriate must therefore be decided for each specific application and network.

4.3.11 Auxiliary Bit (STAT_AUX, CTRL_AUX)
The Anybus CompactCom 40 module ignores the CTRL_AUX bit in the Control Register..

The module will set the STAT_AUX bit in the Status Register if new process data has been
received from the network since the last telegram.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Parallel Host Communication 35 (178)

5 Parallel Host Communication
5.1 Flow Control

The following only applies to the event driven modes (full duplex modes). For information about
the half duplex mode, see Serial Host Communication (UART), p. 42.

Data can be read or written from either the host or the Anybus CompactCom module, at any
point and in any order. Communication can be fully controlled by writing to and reading from the
buffer control register, or it can be achieved by enabling interrupts for appropriate events using
the interrupt mask register. If enabled, an interrupt is generated each time the module has made
new data available.

See Buffer Control Register, p. 31 and Interrupt Mask Register, p. 32.

5.1.1 Communication Basics
When using the parallel host interface, data is exchanged via the shared memory area. For more
information, see Memory Map, p. 29.

Data Transmission

To write process data :

1. Write data to the write process data memory area. The area currently mapped by ADIs for
process data must be refilled with new data.

2. Finalize the write process by writing “1” to bit 0 (WRPD) in the buffer control register.

To write message data:

1. Read bit 2 (WRMSG) in the buffer control register.

– If it is “0”, the area is available for new message data.

– If it is “1”, the area is occupied and is not yet available to receive new message data.

2. Write data to the write message data memory area.

3. Finalize the write process by writing “1” to bit 2 (WRMSG) in the buffer control register.

Data Reception

For the latest read process data:

1. Write “1” to bit 1 (RDPD) in the buffer control register, to gain access to the process data.

2. Read the latest read process data from the read process data area.

For the latest message data:

1. Read bit 3 (RDMSG) in the buffer control register.

– If it is “0”, no new message data has been posted.

– If it is “1”, there is a new message in the read message data area.

2. Read the latest message data from the read message data area.

3. Write “1” to bit 3 (RDMSG) in the buffer control register.

5.2 Anybus Event Driven Watchdog
It is possible for the host to establish whether or not the Anybus CompactCom module is working
properly by periodically measuring the message response time. If this time exceeds a specified

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Parallel Host Communication 36 (178)

value, the module can be assumed to be malfunctioning. The host can then enter an application
specific safe state, reset the module, or take similar actions.

It is strongly recommended to have at least a rudimentary watchdog mechanism, to be able to
restart the module if needed.

5.3 Application Event Driven Watchdog
If desired by the application, an application watchdog timeout can be enabled within the Anybus
CompactCom module. When this is enabled, the module will assume that the application is not
working properly if the time between two write process data buffer updates exceeds the
watchdog timeout selected by the application.

The application watchdog timeout is specified in the Anybus Object, instance attribute #4
(Application watchdog timeout). See Anybus Object (01h), p. 62.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

SPI Host Communication 37 (178)

6 SPI Host Communication
6.1 General Information

The SPI (Serial Peripheral Interface) is a serial, full duplex protocol. It is a master/slave mode,
where the host acts as the master and the Anybus CompactCom module as the slave.

Each byte in the SPI frame is transmitted with the most significant bit first, but the byte order is
little endian. The least significant byte is transmitted first. Errors are detected by a 32-bit CRC.

6.2 SPI Frame Format

MISO

SPI
CTRL

5 Words

Reserv
ed MSGLEN APP

STAT
INT

MASK

LEDSTAT ANB
STAT

SPI
STAT RdMsgField RdPdField CRC

MOSI

MSGLEN Words PDLEN Words

4 Words

2 Words

WrPdField CRC

1 WordMSGLEN Words PDLEN Words 2 Words
PDLEN

Reserv
ed

Reserv
ed NETTIME

WrMsgField PADDING

Fig. 10

6.2.1 Data Definitions for the MOSI (Master Output, Slave Input) Frame
SPI MOSI Frame Format
Byte Name Description

0 SPI CTRL SPI control byte, see SPI Control Byte table below.

1 (reserved)

2 - 3 MSGLEN The size of the WrMsgField and RdMsgField fields, in words.

4 - 5 PDLEN The size of the WrPdField and RdPdField fields, in words.

6 APP STAT Application status, see Application Status Register, p. 30.

7 INT MASK Interrupt mask, see Interrupt Mask Register, p. 32.

MSGLEN words WrMsgField Message field.

PDLEN words WrPdField Write process data field.

2 words CRC -

1 word PADDING Dummy data.

SPI Control Byte

Bit Name Description

0 WRPD VALID If this bit is set, the Anybus CompactCom 40 will act on the content of the write
process data field.
If this bit is not set, the module will ignore the content of the write process data
field.

1 - 2 CMDCNT These two bits indicate the number of commands the application is prepared to
receive.
00 = The application is not prepared to receive any commands.
01 = The application is prepared to receive at least one command.
10 = The application is prepared to receive at least two commands.
11 = The application is prepared to receive at least three commands.

3 M If set, the message field contains a message.

4 LAST FRAG If set, the message field contains the last fragment of a message.

5 - 6 - Reserved, set to 0

7 TOGGLE For the initial transmission, this bit shall be set to “1”.
This bit shall toggle for every SPI transfer.
Note: When a CRC error has been detected, this bit shall NOT be toggled to
indicate a retransmission.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

SPI Host Communication 38 (178)

6.2.2 Data Definitions for the MISO (Master Input, Slave Output) Frame
SPI MOSI Frame Format
Byte Name Description

0–1 (reserved)

2 - 3 LEDSTAT LED state, see LED Status Register, p. 30.

4 ANB STAT Anybus CompactCom module state, see Anybus CompactCom
Module Status Register, p. 31

5 SPI STAT SPI status, see SPI status byte table below.

6–9 NETTIME These 4 bytes hold the lower 32 bits of the network time.

MSGLEN words RdMsgField Message field.

PDLEN words RdPdField Read process data field.

2 words CRC -

SPI Status Byte

Bit Name Description

0 WRMSG FULL If set, the write message buffer is full. If there was a message in the MOSI
frame, it has been ignored by the Anybus CompactCom 40 and must be sent
again.
Important: The toggle bit must still be toggled, in this case.

1 - 2 CMDCNT These two bits indicate the number of commands the module is prepared to
receive.
00 = The module is not prepared to receive any commands.
01 = The module is prepared to receive at least one command.
10 = The module is prepared to receive at least two commands.
11 = The module is prepared to receive at least three commands.
When WRMSG FULL is set, the module has not yet parsed the latest "write
message". As a consequence, the CMDCNT may not reflect the last command.
Applications that wish to send several consecutive commands without waiting in
between must take this into consideration when evaluating the CMDCNT.

3 M If set, the message field contains a message.

4 LAST FRAG If set, the message field contains the last fragment of a message.

5 NEW PD If set, the RDPDFIELD contains data that has been updated from the network
since the last SPI transfer. Note that "updated" data does not necessarily mean
"changed data".
If not set, the RDPDFIELD contains the same data as in the last SPI transfer.
Note that even SPI transfers with corrupt CRCs may clear this bit.

6 Reserved -

7 Reserved -

6.3 Interrupts
The interrupt mask is sent continuously in every MOSI frame. All interrupts are automatically
cleared when a valid MOSI frame has been received by the Anybus CompactCom.

6.4 Message Fragmentation
The SPI protocol supports message fragmentation.

To disable fragmentation, just set the MSGLEN field to a value large enough to fit the maximum
size of the messages that the host will send. The M and the LAST FRAG bits shall be set for every
message.

To enable fragmentation, set the MSGLEN field to a value smaller than the maximum message
size. The M bit shall be set for all SPI frames containing a message or message fragment. The
LAST FRAG bit indicates that the current fragment is the last fragment of a message.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

SPI Host Communication 39 (178)

6.5 SPI Error Handling
Errors are detected using a 32-bit CRC. The position of the CRC in the MISO and the MOSI frames
is shifted. If the Anybus CompactCom 40 detects an error in the MOSI frame, it will send an
invalid CRC to the host.

When the host detects a CRC error in the MISO frame, it shall ignore the contents and retransmit
the original frame. The retransmitted frame must keep the TOGGLE bit, the M bit, the LAST FRAG
bit, as well as the MSGLEN and the MSGFIELD, set to the same values as the original frame. All
other fields may contain new values.

The image below depicts a normal scenario. The host sends the SPI frame cyclically, toggling the
toggle bit in the SPI control byte each time.

Fig. 11

In case of a reception error on the MISO line, the host will detect this using the MISO CRC and
perform a retransmission. Retransmissions are indicated by NOT toggling the toggle bit in the SPI
control byte of the MOSI header.

This scenario is depicted in the figure below.

Fig. 12

In case of a reception error on the MOSI line, the Anybus CompactCom will detect this using the
MOSI CRC. The Anybus will respond with destroying the MISO CRC, which will result in a
retransmission of the SPI frame from the host.

Fig. 13

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

SPI Host Communication 40 (178)

6.6 Application Event Driven Watchdog
If desired by the application, an application watchdog timeout can be enabled within the Anybus
CompactCom 40. When this is enabled, the module will assume that the application is not
working properly if the time between two write process data buffer updates exceeds the
watchdog timeout selected by the application.

The application watchdog timeout is specified in the Anybus Object, instance attribute #4
(Application watchdog timeout). See Anybus Object (01h), p. 62.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Shift Register Host Communication 41 (178)

7 Shift Register Host Communication
7.1 General Information

The Anybus CompactCom 40 can be used stand-alone, with no host processor. Process data is
communicated to shift registers on the host. The Anybus CompactCom 40 supports up to 32
registers in each direction, for a total of 256 bits of data.

The PROFIBUS version of the Anybus CompactCom 40 supports up to 24 registers in each direction, for a
total of 192 bits of data.

INPUT SHIFT
REGISTER 32

Input Byte 31Input Byte n-1

Output Byte 31Output Byte n-1

OUTPUT SHIFT
REGISTER 32

INPUT SHIFT
REGISTER 1

INPUT SHIFT
REGISTER 2

INPUT SHIFT
REGISTER 3

OUTPUT SHIFT
REGISTER 1

OUTPUT SHIFT
REGISTER 2

OUTPUT SHIFT
REGISTER 3

INPUT SHIFT
REGISTER n

Input Byte 0 Input Byte 1 Input Byte 2

Output Byte 0 Output Byte 1 Output Byte 2

OUTPUT SHIFT
REGISTER n

Fig. 14

The Anybus CompactCom 40 will automatically detect the number of connected input and
output shift registers. Every shift register will be represented by one UINT8 ADI. The input ADIs
will be named “Input 0”, “Input 1”, etc. The output ADIs will be named “Output 0”, “Output 1”,
etc.

The ADI access descriptor values cannot be changed:

Input ADIs: 09h (Get access + Write process data mapping possible).

Output ADIs: 11h (Get access + Read process data mapping possible)

The Anybus CompactCom 40 will always try to retrieve network specific attributes from a host
application. As this is not possible in stand-alone mode, a virtual attribute list, stored in
nonvolatile memory, will be used instead, see Anybus Object (01h), p. 62, section “Virtual
Attributes”. Some attributes are mandatory to implement in order to pass conformance tests,
see Conformance Test Information, p. 151

7.2 Reset
In stand-alone mode there is no application available to handle a reset request from the network.
The reset will be handled by the Anybus CompactCom 40 and the module will reset
automatically on a reset request from the network.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Serial Host Communication (UART) 42 (178)

8 Serial Host Communication (UART)
8.1 General Information

This mode is supported for backward compatibility with the Anybus CompactCom 30, and should
not be used for pure Anybus CompactCom 40 applications.

On the serial host interface, telegrams are transmitted through a common asynchronous serial
interface. The baud rate is determined by certain signals on the host interface connector of the
module; consult the Anybus CompactCom 40 Hardware Design Guide for further information.

For more information on the serial host communication mode, please consult the Anybus
CompactCom 30 Software Design Guide.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

The Anybus State Machine 43 (178)

9 The Anybus State Machine
9.1 General Information

A fundamental part of the Anybus CompactCom 40 is the Anybus State Machine. At any given
time, the state machine reflects the status of the module and the network, see Status Register
(Read Only), p. 33.

The state machine shall be regarded as a Moore machine; i.e. the host application is not required
to keep track of all state transitions, however it is expected to perform certain tasks in each state

SETUP
(00h)

WAIT_PROCESS
(02h)

PROCESS_ACTIVE
(04h)

IDLE
(03h)

EXCEPTION
(07h)

(Power up)

(From all states)

ERROR
(05h)

NW_INIT
(01h)

Fig. 15

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

The Anybus State Machine 44 (178)

9.2 State Dependent Actions
The expected actions for each state are listed below.

State Description Expected Actions

SETUP Anybus CompactCom Setup in progress.
The module may not send commands to the
application in this state.

See Anybus Setup (SETUP State), p. 59.

NW_INIT The Anybus CompactCom module is currently
performing network-related initialization
tasks.
Telegrams now contains Process Data (if such
data is mapped), however the network
Process Data channel is not yet active.

See Network Initialization (NW_INIT State), p.
60.

WAIT_PROCESS The network Process Data channel is
temporarily inactive.

The host application shall regard the Read
Process Data as not valid.

IDLE The network interface is idle. The exact
interpretation of this state is network specific.
Depending on the network type, the Read
Process Data may be either updated or static
(unchanged).

The host application may act upon the Read
Process Data, or go to an idle state.

PROCESS_ACTIVE The network Process Data channel is active
and error free.

Perform normal data handling.

ERROR There is at least one serious network error. The Read Process Data shall be regarded as
not valid. Optionally, the host application may
perform network specific actions.
Write Process Data could still be forwarded
to the master, so the application must keep
this data updated.

EXCEPTION The module has ceased all network
participation due to a host application related
error.
This state is unrecoverable, i.e. the module
must be restarted in order to be able to
exchange network data.

Correct the error if possible (details about the
error can be read from the Anybus Object,
see Anybus Object (01h), p. 62).
When done, reset the Anybus module.

The host application must keep the Write Process Data updated in NW_INIT (initial data),
WAIT_PROCESS, IDLE, ERROR and PROCESS_ACTIVE since this data is buffered by the
Anybus CompactCom, and may be sent to the network after a state shift.

See also ...

• Network Configuration Object (04h), p. 81

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 45 (178)

10 Object Messaging
10.1 General Information
10.1.1 Basic Principles

Object messaging involves two types of messages; commands and responses. On the message
level, there is no master-slave relationship between the host application and the Anybus
CompactCom module; both parts may issue commands, and are required to respond. Commands
and responses are always associated with an instance within the Anybus object model. This can
either be the object itself (addressed through instance #0), or an instance within it.

Commands can be issued at any time (provided that the receiving end is ready to accept new
commands), while responses must only be sent as a reaction to a previously received command.
Unexpected or malformed responses must always be discarded.

Host Application Anybus Module

Command 1

Response 1

Command 2

Command 3

Response 3

Response 2

Fig. 16

Commands and responses are treated asynchronously, i.e. new commands may be issued before
a response has been returned on the previous one. This also means that commands are not
guaranteed to be executed in order of arrival, and that responses may return in arbitrary order

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 46 (178)

(see figure). When necessary, the host application must wait for the response of any command
to which the action or result may affect successive commands.

10.1.2 Source ID
To keep track of which response that belongs to which command, each message is tagged with a
Source ID. When issuing commands, the host application may choose Source IDs arbitrarily,
however when responding to commands issued by the Anybus module, the Source ID in the
response must be copied from the original command.

10.1.3 Error Handling
When a command for some reason cannot be processed, the receiver is still obliged to provide a
response. In such case, an error shall be flagged in the header of the response message, together
with an appropriate error code in the message data field.

The command initiator must then examine the response to see whether it is a successful
response to the command or an error message.

See also...

• Error Codes, p. 52

10.2 Message Layout
An object message consists of a 12 byte header followed by message related data.

Offset
Contents

Descriptionb7 b6 b5 b4 b3 b2 b1 b0
0 - 1 Message Data Size Size of the MsgData[] field in bytes (up to 1524 bytes)

2 - 3 (reserved) -

4 Source ID See Source ID, p. 46

5 Object Specifies a source/destination within the Anybus Object model

6 Instance (lsb)

7 Instance (msb)

8 E Value: Meaning:
0: Message is either a Command, or a successful Response
1: Message is an Error Response

C Value: Meaning:
0: Message is a Response 1: Message is a Command

Command Code See Command Codes, p. 51

9 (reserved) -

10 CmdExt[0] Command-specific extension. See Command Specification, p. 51
These fields must be left intact in an error response.11 CmdExt[1]

12...n MsgData[0-n] Message data field

If the Anybus CompactCom 40 is used in a Anybus CompactCom 30 application, an 8 byte header
will have to be used. Please consult the Anybus CompactCom 30 Software Design Guide for
information.

10.3 Message Segmentation
The maximum message size supported by the Anybus CompactCom 40 is normally 1524 bytes. In
some applications a maximum message size of 255 bytes is supported, e.g. if an Anybus
CompactCom 40 is to replace an Anybus CompactCom 30 without any changes to the application.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 47 (178)

Some objects services must support messages larger than 255 bytes. In order to support this, the
Anybus CompactCom 40 supports a fragmentation protocol. To avoid confusion with the
fragmentation protocol used for serial telegrams, this protocol is called a segmentation protocol.

10.3.1 Command Segmentation Procedure
When a message is segmented, the initiator of the message sends the same command header
multiple times. For each message, the data field is exchanged for the next segment of data.

Command Details
Command Segment Bits Description

CmdExt[1] Bit 0:
Bit 1:
Bit 2:
Bit 3-7:

FS (first segment)
LS (last segment)
AB (abort)
Reserved (0)

Response Details

Response Segment Bits Description

CmdExt[1] Bit 0-7: Reserved (0)

Procedure

When sending segmented commands, follow the procedure below:

• For the first element, the FS bit shall be set.

• For the subsequent elements, the FS and LS bits shall be cleared (0).

• For the last element, the LS bit shall be set. (For single frame commands (<= 255 or 1524
bytes, depending on message channel) both the FS and the LS bits shall be set).

The command receiver shall send a response (ACK/NACK) for each segment, indicating if the
segment was accepted or not. In case of a NACK, the segment will be discarded. The
segmentation will not be terminated, however, so earlier accepted segments remain in the
segmentation buffer.

The response (ACK/NACK) to the last segment contains the actual result of the operation.

The command initiator may at any time abort the operation by sending a message with the AB
bit set. This shall result in that the segmentation buffer is flushed.

To determine if a command is the same as a previous one, the following shall be checked:

• Destination object

• Instance number

• Command number

• Command extension 0 (CmdExt[0])

10.3.2 Response Segmentation Procedure
When a response message is segmented, the initiator of the message requests the next segment
by sending the same command multiple times. For each message, the data field is exchanged for
the next segment of data.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 48 (178)

Command Details
Command Segment Bits Description

CmdExt[1] Bit 0:
Bit 1:
Bit 2:
Bit 3-7:

Reserved (0)
Reserved (0)
AB (abort)
Reserved (0)

Response Details

Response Segment Bits Description

CmdExt[1] Bit 0:
Bit 1:
Bit 2-7:

FS (first segment)
LS (last segment)
Reserved (0)

Procedure

When sending segmented responses, follow the procedure below:

• For the first element, the FS bit shall be set.

• For the subsequent elements, the FS and LS bits shall be cleared (0).

• For the last element, the LS bit shall be set. (For single frame commands (<= 255 or 1524
bytes, depending on message channel) both the FS and the LS bits shall be set).

If the LS bit is not set in a response, the command initiator requests the next segment by sending
the same command again.

The command initiator may at any time abort the operation by sending a request/response with
the AB bit set. This shall result in that the segmentation buffer is flushed.

To determine if a command is the same as a previous one, the following shall be checked:

• Destination object

• Instance number

• Command number

• Command extension 0 (CmdExt[0])

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 49 (178)

10.4 Data Format
10.4.1 Available Data Types

The Anybus CompactCom 40 uses the following data types as standard. Additional network
specific data types are described in each separate network interface appendix (when applicable)

Type Bits Description Range Available on
All Networks

Valid
for
Proc-
ess
Data

0 BOOL 8 Boolean 0 = False, !0 = True Yes Yes

1 SINT8 8 Signed 8 bit integer -128... +127 Yes Yes

2 SINT16 16 Signed 16 bit integer -32768...+32767 Yes Yes

3 SINT32 32 Signed 32 bit integer -231... +(231-1) Yes Yes

4 UINT8 8 Unsigned 8 bit integer 0... +255 Yes Yes

5 UINT16 16 Unsigned 16 bit integer 0... +65535 Yes Yes

6 UINT32 32 Unsigned 32 bit integer 0... +(232-1) Yes Yes

7 CHAR 8 0... +255 Yes No
8 ENUM 8 0... +255 Yes Yes
9 BITS8 8 8 bit bit field 00000000... 11111111 Yes Yes
10 BITS16 16 16 bit bit field 0000000000000000...

1111111111111111
Yes Yes

11 BITS32 32 32 bit bit field 00000000 00000000 00000000
00000000... 11111111 11111111
11111111 11111111

Yes Yes

12 OCTET 8 Undefined 8 bit data 0... +255 Yes No
13–15 (reserved)

16 SINT64 64 Signed 64 bit integer -263... +(263-1) No Yes

17 UINT64 64 Unsigned 64 bit integer 0... +(264-1) No Yes

18 FLOAT 32 Floating point (IEC 60559) ±1.17549435E-38...
±3.40282347E+38

No Yes

19 DOUBLE 64 Floating point (IEC 60599) ±2.2250738585072014 E-308...
±1.7976931348623157 E+308

No Yes

32–48 PADx 0-16 Bit fields of size 0 - 16 used
for padding

N/A Yes Yes

64 BOOL1 1 1 bit boolean [0...1] Yes Yes

65–71 BITx 1-7 Bit fields of size 1-7 [0...1]... [0000000...1111111] Yes Yes

• Arrays of type CHAR will be translated to the native string type of the network.

• The commands “Set_Indexed_Attribute” and “Get_Indexed_Attribute” cannot be used for
the data type CHAR .

• Data of type ENUM are enumerations, limited to a consecutive range of values starting at
zero.

• The data types BITS8, BITS16, BITS32, OCTET, DOUBLE, PADx, BOOL1 and BITx are only
supported by Anybus CompactCom 40.

10.4.2 Bit Fields
The bit field types should be used for parameters where each bit, or group of bits, contains
individual meaning. Typical examples include control/status words or digital I/O.

Bit field parameters will be translated to network specific data types suitable for digital I/O or
control/status words.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 50 (178)

BITSx

The BITSx data types (BITS8, BITS16, and BITS32) consist of even data byte sizes and must be
byte aligned. They are handled in the same way as other multibyte data types with regard to
byte order.

BITx

The BITx data types (BIT1-BIT7) are packed with bits aligned, and may be placed over byte
boundaries. The type code (65-71) of BITS1-BITS7 may be divided into the 5 most significant bits
as specifier (always 01000) and the 3 least significant bits as bit counter, with valid values from 1
to 7 for the bit counter field.

10.4.3 Handling of Array of Char (Strings)
Readable strings can be represented in ADIs in two different ways. Either as an array of CHAR or
as a string variable. The recommended way is to represent readable strings in ADIs as a variable
using the attribute “Number of subelements” in the Application Data Object (FEh), i.e. a string
variable that consists of one element with several subelements. This section is mainly applicable
when using arrays of CHAR in ADIs. Both these types of strings are hereafter named string.

Arrays of type CHAR will be translated to the native string type (when applicable). The maximum
string length, and the buffer space required to store it, is defined by the data type and the
number of elements.

All elements of an array of CHAR are significant; the Anybus module does not expect any
termination characters when reading, nor does it generate any when writing. The actual length
of the string is defined in the payload size given in the ‘Get_Attribute’- and ‘Set_Attribute’
commands.

Strings in ADI structures must be padded with NUL bytes up to the maximum length when
accessed through Set_Attribute and Get_Attribute. A get or set string with a data field size of
zero is valid and indicates an empty string.

Generally, it is recommended to keep the ‘number of elements’, ‘data type’, and the message
payload length, as consistent as possible. There is no guarantee that the Anybus CompactCom 40
will check consistency between the payload length and the actual buffer space.

See also...

• Application Data Object (FEh), p. 111

10.4.4 OCTET
The OCTET type is used for undefined data of byte size.

10.4.5 PADx
The PADx types consist of 17 types, from PAD0 to PAD16. PADx variables are packed with bit
alignment and might pass any byte boundaries. The value of a PADx variable is irrelevant and
might be skipped completely in a network specific way.

The type code (32-48) might be divided into the 3 most significant bits as specifier (always 001)
and the 5 least significant bits as bit counter, with valid values from 0 to 16 for the bit counter
field.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 51 (178)

10.5 Command Specification
10.5.1 General Information

This chapter covers global commands, i.e. commands which have the same command code
regardless of which object that is being accessed.

Some objects have special requirements, which are handled through object-specific commands.
In such cases, unlike global commands, the same command code may have different meaning
depending on context (i.e. which object that is being accessed). Object-specific commands are
described separately for each object (when applicable).

See also...

• Anybus Module Objects, p. 61

• Host Application Objects, p. 107

Regarding generic command descriptions it should be noted that while a command has a defined
generic description and structure, the actual effect of it may differ greatly depending on the
context.

For example:

• Application issues Reset →Network Configuration Object = resets network settings

• Network Reset →Anybus issues Reset →Application Object = Anybus shifts to EXCEPTION
and awaits a hardware reset

Fields marked as reserved must be treated with caution. Reserved fields in messages sent
to the Anybus CompactCom must be set to 0 (zero), since they may have a defined use in
future Anybus revisions. In messages received from the Anybus CompactCom, reserved
fields shall simply be ignored.

10.5.2 Command Codes
The following commands are global, i.e. the same command code is used regardless of which
object that is being accessed. The commands are described in the subsections below.

Command Code Command Name
00h (reserved)

01h Get_Attribute

02h Set_Attribute

03h Create

04h Delete
05h Reset

06h Get_Enum_String

07h Get_Indexed_Attribute

08h Set_Indexed_Attribute

09h... 0Fh (reserved)

10h... 30h (reserved for object specific commands)

31h... 3Eh (reserved)

3Fh (reserved for object specific commands)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 52 (178)

10.5.3 Error Codes
If a command for some reason cannot be executed, the first byte in message data field (MsgData
[]) of the response is used to supply details about problem to the command initiator.

Normally use the first applicable error code from the table below, if more than one error code is relevant.

Additional object specific error information may also be added in the message data section.

Code Error Meaning

00h (reserved) -

01h
02h Invalid message format Command and error bit set

03h Unsupported object Object not registered

04h Unsupported instance The target instance does not exist

05h Unsupported command The target object does not support the specified command

06h Invalid CmdExt[0] Invalid value of CmdExt[0] or invalid combination of CmdExt[0] and
CmdExt[1]

07h Invalid CmdExt[1] Invalid setting in CmdExt[1]

08h Attribute not settable The requested attribute is not settable

09h Attribute not gettable The requested attribute is not gettable

0Ah Too much data Too much data in message data field

0Bh Not enough data Not enough data in message data field

0Ch Out of range A specified value is out of range Use this error code only when 11h or
12h cannot be used

0Dh Invalid state The command is not supported in the current state

0Eh Out of resources The target object cannot execute the command due to limited
resources

0Fh Segmentation failure Invalid handling of the segmentation protocol

10h Segmentation buffer overflow Too much data received

11h Value too high The written data is too high

12h Value too low The written data is too low
13h Attribute controlled from

another channel
Used to NAK writes to “read process data” mapped attributes.

14h Message channel to small The message read/write area in use by the host application, does not
support a message channel with large enough data field to fit the
response data.

15h General error An error not matching any of the other existing error codes has
occurred.

16h Protected access Read or write operation could not be performed because access is
currently protected by the host application.

17h No data available The data source does not currently have a value available

18h... FEh (reserved) -

FFh Object specific error The object returned an object specific error code. Additional details
may or may not be included in the message data field (MsgData[0...
n])

Error codes 11h - 17h are only available for Anybus CompactCom 40 devices.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 53 (178)

10.5.4 Get_Attribute
Details

Command Code: 01h

Valid For: (depends on context)

Description

This command retrieves the value of an attribute. The attribute number must be left intact in an
error response.

• Command details:

Field Contents

CMDExt[0] Attribute number

CMDExt[1] (reserved)

• Response details:

Field Contents

MsgData[0..n] Attribute Value

10.5.5 Set_Attribute
Details

Command Code: 02h

Valid For: (depends on context)

Description

This command assigns a value to an attribute. The attribute number must be left intact in an
error response

• Command details:

Field Contents

CMDExt[0] Attribute number

CMDExt[1] (reserved)

MsgData[0..n] Attribute Value

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 54 (178)

10.5.6 Create
Details

Command Code: 03h

Valid For: Object Instance (Instance #0)

Description

This command creates a new instance within the object. If successful, the data portion of the
response contains the number of the newly created instance.

• Command details:

Object Specific

Not all objects have any specific details for this command. If there are any object specific
details, they are found in the description of the object in question.

• Response details:

Field Contents

MsgData[0] The number of the created Instance (low byte)

MsgData[1] The number of the created Instance (high byte)

10.5.7 Delete
Details

Command Code: 04h

Valid For: Object Instance (Instance #0)

Description

This command deletes a previously created instance (see above). If successful, all resources
occupied by the specified instance will be released.

• Command details:

Field Contents

CMDExt[0] Instance number to delete (low byte)

CMDExt[1] Instance number to delete (high byte)

• Response details (Success):

(No data)

• Response details (Error):

Field Contents

Invalid CMDExt[0] The specified instance does not exist.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 55 (178)

10.5.8 Reset
Details

Command Code: 05h

Valid For: (depends on context)

Description

This command performs a reset command on an object.

• Command details:

Field Contents

CMDExt[0] (reserved)

CMDExt[1] 00h = Power-on reset (actual power-on or simulated)
01h = Factory default reset
02h = Power-on + Factory default reset

• Response details:

(No data)

10.5.9 Get_Enum_String
Details

Command Code: 06h

Valid For: (depends on context)

Description

This command retrieves attributes which are of enumeration type (ENUM). The returned value is
the literal string associated with the specified enumeration value.

• Command details:

Field Contents

CMDExt[0] The number of the attribute

CMDExt[1] The enumeration value

• Response details (Success):

Field Contents

MsgData[0..n] The enumeration string.

• Response details (Error):

Field Contents

Invalid CMDExt[0..n] The enumeration value is out of range.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Object Messaging 56 (178)

10.5.10 Get_Indexed_Attribute
Details

Command Code: 07h

Valid For: (depends on context)

Description

This command retrieves the value of a single element of an attribute which consists of multiple
elements (i.e. an array). Note that this command cannot be used to access attributes of type
CHAR.

• Command details:

Field Contents

CMDExt[0] The number of the attribute

CMDExt[1] Index (first element has index 0)

• Response details (Success):

Field Contents

MsgData[0..n] Value

• Response details (Error):

Field Contents

Invalid CMDExt[0..n] Index is out of range

10.5.11 Set_Indexed_Attribute
Details

Command Code: 08h

Valid For: (depends on context)

Description

This command assigns a value to a single element of an attribute which consists of multiple
elements (i.e. an array). Note that this command cannot be used to access attributes of type
CHAR.

• Command details:

Field Contents

CMDExt[0] The number of the attribute

CMDExt[1] Index (first element has index 0)

MsgData[0...n] Value to set

• Response details (Success):

(No data)

• Response details (Error):

Field Contents

Invalid CMDExt[1] Index is out of range

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Initialization and Startup 57 (178)

11 Initialization and Startup
11.1 General Information

Before network participation, the following steps must be completed:

1. Startup Procedure

The purpose of the startup procedure is to make sure that both parts (the host application
and the Anybus CompactCom module) are ready to communicate. Normally an Anybus
CompactCom module is ready to communicate in less than 1.5 s. The module will then enter
the state SETUP. For more information, see Startup Procedure, p. 57.

2. Anybus CompactCom Setup

This step determines how the module shall operate. When done, the module will enter the
state NW_INIT.

For more information, see Anybus Setup (SETUP State), p. 59.

3. Network Initialization

At this stage, the module will attempt to read and evaluate information from the host
application. When finished, the module will enter the state WAIT_PROCESS.

For more information, see Network Initialization (NW_INIT State), p. 60.

When the module is restarted after a firmware download, the application must wait for
the upgrade to finish, before anything else is done, see below.

11.2 Startup Procedure
The startup procedure is slightly different depending on which type of host interface that is used,
but will normally be finished within 1.5 s.

1. Enable power.

2. Release reset to the module.

3. Wait for the Anybus CompactCom 40 to respond. Depending on interface, the expected
response is different:

Interface Expected Response

Parallel Host (8/16 bit) The host application shall wait for the Anybus CompactCom interrupt signal to go
active, before starting to communicate.

SPI After releasing the reset signal to the Anybus CompactCom module, the host
application may optionally wait for the Anybus CompactCom interrupt signal to go
active, thus indicating that the module is ready, before starting SPI communication.
The other option for the host application is to start SPI communication immediately
after releasing the Anybus CompactCom reset signal. The host application may see
SPI telegrams with CRC errors at first. These telegrams shall be retransmitted
according to normal error handling rules for the SPI protocol, see SPI Error Handling,
p. 39.

Shift Register The Anybus CompactCom 40 module initializes autonomously after reset is released.

Serial Host This interface is backwards compatible to the Anybus CompactCom 30-series serial
host interface. Please refer to the Anybus CompactCom 30 Software Design Guide
for information.

11.2.1 Suggested Startup Procedure when Upgrading from Network
To allow firmware upgrade from network, implement attribute #5 of the Application Object
(FFh), instance #1. The module will inform the host application when a new firmware candidate

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Initialization and Startup 58 (178)

is available in the candidate area. The host application must store the information in non-volatile
memory. See Application Object (FFh), p. 120.

If firmware upgrade from network is allowed, the following startup procedure is suggested:

Do not reset the Anybus CompactCom module during the startup procedure.

1. Enable power.

2. Release reset to the module.

3. Wait for the Anybus CompactCom 40 to respond. Depending on interface the expected
response is different:

Interface Expected Response

Parallel Host (8/16 bit) Interrupt

SPI First SPI telegram without CRC error, or an active interrupt signal

Shift Register N/A

Serial Host First serial telegram without CRC error

4. If a new firmware candidate is available, the module will start to reprogram the firmware.
This can need up to 1 min. If no candidate firmware is available the boot time will always be
less than 1.5 seconds. In case of a firmware update, do not reset the module. If possible,
display a message to the end user: “Waiting for Anybus module”....

5. When a response is detected: Start the initialization of theAnybus CompactCom 40 module.
Remove any previously displayed message.

If the module does not respond as described, it has not started up correctly. Please contact HMS
Industrial Networks at www.anybus.com/support.

When the Anybus CompactCom 40 is reset after a firmware download, the application
must wait for the installation to finish, before initialization is started. The Anybus
CompactCom is protected against problems occurring during download and/or
installation and will recover upon restart.

To install the new firmware after download, reset the Anybus CompactCom 40. If the
installation of the new firmware is interrupted, e.g. due to power loss, please restart the
Anybus CompactCom 40. The installation process will automatically start from the
beginning and the new firmware will be installed without any further action.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

http://www.anybus.com/support

Initialization and Startup 59 (178)

11.3 Anybus Setup (SETUP State)
This stage involves four distinctive steps:

1. Gather information about the Anybus Module (Optional)

The host application may retrieve the network type, as well as other properties that may be
relevant when configuring the module, from the Anybus Object (01h). This information may
also be used to select different implementations based on e.g. the module type value.

2. Network Configuration (Optional)

At this stage, the host application should update all instances in the Network Configuration
Object of which the value originates from physical switches (i.e. node address, baud rate
etc.). Settings which originate from “soft” input devices such as a keypad and display should
not be updated at this point.

3. Process Data Mapping (Optional)

The host application may optionally map ADIs to Process Data.

This step is optional, but may be required by some networking systems and/or Anybus
implementations.

Certain Anybus implementations may attempt to alter the Process Data map during runtime.
For more information, see Application Data Object (FEh), p. 111.

4. Finalize the Setup

The setup procedure is finalized by setting the attribute Setup Complete in the Anybus
Object (01h) to TRUE.

If successful, the module now shifts to the state NW_INIT (below), or in case of failure, to
the state EXCEPTION. In case of the latter, further information can then be read from the
attribute Exception in the Anybus Object (01h).

See also..

• Network Data Exchange, p. 15

• The Anybus State Machine, p. 43

• Anybus Object (01h), p. 62

• Network Configuration Object (04h), p. 81

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Initialization and Startup 60 (178)

11.4 Network Initialization (NW_INIT State)
At this stage, the Anybus module will attempt to read and evaluate information from the host
application. The host application is required to respond to incoming requests to Host Application
Objects. If the requested object or attribute is not implemented in the host application, simply
respond with an error message. The module will in those cases use its own default values for the
requested attributes, or configured virtual attributes.

The host application is free to update any instances in the Network Configuration Object,
including those that do not originate from physical switches.

If a serious error is encountered (i.e. any error which prevents the module from proceeding) in
this state, the module will shift to the state EXCEPTION. Further information can then be read
from the attribute Exception in the Anybus Object (01h).

When done, the module enters the state WAIT_PROCESS.

The transition to this state is critical, especially if using the serial host interface, since
telegrams from this point may (depending on the setup) contain Process Data. It is
important to keep Write Process Data updated in this state since this data is buffered by
the module and may be sent to the network on the next state transition.

See also..

• The Anybus State Machine, p. 43

• Network Configuration Object (04h), p. 81

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 61 (178)

12 Anybus Module Objects
12.1 General Information

The objects in this chapter are implemented as standard in all Anybus CompactCom
implementations. Their functionality is categorized to indicate when and how to use the objects.
Network specific Anybus module objects are described in the respective network guides. An
overview is shown in Object Overview, p. 149.

See also..

• Message Segmentation, p. 46

• Error Codes, p. 52

• Categorization of Functionality, p. 143

For detailed information about each object, see...

• Anybus Object (01h), p. 62

• Diagnostic Object (02h), p. 69

• Network Object (03h), p. 74

• Network Configuration Object (04h), p. 81

• Anybus File System Interface Object (0Ah), p. 83

• Functional Safety Module Object (11h), p. 98

• Time Object (13h), p. 105

12.2 Object Revisions
The purpose of the Object Revision attribute is to make it possible for the host application to
determine if the revision of the object in the Anybus module is compatible with the software
implementation in the host application, and/or to make it possible to choose different
implementations based on the object revision.

As a general rule, the object revision is updated when the object is changed in such a way that
the change may cause compatibility issues in the host application software implementation.
Minor changes, such as when an attribute or command has been added, are normally not cause
for a revision change.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 62 (178)

12.3 Anybus Object (01h)
Category
Basic

Object Description
This object assembles data about the Anybus CompactCom module itself. The data in question does not as
such represent the industrial network the module is adapted to, but describes data inherent to the module.
This data is available for use in the application. The values may differ, depending on industrial network, and are
in that case described in the respective appendices.

Most attributes in this object have access type “get” where data can be fetched using the command Get_
Attribute. The only attribute that is mandatory to set is “Setup complete” (instance #1, attribute #5), which is
used by the application to notify the module that it has finished the setup. If the configuration is not accepted,
the module will shift to the state EXCEPTION, and information can be read from instance #1, attribute #6
(“Exception Code”).

Supported Commands

Object: Get_Attribute (01h)

Reset (05h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Anybus”

2 Revision Get UINT8 04h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Description

1 Module Type Get UINT16 Value: Meaning:

0401h: Standard Anybus CompactCom 30

0402h: Anybus CompactCom Drive Profile 30

0403h: Standard Anybus CompactCom 40

0404h: Anybus IP

(Other) (reserved for future products)

2 Firmware version Get struct of:
UINT8 Major
UINT8 Minor
UINT8 Build

Firmware version. Note that this value shall generally not be used to
determine if a particular functionality is available or not. Please use
the attribute Revision of each individual object for this purpose

3 Serial number Get UINT32 Unique serial number

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 63 (178)

Name Access Data Type Description

4 Application watchdog
timeout

Get/Set UINT16 Application watchdog configuration

Value:
0:
(other):

Meaning:
Disabled (default)
Timeout value (ms)

If enabled, the watchdog timeout time is active immediately,
regardless of the state of the application. The internal timer is
reloaded every time it is restarted, so the value of this attribute can
be changed during runtime.
If the timeout value is exceeded, the Anybus CompactCom 40 will
enter the state EXCEPTION with exception code 01h.

5 Setup complete Get/Set BOOL This attribute shall be set to TRUE when the Anybus Setup stage has
been completed. If the configuration is accepted, the Anybus module
shifts to the state NW_INIT. If not, i.e. if a serious error is detected in
the configuration, the module will shift to the state EXCEPTION. In
such case further information can be read from the attribute
Exception Code (below)
See also...
Anybus Setup (SETUP State), p. 59

6 Exception code Get ENUM See Exception Codes below.

7 FATAL event Get/Set struct of: (HMS
Specific)

The latest FATAL event (if any) is logged to this instance. Used for
evaluation by HMS support.
(The contents of this attribute is only used as input to HMS support
during application development)

8 Error Counters Get struct of: Error counters (stops counting at FFFFh).
(The contents of this attribute is only used during application
development.)

UINT16 DC DC: Discarded commands (received with R = 0)

UINT16 DR DR: Discarded (unexpected) responses

UINT16 SE SE: Serial reception errors

UINT16 FE FE: Fragmentation errors

9 Language Get/Set ENUM Current language:

Value: Enumeration String:

00h:
01h:
02h:
03h:
04h:

“English” (default)
“Deutsch”
“Español”
“Italiano”
“Français”

See also...
Application Object (FFh), p. 120 , including details for command
Change_Language_request.

10 Provider ID Get UINT16 Preprogrammed and stored permanently in FLASH by HMS during
production (contact HMS for further information).

Value:
0001h:
FFFFh:
Other:

Meaning:
HMS Networks
(reserved)
Provider specific

11 Provider specific info Get/Set UINT16 The information stored in this attribute is provider-specific, i.e. it has
no predefined meaning and is not evaluated nor used by the Anybus
module.
Any value written to this attribute will be stored in nonvolatile
memory. Default value is 0000h.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 64 (178)

Name Access Data Type Description

12 LED colors Get struct of:
UINT8 LED1A
UINT8 LED1B
UINT8 LED2A
UINT8 LED2B

This attributes specifies the colors of the network status LEDs. See
Anybus CompactCom M40 Hardware Design Guide for more
information.
Value:
00h:
01h:
02h:
03h:
04h:
05h:
06h:

Meaning:
None (not used)
Green
Red
Yellow
Orange
Blue
White

13 LED status Get UINT8 Bit field holding the current state of the network status LEDs as
follows:
Bit:
b0:
b1:
b2:
b3:
b4:
b5:
b6:
b7:

Contents:
LED1A status (0=OFF, 1=ON)
LED1B status (0=OFF, 1=ON)
LED2A status (0=OFF, 1=ON)
LED2B status (0=OFF, 1=ON)
LED3A status (0=OFF, 1=ON)
LED3B status (0=OFF, 1=ON)
LED4A status (0=OFF, 1=ON)
LED4B status (0=OFF, 1=ON)

14 Switch status Get struct of
UINT8 SW1
UINT8 SW2

Values of DIP switches representing node address and baud rate,
connected to DIP pins in the host connector, see Anybus
CompactCom M40 Hardware Design Guide or Anybus CompactCom
B40 Design Guide.
Supported in serial, SPI and shift register mode. in other modes the
attribute contains random data.
This attribute is only supported on Anybus CompactCom 40.

15 (not used for Anybus
CompactCom 40)

- - -

16 GPIO configuration Get/Set UINT16 Configuration of the host interface GPIO pins.
Set access is only valid during SETUP state.

Code: Description

0000h, GIP[0..1] are used as general input pins.
GOP[0..1] are used as general output pins.
For the Anybus CompactCom 40 this mode is identical
to the Extended LED functionality (0001h) mode

0001h: Extended LED functionality (default):
GIP[0..1] are used as network specific, active low LED
outputs associated with the left, or single, port.
GOP[0..1] are used as network specific, active low LED
outputs associated with the right port.

0002h: RMII: GIP[0..1], /GOP[0..1], LED1A, LED1B, LED2A, and
LED2B are used to create RMII interface against the
application. Only valid for modules supporting RMII,
Please note that this code is not valid when running in
16 bit parallel mode.

0003h Three-state:
GIP[0..1] and GOP[0..1] are set to three-state.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 65 (178)

Name Access Data Type Description

17 Virtual attributes Get/Set Array of UINT8 This attribute is used to implement virtual host application attributes
in the module, e.g. when using the module stand-alone.
This attribute is only supported on Anybus CompactCom 40.
Set access is only valid during SETUP state.
Maximum size: 1524 bytes. Stored in nonvolatile memory.
See “Virtual Attributes” below.

18 Black list/White list Get/Set This attribute is used to implement the black list/white list.
See“ Black List / White List” below..
This attribute is only supported on Anybus CompactCom 40.

Format:
struct of:
UINT8 InfoBits

InfoBits:
bit 0:

bit 1 - 7:

0 = black list
1 = white list
reserved

UINT8 ListLen ListLen: Length of the list, equal to #n entries (Prot#n)
0 = List disabled

UINT16 Prot#1
UINT16 Prot#2
...
UINT16 Prot#n

Prot#: The network type identifier

19 Network time Get UINT64 The current network time.
The format of the network time is specific to each network.
0 = the network does not support network time.
Note: This attribute is not supported by all networks. Consult the
network guides for more information.
This attribute is only supported on Anybus CompactCom 40.

20 Firmware custom
version

Get UINT8 This attribute holds a firmware version prefix, indicating a special
branch of the firmware.

21 Anybus IP License Get UINT8 Information about what license chip detected by Anybus IP. See
below for values.
Only supported on the Anybus IP platform.

Virtual Attributes
The virtual attributes list is a 1524 bytes array, stored in nonvolatile memory. The attributes are created using
the format below:

Object (8 bit)

Instance (16 bit)

Attribute (8 bit)

Length (16 bit)

Data (Length * 8 bit)

The virtual attributes are accessed via attribute #17 in the Anybus object.

When the Anybus CompactCom 40 tries to retrieve network specific attributes from the host application and
the application cannot supply these attributes, an error code is returned. The module will then check for the
missing attributes in the virtual attributes list. Please note that the attribute number has to be left intact in the
error response, or the requested attribute can not be found in the list.

Using the virtual attributes list, it is possible to provide network specific objects and/or attributes to the
module without implementing them in the host application. This may e.g. be useful when an application is to
be adapted to new networks, and need to support network specific attributes, that are not available in the
original application. Some attributes are mandatory in order to pass conformance tests, see Conformance Test
Information, p. 151.

If the array data in the virtual attributes list does not fit into a single message, a Get_Attribute request will
return the error code “Messaging channel too small” (14h).

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 66 (178)

If the Anybus CompactCom 40 is used in stand-alone mode, no host application is available and the Anybus
CompactCom 40 will check for attributes in the virtual attributes list. The virtual attributes can only be set
before the “Setup complete” attribute is set.

If you change the module’s identity when implementing a stand-alone shift register solution, it is
necessary to implement the virtual attributes.

Black List / White List
Using the black list/white list, it is possible for the host to block or accept certain network types.

Bit 0 in the header of the list decides if it is a black list or a white list. If configured as a white list, only the
network types in the list will be accepted. If configured as a black list, all network types in the list will be
rejected.

A white list makes it possible to accept only a predefined choice of network types.

A black list makes it possible to block already defined network types.

The black list/white list is accessed via attribute #18 in the Anybus object.

Network type Network

0005h PROFIBUS DP-V1

0025h DeviceNet

0087h EtherCAT
0089h PROFINET IRT

0090h CC-Link
0093h Modbus TCP
009Bh EtherNet/IP

009Dh PROFINET IRT Fiber Optic

009Eh CC-Link IE Field
009Fh Ethernet POWERLINK
00A3h Common Ethernet

Anybus IP license
Code License Description

0x00 None The security chip has not been probed yet.

0x01 Time bomb The security chip is not mounted or something went wrong when probing or
reading from the security chip. Full functionality of Anybus IP is enabled but the
module only functional for a limited amount of time.

0x02 Standard Anybus IP is running with limited functionality.

0x03 Extended Full functionality enabled.

See also...

• The Anybus State Machine, p. 43

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 67 (178)

Command Details: Reset
Details

Command Code 05h

Valid for: Object Instance

Description

This command is sent from the host application to the Anybus object (instance 0). A power-on reset is a
request to make the module ready for a power-on reset from the host application. A power-on + factory
default reset is a request a to return the module to the application specific out-of-box state and then make the
module ready for a power-on reset from the host application.

A power-on reset shuts down the network and then sets the module in the EXCEPTION state waiting for the
host to perform the power-on reset. Note that this command does not clear or reset any functionality stored in
non-volatile memory. No command data shall be supplied together with this reset type of reset command.

A power-on + factory default request shuts down the network, resets the functionality specified by the bit field
in the command data, reports the result in the response data and then sets the module in EXCEPTION state
waiting for the host application to perform the power-on reset.

If a power-on + factory default reset is successful the response bit field equals the command bit field, meaning
that all the targeted functionality was supported and reset successfully.

• Command details:

Field Contents

CMDExt[0] (reserved)

CMDExt[1] 00h: Power-on reset (actual power-on or simulated)

01h: (reserved)

02h: Power-on + Factory default reset

Data[0-3] Bitmask specifying what to reset to factory default state (UINT32)

Bit(s): Description:

0: Network configuration parameters

1: Anybus file system

2: User created accounts and certificates
3-23 (reserved)

24-31 Reserved or network specific

• Response details:

Field Contents

Data[0-3] Bitmask specifying what the Anybus CompactCom was supported to reset. See command data for bit
specification.

Exception Codes
When in the state EXCEPTION, this attribute provides additional information.

Enumeration String Description

00h No exception -

01h Application timeout The host application has not responded within the specified watchdog timeout
period.

02h Invalid device address The selected device address is not valid for the actual network.
03h Invalid communication settings The selected communication settings are not valid for the actual network.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 68 (178)

Enumeration String Description

04h Major unrecoverable app event The host application has reported a major unrecoverable event to the Diagnostic
object.

05h Wait for reset The module is waiting for the host application to execute a reset.

06h Invalid process data config The Process Data configuration is invalid.

07h Invalid application response The host application has provided an invalid response to a command.

08h Nonvolatile memory checksum error At least one of the parameters stored in nonvolatile memory has been restored
to its default value due to a checksum error.

09h ASM communication error Communication is lost between the Anybus CompactCom module and the
attached Anybus safety module.

0Ah Insufficient application implementation The application does not implement the functionality required for the Anybus
module to continue its operation.

0Bh Missing serial number The module is missing a serial number. This might happen in product
configurations which does not have an embedded serial number (e.g. Anybus
IP), and the application fails to supply one.

0Ch Corrupt file system The file system is corrupt and must be formatted by user.

0Dh Security error The security configuration has become invalid or unsafe to use (e.g. due to some
tampering attempt). To solve this exception the application must perform a
factory default reset of user created accounts and certificates. For more
information, see Command Details: Reset, p. 67.

0Eh Invalid config file in file system A required configuration file located in the module’s file system is invalid and
the module cannot continue its operation.

(other) (reserved) -

See also...

• The Anybus State Machine, p. 43

Object Specific Error Codes
The following object-specific error codes may be returned by the module as a response to setting the attribute
Setup complete.

Error Description

01h Invalid process data configuration The Process Data configuration is invalid

02h Invalid device address The selected device address is not valid for the actual network
03h Invalid communication settings The selected communication settings are not valid for the actual network

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 69 (178)

12.4 Diagnostic Object (02h)
Category
Specific to each industrial network, see network guides.

Object Description
This object provides a standardized way of reporting diagnostic events to the network. Exactly how this is
represented on the network differs, however common to all implementations is that the module enters the
state EXCEPTION in case of a major unrecoverable event.

When the module has been started and initialized, no instances exist in the module. When a diagnostic event,
e.g. a blown fuse, occurs in the application, the application creates an instance with information on severity
and kind of event. The information in this instance remains available for the application, until the application
deletes the instance. The event code in the instance is processed by the module, to transfer correct network-
specific information about the event to the network used.

Supported Commands

Object: Get Attribute (01h)

Create (03h)

Delete (04)

Instance: Get Attribute (01h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Diagnostic”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 (depends on number of created diagnostic events)

4 Highest instance no. Get UINT16 (network specific)

11 Max no. of instances Get UINT16 Max. no. of instances that can be created (network specific)
Of the maximum number of instances there should always be one
instance reserved for an event of severity level “Major,
unrecoverable”, to force the module into the state EXCEPTION.

12 Supported functionality Get BITS32 Bit 0: “1” if latching events are supported
“0” if latching events are not supported
Bit 1 - 31: reserved

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 70 (178)

Instance Attributes (Instance #1... N)
Name Access Type Description

1 Severity Get UINT8 This attribute should be viewed as a bit field
Bit 0 (the least significant bit) indicates whether extended
diagnostics are used by the instance

• Bit 0 = 1: extended diagnostics are used

• Bit 0 = 0: extended diagnostics are not used

Bits 4 - 6 are used for severity level information. See below.

2 Event Code Get UINT8 See below.
3 NW specific extension Get Array of UINT8 Network specific event information (optional)

4 Slot Get UINT16 Indicates which slot in a modular device the diagnostic event is
associated with
Default value: 0
For more information, see "Modular Device Object (ECh)" on page
125

5 ADI Get UINT16 Indicates which ADI the diagnostic event is associated with
Default value: 0 (if the diagnostic instance is not associated with any
particular ADI)

6 Element Get UINT8 Indicates which element in the ADI the diagnostic event is
associated with
The value 255 is used if the diagnostic event is associated with the
entire ADI
Default value: 255

7 Bit Get UINT8 Indicates the bit in the element that the diagnostic event is
associated with
The value 255 is used to indicate that the diagnostic event is
associated with the entire element
Default value: 255

Severity
This parameter indicates the severity level of the event. Only bits 4 - 6 are used for severity level information.

Severity Levels

Bit Combination Severity Comment

000 Minor, recoverable -

001 Minor, unrecoverable Unrecoverable events cannot be deleted

010 Major, recoverable -

011 Major, unrecoverable Causes a state-shift to EXCEPTION

101 Minor, latching

110 Major, latching

(other) - (reserved for future use)

Recoverable events shall be deleted by the application when the cause of the error is gone.

Unrecoverable events cannot be deleted. They remain active until the Anybus CompactCom is reset or power
is turned off.

Latching events remain active until explicitly acknowledged by the network master. If the network does not
support acknowledgment of latching diagnostic events, the module shall refuse the creation of latching
diagnostic events.

When the network master acknowledges one or more latching events, the module shall send a “Reset
Diagnostic” request to the application object. The request contains a list of diagnostic instances which the
master wishes to acknowledge. The application object shall respond with a list of diagnostic instances which it
allows the module to delete. The module will then delete the allowed instances, and report the appropriate
information to the network master.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 71 (178)

Event Codes
Meaning Comment

10h Generic Error -

20h Current -

21h Current, device input side -

22h Current, inside the device -

23h Current, device output side -

30h Voltage -

31h Mains Voltage -

32h Voltage inside the device -

33h Output Voltage -

40h Temperature -

41h Ambient Temperature -

42h Device Temperature -

50h Device Hardware -

60h Device Software -

61h Internal Software -

62h User Software -

63h Data Set -

70h Additional Modules -

80h Monitoring -

81h Communication -

82h Protocol Error -

90h External Error -

F0h Additional Functions -

FFh NW specific Definition is network-specific; consult separate network guide for further
information.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 72 (178)

Command Details: Create
Details

Command Code: 03h

Valid For: Object

Description

Creates a new instance, in this case representing a new diagnostic event in the host application.

• Command details:

Field Contents Note

CMDExt[0] Bit 0:
Bit 4–6:
Other bits

Extended Diagnostic
Severity
Reserved. Set to zero.

CMDExt[1] Event Code, see previous page

MsgData[0...1] Slot number associated with the event
Set to “0” if unknown or unsupported

These fields only exist if bit 0 (Extended
Diagnostic) is set

MsgData[2...3] ADI associated with the event
Set to “0” if unknown or unsupported

MsgData[4] Element associated with the event
Set to “255” if unknown or unsupported

MsgData[5] Bit in element associated with the event
Set to “255” if unknown or unsupported

MsgData[6...7] Reserved. Set to zero

MsgData[0/8...n] Network specific extension (optional, definition is network
specific)

MsgData[8...n] if bit 0 in CmdExt[0] is set
MsgData[0...n] if bit 0 in CmdExt[0] is not
set

• Response details (Success):

Field Contents

MsgData[0...1] The number of the instance that was created as a result from the command

• Response details (Error):

Error Contents Comment
Object Specific Error MsgData[1] = 02h Error code (Latching event not supported)

The event could not be created since the module does not support
latching events

MsgData[1] = FFh Error code (Network specific error)
The event could not be created due to a network specific reason.
Information about the event is found in response MsgData[2-n]

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 73 (178)

Command Details: Delete
Details

Command Code: 04h

Valid For: Object

Description

Deletes an existing instance, i.e. a previously created diagnostic event.

Instances representing unrecoverable events and latching events cannot be deleted.

• Command details:

Field Contents

CMDExt[0] The number of the instance to delete (low byte)

CMDExt[1] The number of the instance to delete (high byte)

• Response details (Error):

Error Contents Comment
Object Specific Error MsgData[1] = 01h Error code (Not removed).

The event could not be removed, either because the event itself is
unrecoverable, latching, or due to a network specific reason.

MsgData[1] = FFh Error code (Network specific error)
The event could not be deleted due to a network specific reason
Information about the event is found in response MsgData[2-n]

See also:

– Error Codes, p. 52

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 74 (178)

12.5 Network Object (03h)
Category
Basic

Object Description
This object holds general information about the network (i.e. network type, data format etc.). It is also used
when mapping ADIs as Process Data from the host application side.

See also...

• Functional Safety Object (E8h), p. 109

• Application Object (FFh), p. 120

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Map_ADI_Write_Area (10h)

Map_ADI_Read_Area (11h)

Map_ADI_Write_Ext_Area (12h)

Map_ADI_Read_Ext_Area (13h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Network”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 (Module type dependent)

4 Highest instance no. Get UINT16 (Module type dependent)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 75 (178)

Instance Attributes (Instance #1)
Name Access Category Type Description

1 Network type Get Extended UINT16 (See separate Network Guide and/or table below)

2 Network type string Get - Array of CHAR

3 Data format Get Basic ENUM Network data format:
Value:
00h:
01h:

Enumeration String:
“LSB First”
“MSB First”

4 Parameter data support Get Extended BOOL This attribute indicates if the network supports acyclic
data services. It can also be used for deciding what
ADIs to map to Process Data.

Value:
True:
False:

Meaning:
Network supports acyclic data access
No support for acyclic data

5 Write Process Data size Get - UINT16 The current write Process Data size (in bytes).
Updated on every successful Map_ADI_Write_Area,
Map_ADI_Write_Ext_Area, Remap_ADI_Write_Area or
any network specific mapping command.

6 Read Process Data size Get - UINT16 The current read Process Data size (in bytes).
Updated on every successful Map_ADI_Read_Area,
Map_ADI_Read_Ext_Area, Remap_ADI_Read_Area or
any network specific mapping command.

7 Exception Information Get - UINT8 Additional network specific information may be
presented here if the module has entered the
EXCEPTION state (see separate network guide).

Network type Network Type String

0005h “PROFIBUS DP-V1”
0025h “DeviceNet”
0087h “EtherCAT”
0089h “PROFINET IRT”
0090h “CC-Link”
0093h “Modbus TCP”
009Bh “EtherNet/IP”

009Dh “PROFINET IRT Fiber Optic”

009Eh “CC-Link IE Field”
009Fh “Ethernet POWERLINK”
00A3h “Common Ethernet”

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 76 (178)

Command Details: Map_ADI_Write_Area
Details

Command Code: 10h

Valid For: Instance

Description

This command maps an ADI as Write Process Data. If successful, the response data contains the offset of the
mapped ADI from the start of the Write Process Data image.

• It is strongly recommended not to map an ADI more than once (i.e. map it multiple times to the Read- or
Write Process Data, or map it to both the Read- and Write Process Data) since this is not accepted by
some networks.

• It is not possible to map only part of an ADI, i.e. all elements of an ADI must always be mapped.

• It is not allowed to mix mapping commands Map_ADI_Read/Write_Area and Map_ADI_Read/Write_Ext_
Area within one area.

• It is not allowed to map BITSx types of fractional byte size (BIT1 - BIT7) or PADx types using this command.

• It is only allowed to map variables and arrays with this command. It is not allowed to map structures.

• Certain Anybus implementations allow the network to remap the Process Data during runtime. For more
information, see Application Data Object (FEh), p. 111.

• To map more than 256 bytes, use the commands Map_ADI_Read/Write_Ext_Area.

• The commands Map_ADI_Read/Write_Area should only be used in applications that include one or more
Anybus CompactCom 30 devices. For new applications, including only Anybus CompactCom 40 devices,
use the commands Map_ADI_Read/Write_Ext_Area.

See also...

• Application Object (FFh), p. 120

Error control is only performed on the command parameters. The Anybus module does not verify the
correctness of these parameters by a read of the actual ADI attributes.

• Command details:

Field Contents

CmdExt[0] Instance number of the ADI (low byte)

CmdExt[1] Instance number of the ADI (high byte)

MsgData[0] Data Type of the ADI, see Data Format, p. 49

MsgData[1] Number of elements in the ADI

MsgData[2] Order Number of the ADI (low byte)

MsgData[3] Order Number of the ADI (high byte)

The Order Number in the mapping command equals that of the command Get_Instance_Number_By_
Order the Application Data Object.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 77 (178)

• Response details (Success):

Field Contents

MsgData[0] Offset of the mapped ADI from the start of the Write Process Data

• Response details (Error):

Error Contents
Invalid CmdExt[0] The ADI number is not valid.

Invalid State Mapping of ADIs is only allowed in the SETUP state

Object Specific Error Object specific error, see MsgData[1] for details:

01h: Invalid data type The data type is not valid for Process Data

02h: Invalid number of elements The number of elements is not valid (zero)

03h: Invalid total size The requested mapping is denied because the resulting total data
size would exceed the maximum permissible (depending on
network type)

04h: Multiple mapping The requested mapping was denied because the specific network
does not accept multiple mapping of ADIs

05h: Invalid Order Number The order number is not valid (zero)

06h: Invalid map command
sequence

The order in which the commands were received is invalid

Error control is only performed on the command parameters. The Anybus module does not verify the
correctness of these parameters by a read of the actual ADI attributes.

Command Details: Map_ADI_Read_Area
Details

Command Code: 11h

Valid For: Instance

Description

This command is identical to Map_ADI_Write_Area, described above, except that it maps ADIs to Read Process
Data.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 78 (178)

Command Details: Map_ADI_Write_Ext_Area
Details

Command Code: 12h

Valid For: Instance

Description

This command is only supported by Anybus CompactCom 40 devices.

This command is equivalent to Map_ADI_Write_Area, but can map more than 256 bytes of data. It supports
mapping fractional byte size types, and it can be used to map only specific parts of an ADI.

It maps an ADI as Write Process Data. If successful, the response data contains the offset, in bits, for the
mapped ADI from the start of the Write Process Data area.

• Mapping an ADI more than once (i.e. map it multiple times to the Read- or Write Process Data, or map it
to both the Read- and Write Process Data) is not accepted by all networks.

• It is not allowed to mix mapping commands Map_ADI_Read/Write_Area and Map_ADI_Read/Write_Ext_
Area within one area (Read/Write).

• It is recommended to only map one item for each mapping command during initial development, since
data area offset is only given for the first mapping item, and all mapping items may be rejected using one
single error code.

• All mapped elements, except those of types BIT1-BIT7 and PADx, must be byte aligned.

• The only implicit padding done is from the very last mapped item up to byte alignment, since the process
data needs to be of byte size when the setup is complete.

• Explicit padding is done either through available ADI elements of PADx type, or through the imaginary ADI
0, which is assumed to be an array with 255 elements of type PAD1. Explicit padding of process data is the
only correct use of ADI 0. Padding bits might not be visible on the network.

• This command may permanently alter the state of the Anybus CompactCom 40 even though the
command is returned with an error. Network specific restrictions may lead to n mapping items to be
accepted, but with an error on mapping item n+1. If so, the mappings up to and including n will be
accepted, but all other mapping items, starting with n+1, are rejected. The number of accepted mappings
is declared in CmdExt[0] of the answer.

• Certain Anybus implementations allow the network to remap the Process Data during runtime. For more
information, see Application Data Object (FEh), p. 111.

See also...

Application Object (FFh), p. 120

Error control is only performed on the command parameters. The Anybus module does not verify the
correctness of these parameters by a read of the actual ADI attributes.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 79 (178)

• Command details:

Field Contents

CmdExt[0] The number of mapping items to add (0-217)

CmdExt[1] Reserved. Set to 0

MsgData[0-1] New mapping item 1: ADI number

MsgData[2] New mapping item 1: Number of elements in the ADI

MsgData[3] New mapping item 1: Index to the first element to map (0-254)

MsgData[4] New mapping item 1: Number of consecutive elements to map (1-255)

MsgData[5] New mapping item 1: Number of type descriptors (1-255)

MsgData[6..n] New mapping item 1: Array of type specifiers for each mapped element
... Repeat MsgData[0-n] (as above) for mapping item 2 and onwards.

• Response details (Success):

Field Contents

CmdExt[0] The number of accepted mapping items (0-217)

MsgData[0] Bit offset of the mapped ADI from the start of the Write Process Data (Least significant byte)

MsgData[1] Bit offset of the mapped ADI from the start of the Write Process Data

MsgData[2] Bit offset of the mapped ADI from the start of the Write Process Data

MsgData[3] Bit offset of the mapped ADI from the start of the Write Process Data (Most significant byte)

• Response details (Error):

Error Contents
Invalid CmdExt[0] The number of accepted mapping items, before an error occurred

Invalid State Mapping of ADIs is only allowed in the SETUP state

Object Specific Error Object specific error, see MsgData[1] for details:

01h: Invalid data type The data type is not valid for Process Data

02h: Invalid number of elements The number of elements is not valid (zero, or too many elements)

03h: Invalid total size The requested mapping is denied because the resulting total data
size would exceed the maximum permissible (depending on
network type)

06h: Invalid map command
sequence

The order in which the commands were received is invalid

07h: Invalid mapping command Inconsistencies in the command makes it impossible to parse

08h: Bad alignment The alignment rules for process data are not followed

09h: Invalid use of ADI 0 ADI 0 is an array (255 elements) of type PAD1

FFh: Network specific restriction The mapping is denied because of a network specific reason,
stated in response Data[2-n]. Consult the relevant network guide

Error control is only performed on the command parameters. The Anybus module does not verify the
correctness of these parameters by a read of the actual ADI attributes.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 80 (178)

Command Details: Map_ADI_Read_Ext_Area
Details

Command Code: 13h

Valid For: Instance

Description

This command is only supported by Anybus CompactCom 40 devices.

This command is equivalent to Map_ADI_Read_Area, but can map more than 256 bytes of data.

It is identical to Map_ADI_Write_Ext_Area, described above, except that it maps ADIs to Read Process Data.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 81 (178)

12.6 Network Configuration Object (04h)
Category
Network specific

Object Description
This object contains network specific configuration parameters that may be set by the end user, typically
settings such as baud rate, node address etc. Although the actual definition of the instances in this object are
network specific, instance 1 and 2 are fixed (when possible).

When possible, the following convention is used for these instances:

Instance no. Data type Parameter

1 Any 8 bit or 16 bit data type Currently selected network device address (or similar).

2 Any 8 bit or 16 bit data type Currently selected network communication bit rate (or similar).

The instance values in this object must be updated whenever their originating value changes. Mechanical
switches or similar need therefore be continuously monitored by the host application.

• Instances tagged with ‘shared’ access (indicated by the descriptor) must be regarded as volatile; a ‘set’
access towards such an instance may or may not alter its value. The Anybus module will not respond with
an error in case the value remains unaffected.

• When a set request with 8 bits of data is directed to a 16 bit instance, the set request is accepted and the
upper 8 bits are set to zero.

• When a set request with 16 bits of data is directed to a 8 bit instance, the set request is accepted and the
upper 8 bits are discarded.

Differentiation of Input Devices
The Anybus module makes a distinction between parameters originating from “hardwired” input devices (i.e.
physical mechanical switches) and parameters specified using a “soft” input device such a keypad and display.
This permits the Anybus module to fulfill network specific needs related to the actual origin of a parameter (e.
g. some networks require that a change of value on physical switches is visually acknowledged on the on-board
LEDs).

This distinction is based on the following actions from the host application (see table).

State Actions (Host Application) Anybus Behavior

SETUP Poll and update parameters
originating from physical switches
(make sure to issue at least one Set
command for each one of the
affected parameters). Do not update
parameters originating from “soft”
input devices (do not issue any Set
commands for these parameters yet).

The Anybus module identifies the affected parameters as originating from
physical switches. The remainder are assumed to originate from “soft” input
devices.

(other states) Poll and update all parameters (i.e.
physical switches and “soft” input
methods) as necessary.

The Anybus module keeps track of the parameters which were updated during
the SETUP state, and is thus able to treat them differently if required by the
network.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 82 (178)

Supported Commands

Object: Get_Attribute (01h)

Reset (05h) (The actual behavior is network specific)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Network Configuration”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 (Network dependent)

4 Highest instance no. Get UINT16 (Network dependent)

Instance Attributes (Instance #1... n)
Each instance represents a network configuration parameter. The attributes within it provides a
comprehensive description of the parameter (name, data type etc.). Instance names and enumeration strings
are multilingual . The actual strings are of course network specific, but the maximum number of characters is
limited to thirteen (13).

Name Access Category Type Description

1 Name Get Application
specific

Array of CHAR Parameter name (e.g. “Node address”)

2 Data type Get Application
specific

UINT8 Data type, see Data Format, p. 49

3 Number of elements Get Application
specific

UINT8 Number of elements of the specified data type

4 Descriptor Get Application
specific

UINT8 Bit field specifying the access rights for the parameter

Bit:
b0:
b1:
b2:

Access:
1: Get Access
1: Set Access
1: Shared Access
Instances tagged with shared access must
be regarded as volatile; a Set-access
towards such an instance may or may not
alter its value. The Anybus module will
not respond with an error in case the
value remains unaffected.

5 Value Determined
by attribute
#4

Application
specific

Determined by
attribute #2

Actual parameter value. Stored in nonvolatile memory
Get access: the actually used value will be returned
Set access: the configured (and possibly the actual)
value will be written

6 Configured value Get Application
specific

Determined by
attribute #2

The configured parameter value
Returns the configured value of an attribute. It is useful
when ‘Value’ is not being used directly when set, e.g.
when a power cycle is needed

Instance #1 and instance #2 are categorized as Basic, if they exist in an application. All other instances of this
object are categorized in the respective network guides.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 83 (178)

12.7 Anybus File System Interface Object (0Ah)
Category
Extended

Object Description
This object provides an interface to the built-in file system. Each instance represents a handle to a file stream
and contains services for file system operations. This provides the host application with access to the built-in
file system of the module. Instances are created and deleted dynamically during runtime.

The object is structurally almost identical to the Application File System Interface Object (EAh), see Application
File System Interface Object (EAh), p. 132.

Ethernet modules have a file system that is accessible to the application for different purposes, e.g. for firmware
download/upgrade and internal web pages. See the respective network guides for more information. For all other
modules, only one folder is present. This folder is only used for downloading and upgrading firmware.

Supported Commands

Object: Get_Attribute (01h)

Set_Attribute (02h)

Create (03h)

Delete (04h)

FormatDisc (30h)

Instance: Get_Attribute (01h)

File Open (10h)

File Close (11h)

File Delete (12h)

File Copy (13h)

File Rename (14h)

File Read (15h)

File Write (16h)

Directory Open (20h)

Directory Close (21h)

Directory Delete (22h)

Directory Read (23h)

Directory Create (24h)

Directory Change (25h)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 84 (178)

Object Attributes (Instance #0)
Name Access Data Type Value/Description

1 Name Get Array of CHAR “Anybus File System Interface”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max no. of instances Get UINT16 4: valid for Anybus CompactCom 40 modules supporting IT
functionality.
1: valid for Anybus CompactCom 40 modules, not supporting
multiple open file/directory streams.

12 Disable virtual file
system

Set BOOL If the virtual file system is disabled it will not be possible to access
the internal web pages.
0 = the virtual file system is enabled (default)
1 = the virtual file system is disabled

13 Total disc size Get UINT32 Disc size in bytes.

14 Free disc size Get UINT32 Free disc size in bytes.

Instance Attributes (Instance #1... 4)
Name Access Category Type Description

1 Instance Type Get Extended UINT8 Value:
0:
1:
2:

Meaning:
Reserved
File instance
Directory instance

2 File size Get Extended UINT32 File size (0 for a directory)

3 Path Get Extended Array of CHAR The file path to where the instance operates

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 85 (178)

File System Errors
In case of errors for services calling the file system interface object, the module will return FFh (object specific
error). A descriptive file system error will be returned in the error response data field.

Name Description

1 FILE_OPEN_FAILED Could not open file

2 FILE_CLOSE_FAILED Could not close file

3 FILE_DELETE_FAILED Could not delete file

4 DIRECTORY_OPEN_FAILED Could not open directory

5 DIRECTORY_CLOSE_FAILED Could not close directory

6 DIRECTORY_CREATE_FAILED Could not create directory

7 DIRECTORY_DELETE_FAILED Could not delete directory

8 DIRECTORY_CHANGE_FAILED Could not change directory

9 FILE_COPY_OPEN_READ_FAILED Could not open file for copy

10 FILE_COPY_OPEN_WRITE_FAILED Could not open file for destination

11 FILE_COPY_WRITE_FAILED Could not write file when copying

12 FILE_RENAME_FAILED Could not rename file

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 86 (178)

Command Details: File Open
Details

Command Code: 10h

Valid for: Instance

Description

Opens a file for reading, writing or appending.

• Command details:

Field Contents Comment

CmdExt[0] 00h - Read mode Opens a file for read only access.

01h - Write mode Opens a file for write only access. If the specified file does not exist, it will be
created. If the specified file already exists, it will be overwritten.

02h - Append mode Opens a file for writing at end-of-file. If the specified file does not exist, it will
be created. If the specified file exists, any data written to the file will be
appended at end-of-file.

CmdExt[1] (reserved, 0) -

MsgData[0...n] Path + filename of the
file to open relative to
current path

-

• Response details:

(No data)

Command Details: File Close
Details

Command Code: 11h

Valid for: Instance

Description

Closes an open file.

• Command details:

(No data)

• Response details:

Field Contents Comment

CmdExt[0] Reserved (0) -

CmdExt[1] Reserved (0) -

MsgData[0] File size (low byte) The size of the closed file

MsgData[1] File size

MsgData[2] File size

MsgData[3] File size (high byte)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 87 (178)

Command Details: File Delete
Details

Command Code: 12h

Valid for: Instance

Description

Deletes the specified file.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0...n] Path + filename of the file to delete relative to current path

• Response details:

(No data)

Command Details: File Copy
Details

Command Code: 13h

Valid for: Instance

Description

Makes a copy of a file.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Path + filename of the source file, relative to the current path

MsgData[x] NULL (00h)

MsgData[y]... Path + filename of the destination file, relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 88 (178)

Command Details: File Rename
Details

Command Code: 14h

Valid for: Instance

Description

Renames or moves a file.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Old path + filename, relative to the current path

MsgData[x] NULL (00h)

MsgData[y]... New path + filename, relative to the current path

• Response details:

(No data)

Command Details: File Read
Details

Command Code: 15h

Valid for: Instance

Description

Reads data from a file open for reading.

• Command details:

Field Contents

CmdExt[0] The number of bytes to read (low byte)

CmdExt[1] The number of bytes to read (high byte)

• Response details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Data read from the file

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 89 (178)

Command Details: File Write
Details

Command Code: 16h

Valid for: Instance

Description

Writes data to a file open for writing or appending.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Data to write from the file

• Response details:

Field Contents

CmdExt[0] Bytes written (low byte)

CmdExt[1] Bytes written (high byte)

Command Details: Directory Open
Details

Command Code: 20h

Valid for: Instance

Description

Opens a directory.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Path + name to the directory to open relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 90 (178)

Command Details: Directory Close
Details

Command Code: 21h

Valid for: Instance

Description

Opens a directory.

• Command details:

(No data)

• Response details:

(No data)

Command Details: Directory Delete
Details

Command Code: 22h

Valid for: Instance

Description

Deletes a directory in the file system. The directory must be empty to be deleted. An attempt to delete a
directory that is not empty will result in an error.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Path + name to the directory to delete, relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 91 (178)

Command Details: Directory Read
Details

Command Code: 23h

Valid for: Instance

Description

This command reads data from a directory previously opened for reading by the Directory Open command.

For each command sent the next directory entry (file or directory) is returned. When all entries in the directory
have been read, the response data size will be set to zero (0) and no message data will be returned, to indicate
that no more entries exist in the directory.

• Command details:

(No data)

• Response details:

Field Contents

CmdExt[0] Reserved (0)

CmdExt[1] Reserved (0)

MsgData[0] Size of object (low byte)

MsgData[1] Size of object

MsgData[2] Size of object

MsgData[3] Size of object (high byte)

MsgData[4] Object flags

MsgData[5]... Object name (file or directory)

• Object Flags

Field Contents

01h The object is a directory

02h The object is read only

04h The object is hidden

08h The object is a system object

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 92 (178)

Command Details: Directory Create
Details

Command Code: 24h

Valid for: Instance

Description

Creates a directory in the file system.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Path + name to the directory to create, relative to the current path

• Response details:

(No data)

Command Details: Directory Change
Details

Command Code: 25h

Valid for: Instance

Description

Change directory/path of the instance.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0]... Path + name to the directory to change to, relative to the current path

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 93 (178)

Command Details: Format Disc
Details

Command Code: 30h

Valid for: Object

Description

Formats a disc in the file system (will erase all data on the disc).

• Command details:

Field Contents

CmdExt[0] Disc to format. Set to zero (0)

CmdExt[1] (reserved, 0)

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 94 (178)

Examples
In this section are presented examples for a couple of common cases where the end user would use the File
System Interface Object.

An imaginary folder structure will be used in the example, with the following files in the root folder:

Root

left.jpg

navigation.js

reports

weld_current.txt

weld_formation.txt

index.html

up.jpg

status.html

test.txt

right.jpg

configuration.html

down.jpg

weld_info.txt

Fig. 17

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 95 (178)

Read a File

The following example opens weld_info.txt in the reports folder an read data from the file.

Start

InstX = Obj.Create()

InstX.File Open(R, \reports\
 weld_info.txt)

data = InstX.File Read(Size)

 EOF
(Zero bytes returned)

End

InstX.File Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open �le for reading (CmdExt[0] = 0) and point
to the �le to open. The instance can now be used
for �le operations. Any directory operations will
be rejected.

Read Size number of bytes from the �le.

Keep reading until the Read command returns
zero (0) or the desired content has been read.

Close the �le.

Delete the instance.

Fig. 18

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 96 (178)

Write a File

The following example opens up the test.txt file for writing.

Start

InstX = Obj.Create()

InstX.File Open(W, \test.txt)

InstX.File Write(data)

 Done

End

InstX.File Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open �le for reading (CmdExt[0] = 1) and point
to the �le to open. The instance can now be used
for �le operations. Any directory operations will
be rejected.

Write the desired data to the �le.

Keep writing until the desired content has been
written.

Close the �le.

Delete the instance.

Fig. 19

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 97 (178)

List Directory Contents

The following example lists the contents of the reports directory.

Start

InstX = Obj.Create()

InstX.Directory Open(\reports\)

data = InstX.Directory Read()

Done

End

InstX.Directory Close()

Obj.Delete (InstX)

Yes

No

Create a new instance. The instance number
returned will be used by subsequent commands.

Open the report directory. The instance can now
be used for directory operations. Any �le
operations will be rejected.

Read the directory entry by entry.

Keep reading until all entries have been read.
When there are no more entries, this is indicated
by a zero data size in the response.

Close the �le.

Delete the instance.

Fig. 20

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 98 (178)

12.8 Functional Safety Module Object (11h)
Category
Extended

Object Description
This object contains information provided by the Safety Module connected to the Anybus CompactCom
module. Please consult the manual for the Safety Module used, for values of the attributes below.

Supported Commands

Object: Get_Attribute

Error_Confirmation

Set_IO_Config_String

Get_Safety_Output_PDU

Get_Safety_Input_PDU

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Functional Safety Module”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 99 (178)

Instance Attributes (Instance #1)
Name Access Data Type Description

1 State Get UINT8 Current state of the Safety Module
Please consult the manual for the Safety Module used.

2 Vendor ID Get UINT16 Identifies vendor of the Safety Module.
E.g. 0001h (HMS Industrial Networks)
Please consult the manual for the Safety Module used.

3 IO Channel ID Get UINT16 Describes the IO Channels that the Safety Module is equipped with.
Please consult the manual for the Safety Module used.

4 Firmware version Get Struct of
UINT8 (Major)
UINT8 (Minor)
UINT8 (Build)

Safety Module firmware version.
Format: version “2.18.3” would be represented as: first byte = 0x02,
second byte = 0x12, third byte = 0x03.

5 Serial number Get UINT32 32 bit number, assigned to the Safety Module at production.
Please consult the manual for the Safety Module used.

6 Output data Get Array of UINT8 Current value of the Safety Module output data, i.e. data FROM the
network
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

7 Input data Get Array of UINT8 Current value of the Safety Module input data, i.e. data sent TO the
network.
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

8 Error counters Get Struct of
UINT16 (ABCC
DR)
UINT16 (ABCC
SE)
UINT16 (SM
DR)
UINT16 (SM
SE)

Error counters (each counter stops counting at FFFFh)

ABCC DR: Responses (unexpected) from the Safety Module,
discarded by the Anybus CompactCom module.

ABCC SE: Serial reception errors detected by the Anybus
CompactCom module.

SM DR: Responses (unexpected) from the Anybus
CompactCom module, discarded by the Safety
Module.

SM SE: Serial reception errors detected by the Safety
Module.

9 Event log Get Array of UINT8 Latest Safety Module event information (if any) is logged to this
attribute. Any older event information is erased when a new event is
logged.
For evaluation by HMS support.

10 Exception information Get UINT8 If the Exception Code in the Anybus object is set to “Safety
communication error” (09h), additional exception information is
presented here, see table below.

11 Bootloader version Get Struct of
UINT8 Major
UINT8 Minor

Safety Module bootloader version.
Format: version “2.12” would be represented as: first byte = 0x02,
second byte = 0x0C

12 Vendor block safe uc1 Get Array of UINT8 The Safety Module may supply additional vendor-specific data to the
Anybus CompactCom. If such data is available it is presented in this
attribute.

13 Vendor block safe uc2 Get Array of UINT8 The Safety Module may supply additional vendor-specific data to the
Anybus CompactCom. If such data is available it is presented in this
attribute.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 100 (178)

Exception Information

If Exception Code 09h is set in the Anybus object, there is an error regarding the functional safety module in
the application. Exception information is presented in instance attribute #10 according to this table:

Value Exception Information

00h No information
01h Baud rate not supported

02h No start message

03h Unexpected message length

04h Unexpected command in response

05h Unexpected error code

06h Safety application not found

07h Invalid safety application CRC

08h No flash access
09h Answer from wrong safety processor during boot loader communication

0Ah Boot loader timeout
0Bh Network specific parameter error

0Ch Invalid IO configuration string

0Dh Response differed between the safety microprocessors (e.g. different module types)

0Eh Incompatible module (e.g. supported network)

0Fh Max number of retransmissions performed (e.g. due to CRC errors)

10h Firmware file error
11h The cycle time value in attribute #4 in the Functional Safety Host Object can not be used with the current baud

rate
12h Invalid SPDU input size in start-up telegram

13h Invalid SPDU output size in start-up telegram

14h Badly formatted input SPDU

15h Anybus to safety module initialization failure

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 101 (178)

Command Details: Error_Confirmation
Category

Extended

Details

Command Code 10h

Valid for: Object

Description

When the Safety Module has entered the Safe State, for any reason, it must receive an error confirmation
before it can leave the Safe State. With this command it is possible to reset all safety channels of the safety
which, for any reason, are in the Safe State at the same time. The application issues this command to the
Anybus CompactCom module, when an error has been cleared by for example an operator. The Anybus
CompactCom forwards the command to the Safety Module.

The channel Safe State can also be confirmed by the safety PLC or by the safety module.

With this command

• Command Details

(no data)

• Response Details

(no data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 102 (178)

Command Details: Set_IO_Config_String
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command is sent from the host application when there is a need to change the default configuration of
the safety inputs and outputs. This string is used by networks where there are no other means (e.g. PLC or
some other tool) to provide the configuration to the safety module. Consult the specification of the safety
module for more information. The byte string passed is generated by HMS and need to be passed unmodified
using this command.

Information about this string is located in the specification of the safety module to which the string shall be
sent.

• Command Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Data (byte string)
The data consists of an IO configuration string, where the data format depends on the safety network.

• Response Details

(no data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 103 (178)

Command Details: Get_Safety_Output_PDU
Category

Extended

Details

Command Code 12h

Valid for: Object

Description

This command can be issued by the application to get the complete safety output PDU sent by the PLC. The
Anybus CompactCom 40 will respond with the complete safety PDU, that the application then has to interpret.

• Command Details

(no data)

• Response Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Safety PDU from PLC

Command Details: Get_Safety_Input_PDU
Category

Extended

Details

Command Code 13h

Valid for: Object

Description

This command can be issued by the application to get the complete safety input PDU sent by the safety
module. The Anybus CompactCom 40 will respond with the complete safety PDU, that the application then has
to interpret.

• Command Details

(no data)

• Response Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Safety PDU from safety module

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 104 (178)

Object Specific Error Codes
Error Code Description Comments

01h The safety module rejected a message. Error code sent by safety module is found in MsgData[2] and MsgData[3].

02h Message response from the safety
module has incorrect format (for
example, wrong length).

-

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 105 (178)

12.9 Time Object (13h)
Category
Extended

Object Description
In some networks there are multiple possible time sources. This object is used to present all known time
sources using a common format. The quality of the different time sources may vary, which the host application
has to consider when using the time value.

Check Time Object support in the applicable Anybus CompactCom 40 Network Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value Description

1 Name Get STRING “Time Object” Object name

2 Revision Get UINT8 1 Revision of object

3 Number of instances Get UINT16 N/A Supported number of instances

4 Highest instance
number

Get UINT16 N/A Highest implemented instance

11 Protocols Get Array of:
Struct of:
UINT16
Instance
ENUM Protocol
UINT8
Reserved

N/A Array of available time protocols.
Instance: Corresponding instance number.
Protocol: Enumeration of time protocols.
See Time Protocols, p. 105.
Reserved: Should not be used.

Instance Attributes (Instance #n)
Name Access Data Type Description

1 Protocol Get ENUM Enumeration identifier of the time protocol. See Time Protocols, p.
105 for supported protocols.

2 Current time Get UINT64 Current time in protocol specific format. If the time is not valid the
value will be set to 0. See Time Protocols, p. 105 for protocol formats.

Time Protocols
Enum
value

Priority Protocol Format Epoch

0 0 CIP Sync (IEEE 1588
PTP)

64 bit nanoseconds 23:59:51. 51.999918, December 31, 1969

1 0 SERCOS III (IEEE 1588
PTP)

32 bit seconds and 32
bit nanoseconds

January 1, 1970

2 0 POWERLINK (IEEE
1588 PTP)

32 bit seconds and 32
bit nanoseconds
Bit 31 of nanoseconds
represents a sign bit of
the total value.

January 1, 1970

3 0 EtherCAT 64 bit nanoseconds 12:00 am, January 1, 2000

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Anybus Module Objects 106 (178)

Enum
value

Priority Protocol Format Epoch

4 0 PROFINET 64 bit tick value (bus
cycle counter)
Resolution: 31250
nanoseconds

N/A

5 0 CANopen 48 bit value expressed
as a struct, 28 bit
milliseconds and 16 bit
days (plus 4 reserved
bits)

The millisecond component is the time in milliseconds after
midnight, and the days component is the number of days since
January 1, 1984.

6 2 BACnet Date and time
structures. Resolve to
64 bit milliseconds
value based on epoch.

January 1, 1970 (epoch defined by HMS)

7 1 NTP 32 bit seconds and 32
bit fractional second

January 1, 1900

8 2 OPC UA Discovery
server timestamp

64 bit signed number
of 100 nanosecond
intervals

January 1, 1601

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 107 (178)

13 Host Application Objects
13.1 General Information

The objects in this group are meant to be implemented within the host application software. The
Anybus module will issue commands towards these objects to access the settings and data
within them. Their functionality is categorized to indicate when and how to use the objects.
Network specific host application objects are described in the respective network guides. An
overview is shown in Object Overview, p. 149.

See also ...

• Message Segmentation, p. 46

• Anybus Module Objects, p. 61

• Categorization of Functionality, p. 143

For detailed information about each object, see...

• Functional Safety Object (E8h), p. 109

• Application File System Interface Object (EAh), p. 132

• Assembly Mapping Object (EBh), p. 135

• Modular Device Object (ECh), p. 138

• Sync Object (EEh), p. 140

• Application Data Object (FEh), p. 111

• Application Object (FFh), p. 120

13.2 Implementation Guidelines
Implementation of an object is generally a matter of parsing incoming commands and forming
suitable responses. While the exact details as of how this is done is beyond the scope of this
document, it is important to follow the following basic rules:

• An implemented object must feature all object attributes (instance #0) as specified in this
document and/or the network interface appendix.

• In case a command for some reason cannot be executed (i.e. if a particular object, attribute
or command hasn’t been implemented), respond with a suitable error code to indicate the
source of the problem.

• Support for the Application Object and the Application Data Object are mandatory.

• Support for Network Specific Objects is optional, but recommended. It shall however be
noted that the standard functionality provided by the Anybus module limits network
functionality to the use of certain predefined device information and services. These
limitations may be more or less significant and are described in each separate network
interface appendix. In case this standard functionality is inadequate, i.e. vendor specific
information or enhanced network functionality is required, Network Specific Objects may be
implemented in the host application.

• During startup the module will attempt to retrieve values of attributes in the Network
Specific Objects. If the module tries to access an object that is not implemented, respond
with an error message (03h, Unsupported Object). If an attribute is not implemented in the
host application, respond with an error message (06h, “Invalid CmdExt[0]”). The module will
then use its default value. Also, if the module tries to retrieve a value of an attribute that is
not listed in the network appendix, respond with an error message (06h, “Invalid CmdExt
[0]”.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 108 (178)

• Support for Process Data remapping (by means of commands ‘Remap_ADI_Write_Area’ and
‘Remap_ADI_Read_Area’) is optional for the Anybus CompactCom 40 range and may
provide better network integration for certain networks.

See also ...

• Error Codes, p. 52

The purpose of the Object Revision attribute is to make it possible for the Anybus module
to establish whether or not the object implementation in the host application is
compatible with that of the Anybus module, and to use different implementations if
necessary. It is therefore imperative that the Object Revision attribute reflects the actual
implementation, and that it is incremented based on changes in this document and/or
the network guide only.

In case of questions, contact the HMS Industrial Networks technical support services at
www.anybus.com/support.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

http://www.anybus.com/support

Host Application Objects 109 (178)

13.3 Functional Safety Object (E8h)
Category
Extended

Object Description

Do not implement this object if a safety module is not used.

This object specifies the safety settings of the application. It is mandatory if Functional Safety is to be
supported and a Safety Module is connected to the Anybus CompactCom module.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Functional Safety”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Default Value Comment

1 Safety enabled Get BOOL - When TRUE, enables communication with the Safety
Module.
Note: If functional safety is not supported, this
attribute must be set to FALSE.

2 Baud Rate Get UINT32 1020 kbit/s This attribute sets the baud rate of the
communication in bits/s between the Anybus
CompactCom and the Safety Module.
Valid values:

• 625 kbit/s

• 1000 kbit/s

• 1020 kbit/s (default)

Any other value set to this attribute, will cause the
module to enter the EXCEPTION state.
The attribute is optional. If not implemented, the
default value will be used.
Note: The host application shall never implement
this attribute when using the IXXAT Safe T100.

3 (reserved)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 110 (178)

Name Access Data Type Default Value Comment

4 Cycle Time Get UINT8 - Communication cycle time between the Anybus and
the Safety module in milliseconds.
Note: The host application shall never implement
this attribute when using the IXXAT Safe T100.
Valid values:

• 2 ms

• 4 ms

• 8 ms

• 16 ms

If another value is set in this attribute the Anybus
will enter Exception state.
Optional attribute; If not implemented the minimum
cycle time for the chosen baud rate will be used:

• 2 ms for 1020 kbit/s

• 2 ms for 1000 kbit/s

• 4 ms for 625 kbit/s

The Anybus CompactCom validates the cycle time
according to the minimum values above. If e.g. baud
rate is 625 kbit/s and the cycle time is set to 2 ms
the Anybus CompactCom will enter the EXCEPTION
state.

5 FW upgrade in progress Set BOOL False Indicates if the Anybus CompactCom is upgrading
the connected Safety module firmware. This means
that the Anybus CompactCom will stay in the NW_
INIT state longer than normal.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 111 (178)

13.4 Application Data Object (FEh)
Category
Basic. Please note that this object is mandatory.

Object Description
Each instance within this object (a.k.a. Application Data Instance or ADI) correlates to a block of data to be
represented on the network. Each time such data is accessed from the network, the module translates such
requests into object requests towards this object (or instances within it). The module may also access this
object spontaneously if necessary. The exact representation on the network is highly network specific; e.g. on
DeviceNet, ADIs are represented as dedicated CIP objects, while on PROFIBUS, ADIs are accessed by means of
acyclic DP-V1 read and write services.

An Application Data Object instance may be used to model different classes of data: variables, arrays or
structures. Every class can be distinguished by the instance attributes, as described in the table below.

Class Distinguished by Remarks

Variable Number of elements is 1. Starting with revision 3 of the Application Data object, the attribute Number of
subelements used in conjunction with a variable of CHAR type is the recommended
way to create a string variable. I.e. a string variable here consists of one element
with several subelements.

Array Number of elements is > 1, and
number of data types in Data
type is 1.

The attribute Number of subelements is not valid for arrays.
Arrays of CHAR will be translated to string variables on networks supporting strings.
See the remark for Variable above, for the recommended way to represent string
variables.

Structure Number of elements is > 1, and
equals the number of Data types.

A structure consists of elements that may have different data types. Possible from
object revision 3.

To allow the network and the Anybus module to efficiently scan the host application for ADIs, regardless of
their instance number, this object implements the additional command Get_Instance_Number_By_Order. This
command retrieves the ADI instance number as if the ADIs were sorted in a numbered list, allowing the Anybus
module to query only for the instances that are actually implemented in the host application. The order
number is also used when mapping ADIs to Process Data, see descriptions of the commands Map_ADI_Write_
Area and Map_ADI_Write_Ext_Area in the Network Object (03h), p. 74.

In the example below, the host application has four ADIs with instance numbers 1,3, and 100..

Instance # Implemented Order Number

1 Yes 1
2 No -

3 Yes 2
4... 99 No -

100 Yes 3

In this particular case, the host application shall respond with instance number 100 to a Get_Instance_
Number_By_Order request for Order Number 3.

Please take the following into consideration when designing an application:

• The Anybus module does not take over the host application responsibility for error control of parameter
requests, even if a request is clearly erroneous (e.g. a write request to an ADI with zero byte data, or an
attempt to access an attribute that doesn’t exist, will not be filtered out by the module).

• The response time in the host application (i.e. the time spent processing an incoming request towards this
object prior to responding to it) must be taken into consideration, since some networks may impose
certain timing demands. Where applicable, special timing requirements etc. are specified in each separate
network appendix.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 112 (178)

• If remapping of Process Data is to be supported, implementation is mandatory of object commands
Remap_ADI_Write_Area, Remap_ADI_Read_Area and Get_Instance_numbers.

• If remapping of Process Data is supported, object attributes #11 and #12 are mandatory.

• It is recommended to implement the commands Get_Indexed_Attribute and Set_Indexed_Attribute for all
attributes that are of data class Array or Structure within the Application Data Object.

Supported Commands

Object: Get_Attribute (01h)

Get_Instance_Number_By_Order (10h)

Remap_ADI_Write_Area (13h)

Remap_ADI_Read_Area (14h)

Get_Instance_Numbers (15h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Get_Indexed_Attribute (07h)

Set_Indexed_Attribute (08h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Application Data”

2 Revision Get UINT8 04h
3 Number of instances Get UINT16 (depends on application)
4 Highest instance no. Get UINT16

11 No. of read process
data mappable
instances

Get UINT16

12 No. of write process
data mappable
instances

Get UINT16

13 No. of non-volatile
instances

Get UINT16

Attributes #3, #11, #12 and #13 corresponds to list types 1, 2, 3, and 4 in the command Get_Instance_Numbers.

Attributes #11 and #12 are mandatory for applications supporting remapping of process data.

Attribute #13 is mandatory for applications that supports listing of non-volatile application data instances.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 113 (178)

Instance Attributes (Instance #1... n)
Name Access Type Description

1 Name Get Array of CHAR ADI name (can be multilingual)

2 Data type Get Array of UINT8 Each UINT8 defines the data type of the corresponding element of
the instance value for structures and variables. For arrays, one
UINT8 defines the data type for all subelements of the
corresponding array element.

3 Number of elements Get UINT8 Number of elements in attribute #5,. It is strongly recommended
not to use ADIs with Number of elements set to zero since this is
not accepted by some networks.

4 Descriptor Get Array of UINT8 Each UINT8 is a bit field specifying the access rights etc. for the
corresponding element of the instance value for structures and
variables. For arrays, one UINT8 defines the descriptor for all
subelements of the corresponding array element.
b3 and b4 are mandatory if remapping of Process Data is supported.

Bit: Access:
b3 and b4 are mandatory if remapping of Process Data is
supported.

0: 1: Get Access
1: 1: Set Access
2: -: (reserved, set to zero)

3: 1: Can be mapped as Write Process Data

4: 1: Can be mapped as Read Process Data

5 1: The ADI instance is a non-volatile storage parameter in
the application

6 1: Data notification is enabled
5 Value(s) Determined

by attribute
#4

Determined by
attribute #2

ADI value(s)
Indexed elements can be of different types and sizes as specified in
attribute #2.
This attribute consists of all elements packed together with bit
alignment. No implicit padding should be used. See table below for
specific alignment restrictions and explicit padding.

6 Max. value Get Determined by
attribute #2

The maximum permitted ADI value.
Implementation of this attribute is optional. If not implemented, the
module will use the maximum value of the specified data type for
this attribute.

7 Min. value Get Determined by
attribute #2

The minimum permitted ADI value. Implementation of this attribute
is optional. If not implemented, the module will use the minimum
value of the specified data type for this attribute.

8 Default value Get Determined by
attribute #2

The default ADI value. Implementation of this attribute is optional. A
zero value (float: +Min. value) will be used if not implemented.

9 Number of subelements Get Array of UINT16 Each UINT16 defines the number of subelements of the
corresponding element of the instance value for structures and
variables.
Implementation of this attribute is optional , and it must not be
implemented for arrays.
Data types with bit alignment cannot be used with more than 1
subelement.
If this attribute is not implemented, one (1) subelement for each
element is assumed.

10 Element name Get Struct of Strings
(Array of CHAR,
separated by NULL
byte)

This attribute is used to enable reading the name of each element in
an ADI of class Structure. Each string is separated by a NULL byte.
There is no NULL byte at the end of the last string.
The attribute reflects the element names used on the network. The
number of elements in the structure has to be equal to the value of
attribute #3 (Number of elements).
Commands possible for this attribute are Get_Attribute (response
includes strings and separating NULL bytes) and Get_Indexed_
Attribute (the string is returned without any NULL byte). The entire
response must fit into the message data field. The largest response
accepted is 255 or 1524 bytes, depending on used channel..

• The byte order of attributes #5–8 is network dependent; the Anybus does not perform any byte swapping.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 114 (178)

• Unless the data class is a structure the Max/Min/Default attributes is common for all elements in the ADI.
That is, there is no separate Max/Min/Default value for each element in the array. For structured ADIs,
the format is the same as for attribute #5.

• The instance value(s) must fit entirely into the message data field. The total byte size of all elements must
therefore never exceed 255 or 1524 bytes, depending on used channel.

• The only attributes that may be changed during runtime are attribute #1 and #5. Once defined, all other
attributes must be considered fixed; changing them during runtime is not permitted.

Notes on Parameter Access
The following list gives rules and notes on accessing parameters in the Anybus CompactCom 40.

• Structures may not contain elements of type ENUM

• If there is a “hole” in a structured ADI, its data type is defined as PAD0. The Descriptor (attribute #49
should define it as neither settable nor gettable, and “Invalid CmdExt[1]” (07h) shall be returned for the
commands Get_Indexed_Attribute/Set_Indexed_Attribute.

• Names of elements are generated by the Anybus CompactCom, unless defined in attribute #10, e.g.
“ADIName.0”.

• All elements, except those of data type BIT1 - BIT7, BOOL1 and PAD0 - PAD16, must be byte aligned.

• The only implicit padding done for parameter access is from the very last accessed element up to byte
alignment, since messages are always complete bytes.

• Explicit padding is done using elements of PADx data type.

• Elements, which are not byte aligned, shall be shifted down to be byte aligned when accessed through
Get_Indexed_attribute, and vice versa for Set_Indexed_Attribute.

• Descriptors may differ between elements of the same ADI

– For a Get_Attribute of an ADI of class Structure with inconsistent settings of the Descriptor bit “Get
access” for different elements, the application should fill the unreadable elements with zero in the
response. If the “Get access” descriptor bits are consistently set to 0, the Get_Attribute should be
returned with error code “Attribute not gettable (09h)”.

– For a Set_Attribute of an ADI of class Structure with inconsistent settings of the Descriptor bit “Set
access” for different elements, the application should ignore the non-settable elements and apply
the values of the settable ones. If the “Set access” descriptor bits are consistently set to 0, the Set_
Attribute should be returned with error code “Attribute not settable” (08h).

• For a Set_Attribute of an ADI of class Structure where at least one element is out of range, compared to
the optional Min/Max attributes, the application should ignore all elements and respond with “Out of
range”. “Out of range” is used so that there will be no conflicts if some elements are too low and others
too high, with the added benefit of being able to stop checking after finding one element that is out of
range.

• The attribute “Number of elements” must be consistent with the number of elements of the “Data
type”,“Descriptor”, and (if it exists) “Number of subelements” attributes.

• ADI elements with a bit aligned data type (PADx, BOOL1, BIT1-BIT7) cannot be used together with
attribute “Number of subelements” > 1.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 115 (178)

Command Details: Get_Instance_Number_By_Order
Details

Command Code: 10h

Valid for Object

Description

This command requests the actual instance number of an ADI as if sorted in an ordered list.

• Command details:

Field Contents

CmdExt[0] Requested Order Number (low byte)

CmdExt[1] Requested Order Number (high byte)

• Response details (Success):

Field Contents

MsgData[0...1] The instance number of the ADI corresponding to the submitted Order Number.

• Response details (Error):

Error Contents
Invalid CmdExt[0] The requested Order Number is not associated with an ADI.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 116 (178)

Command Details: Remap_ADI_Write_Area
Details

Command Code: 13h

Valid for Object

Description

The Anybus module issues this command when the network requests changes in the Process Data map. The
ADIs are mapped at the insertion point in the same order as stated by the command. The command can
remove and/or insert multiple mapping items, starting at the point indicated by the mapping item number in
CmdExt[0–1], where a mapping item is an ADI previously mapped by a Map_ADI_Write_Area command, or an
ADI (or elements of a multi-element ADI) previously mapped by a Remap_ADI_Write_Area command.

The following set of data is included in the command data for each inserted mapping item:

• The ADI number

• The index to the first element to map

• The number of consecutive elements to map

The command may be issued in the following Anybus CompactCom states: NW_INIT, WAIT_PROCESS, IDLE and
ERROR.

All actions specified in the command shall either be carried out or rejected, i.e. the Process Data map must
remain unchanged if the command was not accepted.

The Anybus module is limited to one outstanding remap command at a time.

See also...

• Network Object (03h), p. 74

• Runtime Remapping of Process Data, p. 156

To support this procedure, the host application must be capable of remapping the Process Data during
runtime. This is a mandatory requirement for object rev. 2, and optional for object rev. 3. Support for
this command is highly recommended.

• Command details:

Field Contents

CmdExt[0–1] Start of remap (mapping item number, 0 = first)

Data[0-1] The number of current mapping items to remove

Data[2-3] The number of mapping items to insert (0... 380)

Data[4-5] New mapping item 1: ADI number

Data[6] New mapping item 1: Index to the first element to map

Data[7] New mapping item 1: Number of consecutive elements to map

Data[8-9] New mapping item 2: ADI number

Data[10] New mapping item 2: Index to the first element to map

Data[11] New mapping item 2: Number of consecutive elements to map
... (etc.)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 117 (178)

• Response details (Success):

Field Contents

MsgData[0] The resulting total size of the write process data area in bytes (low byte)

MsgData[1] The resulting total size of the write process data area in bytes (high byte)

• Response details (Error):

Error Code Error Meaning

01h Mapping item error The requested mapping is denied because of a NAK to at least one mapping
item

02h Invalid total size The requested mapping is denied because the resulting total data size would
exceed the maximum permissible for the application

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 118 (178)

Command Details: Remap_ADI_Read_Area
Details

Command Code: 14h

Valid for Object

Description

This command is used to (re-)map ADIs to the read process data area. It is otherwise equivalent to Remap_
ADI_Write_Area.

A successful transfer of an ACK to a remap command indicates the point where the process data map will be
changed. For serial applications, this means that a changed process data map shall be expected or used in
telegrams following the empty telegram (or telegrams in case of retransmissions) after the ACK (see Runtime
Remapping of Process Data, p. 156).

• Network Object (03h), p. 74

• Runtime Remapping of Process Data, p. 156

To support this procedure, the host application must be capable of remapping the Process Data during
runtime. Support for this command is optional, but highly recommended.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 119 (178)

Command Details: Get_Instance_Numbers
Details

Command Code: 15h

Valid for Object

Description

This command is used to produce lists of ADIs with certain properties. List types 01h - 03h are mandatory for
all applications supporting dynamic process data mapping. For a complete list of list types, see “Table of List
Types” below.

The application shall respond with a number of instances equal to or less than the requested number (less if a
fewer number than requested exists in the application). If the requested starting order number is higher than
the highest instance, an empty response shall be returned. If an unsupported list type is requested, an error
response with “Invalid CmdExt[1]” shall be generated.

The Anybus CompactCom module may issue several commands with increasing order number to retrieve a
complete list.

• Command details:

Field Contents

CmdExt[0] Reserved = 00h

CmdExt[1] List type (See Table of List Types below)

Data[0-1] Starting order number

Data[2-3] Requested number of instances

• Response details:

Field Type Contents

MsgData[0-1] UINT16 The instance number of the ADI (with the instance number corresponding to
the order number), matching the selected list type

MsgData[2-3] UINT16 The instance number of the ADI (with the instance number corresponding to
the order number + 1), matching the selected list type

MsgData[4-5] UINT16 The instance number of the ADI (with the instance number corresponding to
the order number + 2), matching the selected list type

...

Table of List Types

List Number List Type

00h Reserved
01h All ADIs
02h All read process data mappable ADIs (All ADIs where bit 4 in the descriptor attribute is set to "1". See "Instance

Attributes (Instance #1... n)" on page 93 for more information.)

03h All write process data mappable ADIs (All ADIs where bit 3 in the descriptor attribute is set to "1". See
"Instance Attributes (Instance #1... n)" on page 93 for more information.)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 120 (178)

13.5 Application Object (FFh)
Category
Basic, Extended

Object Description
This object is mandatory, and groups general settings for the host application. The object and its commands
makes it possible to support multiple languages, network reset requests and latching diagnostic events.

A control sum, available from the application, that specifies the current parameter settings, can be used to
enhance startup time.

Information on if there is a candidate firmware available, and if it is possible to configure the address of the
module via hardware switches, can also be read from this object.

Supported Commands

Object: Get_Attribute (01h)

Reset (05h)

Reset_Request (10h)

Change_Language_Request (11h)

Reset Diagnostic (12h)

Get_Data_Notification (13h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Application”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 121 (178)

Instance Attributes (Instance #1)
Name Access Type Description

1 Configured Get BOOL Indicates if the application parameters have been changed from
their out-of-box value.
Value:
False:
True:

Enumeration String:
Out-of-box state.
Configured, settings have been altered.

See details for commands “Reset” and “Reset_Request” below

2 Supported languages Get Array of ENUM List specifying which languages that are supported by the host
application.

Value:
00h:
01h:
02h:
03h:
04h:

Meaning:
“English”.
“Deutsch”.
“Español”.
“Italiano”.
“Français”.

See also ...

• Anybus Object (01h), p. 62, instance #1, attribute #9

• Details for command Change_Language_Request below.

3 Serial number Get UINT32 The vendor’s serial number for the device
If a serial number in the corresponding network specific host object
is not available, the module will use this number instead, converted
according to network requirements.
If neither a network specific attribute nor this attribute is
implemented, the module will use its own serial number, see
Anybus Object (01h), p. 62, attribute #3.
Only valid for Anybus CompactCom 40.

4 Parameter control sum Get Array of UINT8
(128 bits)

This attribute will hold a control sum from the application that
specifies the current parameter settings in the application. How the
application calculates the control sum is not specified, the only
requirement is that as soon as a parameter in the application
changes the control sum also changes.
The control sum is used to improve the startup time for the Anybus
CompactCom for POWERLINK and PROFINET. Common to these
networks are that the master sets a parameter (configuration date
and configuration time for POWERLINK and UUID for PROFINET)
that specifies the parameter setting the master will transfer to the
slave. In order for the slave to determine whether the application
already has these parameter settings it must compare the
parameter received from the master with the parameter received
from the application. If the saved (in non-volatile memory) master
parameter and application parameter match the ones newly
received from the application and master there is no need for re-
parameterization of the application.
It’s not required by the application to implement this attribute, but
it is recommended if quickconnect/fast startup for the above
mentioned networks are used.
Only valid for Anybus CompactCom 40.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 122 (178)

Name Access Type Description

5 Candidate firmware
available

Get/Set BOOL Indicates if there is an firmware file available in the candidate area,
for firmware upgrade at the next restart. The application can use
this to determine if the next restart will be extended due to a
firmware upgrade.
The attribute is cleared at startup.

Value:
False:
True:

Meaning:
Firmware file not available in the candidate area.
Firmware file available in the candidate area.

See also ...

• Firmware Download, p. 25

• Startup Procedure, p. 57

Only valid for Anybus CompactCom 40.

6 Hardware configurable
address

Get BOOL Indicates if the address of the module can be configured via
hardware switches.
An address may be hardware configurable, but not necessarily
hardware configured. Some networks, e.g. EtherNet/IP need to be
able to make this distinction.
Value: Meaning:

False: The address is not hardware configurable.

True: The address is hardware configurable.

Only valid for Anybus CompactCom 40.

7 Mode Get BITS32 Changes the LED indications of the module.

Value: Meaning:

00h: Normal LED indication mode (default)

01h: AIDA LED indication mode. Only used for Anybus
CompactCom 40 PROFINET, see the network guide for
more information.

Other: (reserved)

Only valid for Anybus CompactCom 40.

8 Vendor name Get Array of CHAR The vendor name.
If a vendor name in the corresponding network specific host object
is not available, then the device will use this name instead,
converted according to the requirements of the network. If neither
a network specific attribute nor this attribute is implemented the
device will use “HMS Industrial Networks”.
Maximum number of characters is limited to 64. If a vendor name is
to be used for multiple networks, it is recommended to keep it as
short as possilbe, as the maximum length may be shorter for some
networks, see table below.
Implementation of this attribute is optional.
Only valid for Anybus CompactCom 40.

9 Product name Get Array of CHAR The vendor’s product name for the device.
If a product name in the corresponding network specific host object
is not available, then the device will use this name instead,
converted according to the requirements of the network. If neither
a network specific attribute nor this attribute is implemented the
device will use the Anybus product name.
Maximum number of characters is limited to 64. If a product name
is to be used for multiple networks, it is recommended to keep it as
short as possilbe, as the maximum length may be shorter for some
networks, see table below.
Implementation of this attribute is optional.
Only valid for Anybus CompactCom 40.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 123 (178)

Name Access Type Description

10 Firmware version Get Struct of
UINT8 Major
UINT8 Minor
UINT8 Build

The vendor’s firmware version for the device.
Format: version “2.18.3” would be represented as:
first byte = 0x02, second byte = 0x12, third byte = 0x03.
If a firmware version in the corresponding network specific host
object is not available, then the device will use this version instead,
converted according to the requirements of the network. If neither
a network specific attribute nor this attribute is implemented the
device will use the Anybus firmware version, see 5.6.1.3 Anybus
object instance attribute 2.
Implementation of this attribute is optional.
Only valid for Anybus CompactCom 40.

11 Hardware version Get UINT16 The vendor’s hardware version for the device.
If a hardware version in the corresponding network specific host
object is not available, then the device will use this version instead,
converted according to the requirements of the network. If neither
a network specific attribute nor this attribute is implemented the
device will use the Anybus Hardware Functionality ID.
Implementation of this attribute is optional.
Only valid for Anybus CompactCom 40.

Vendor/Product Name Length Network Limitations

Some networks support a lower maximum string length for vendor name and/or product name than specified
by this object. If the network limit is lower than the limit specified by this object, the network output will be
truncated to the network’s limit on all the module’s interfaces. The table below lists the limit for every
network supported by ABCC40 series.

Network Vendor Name Max Length Product Name Max Length

DeviceNet N/A 32

EtherNet/IP N/A 32

PROFINET N/A 25

PROFIBUS N/A 20

EtherCAT N/A 64

Ethernet POWERLINK 64 64
BACnet IP 64 64
Modbus-TCP 244 244

CC-Link N/A N/A

CC-Link IE Field 31 19

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 124 (178)

Command Details: Reset
Details

Command Code: 05h

Valid for: Object

Description

This command is issued by the module when a reset is required. Depending on the network type, it may, or
may not, be preceded by a “Reset_Request” command.

In stand-alone shift register mode, a reset is automatically handled by the module upon a reset request from
the network, as there is no application available.

• Command details:

Field Contents Comment

CmdExt[0] (reserved, ignore) -

CmdExt[1] 00h: Power-on reset This shall be regarded as a device reset, i.e. the host application shall reset the
module via the /RESET signal.
The Anybus module enters the state EXCEPTION prior to issuing this type of
request.

01h: Factory default
reset

This shall cause the host application to return to an application specific out-of-
box state. Any network-specific procedures necessary to set the module to this
state are performed automatically.
The state of the Anybus module, prior to this request, is network specific.

02h: Power-on +
Factory default

A combination of the two above.
The Anybus module enters the state EXCEPTION prior to issuing this type of
request.

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 125 (178)

Command Details: Reset_Request
Details

Command Code: 10h

Valid for: Object

Description

On certain networks, this command may be issued prior to the Reset command (see below). This is, as the
name implies, a request and not an actual reset command.

The requested reset can be either a Power-on reset, a Factory Default reset, or both. A Power-on reset shall be
regarded as a device reset.

If the request is granted, the host application must also be prepared to receive a corresponding Reset
command (see figure).

The host application is also free to respond with an error in case a reset for some reason cannot be executed.
In such case, no Reset command will be issued by the module.

In stand-alone shift register mode, a reset request from the network is automatically handled by the module,
which will reset automatically.

Host Application Anybus Module Network

Reset request (power-on)

Reset_Request (power-on)

(request granted)

Reset acknowledge

Reset (power-on)

State = EXCEPTION

Fig. 21

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 126 (178)

Host Application Anybus Module Network

Reset request (power-on)

Reset_Request (power-on)

(reset not granted)

Reset refused acknowledge

Fig. 22

• Command details:

Field Contents

CmdExt[0] (reserved, ignore)

CmdExt[1] 00h: Power-on reset
01h: Factory default reset

02h: Power-on + Factory default

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 127 (178)

Command Details: Change_Language_Request
Details

Command Code: 11h

Valid for: Object

Description

This command will be issued by the module when a change of the current language is requested from the
network.

If accepted, it will result in a corresponding change of the Language Attribute (#9) in the Anybus Object (01h).
The host application must also adjust its internal language settings accordingly.

• Command details:

Field Contents

CmdExt[0] Reserved. Value = 00h

CmdExt[1] The requested language

Value:
00h:
01h:
02h:
03h:
04h:

Language:
English.
German
Spanish.
Italian.
French.

• Response details:

(No data)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 128 (178)

Command Details: Reset_Diagnostic
Details

Command Code: 12h

Valid for: Object

Description

The Reset_Diagnostic request will be sent to the application object when the network master wishes to
acknowledge/reset one or several latching diagnostic events.

This service is only mandatory if the application supports latching diagnostic events.

It is for the application to decide if diagnostic events can be deleted or not. In the Reset_Diagnostic response,
the application is expected to provide a list of diagnostic instances that can be deleted (where the error is no
longer present). This list may be identical to the list in the Reset_Diagnostic request, or it may be a subset of
that list. The application may also respond with a zero sized list, if no instances can be deleted, or with an error
in the case that the Reset_Diagnostic request is refused.

See Diagnostic Object (02h), p. 69 for more information.

• Command details:

Field Contents

CmdExt[0] Reserved. Value = 00h

CmdExt[1] Reserved. Value = 00h

MsgData[0–n] UINT16 list of diagnostic instances which the Anybus CompactCom module requests permission to delete

• Response details:

Field Contents

CmdExt[0] Reserved. Value = 00h

CmdExt[1] Reserved. Value = 00h

MsgData[0–n] UINT16 list of diagnostic instances which the Anybus CompactCom module is permitted to delete

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 129 (178)

Command Details: Get_Data_Notification
Details

Command Code: 13h

Valid for: Object

Description

Application Anybus
CompactCom

Process
Notification

Wait for
notification

loop
(while online)

Get_Data_Notification command

Get_Data_Notification response

Fig. 23

The Get Data_Notification command is used to send data notifications to the network. It is sent to the
application from the Anybus CompactCom, if the Anybus CompactCom implements a network that supports a
data notification mechanism. This gives the application a data notification resource, that can be used to send
data notifications to the network.

The application can decide to hold the request until an internal notification trigger occurs, e.g. a data change
or a time trigger) and then respond to the request. If there is no data to notify about when the request arrives,
and the application does not support to hold the request, the application can respond immediately with the
error code 17h (No data available). If the application is unable to handle the request due to being out of
resources, it may respond with error code 0Eh (Out of resources). In these cases, the Anybus CompactCom will
send the request again after a suitable time, depending on the network.

The command enables segmented responses to allow large amounts of data to be transferred. The amount of
data that the Anybus CompactCom can handle, depends on the network.

The payload of the Get_Data_Notification response shall contain a dataset, to notify about. A dataset is a
predefined set of data that can contain a single value, a group of values or some user defined data. It is
network dependent what datasets the Anybus CompactCom supports. A dataset is uniquely identified by
combining the dataset type with the dataset identifier.

• Command details:

Field Contents Comments

CmdExt[0] Reserved Reserved

CmdExt[1] Response segmentation See Message Segmentation, p. 46

MsgData[0–1] Capabilities bit field
(BITS16)

This bit field equals the header of the NotificationEntry structure (see below).
The Anybus CompactCom sets the bits that it supports to receive in the
response from the host application.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 130 (178)

• Response details:

Field Contents Description

CmdExt[0] Bit 0-3
(Value):

Dataset type: Bit header that defines and configures the dataset
type. The decimal value of bits 0-3 decides which
dataset type is used.0 Single ADI

1 Assembly Mapping instance

2 Transparent network payload

3–15 Reserved for future dataset types

Bit 4-7: Reserved
CmdExt[1] Response segmentation See Message Segmentation, p. 46

MsgData[0–n] Dataset of the given type The format of the dataset is decided by the dataset
type bit that is set in the CmdExt[0] field.

Dataset identifier These fields holds the identifier, the network
channels and the NotificationEntry, that are included
in a dataset. See below for more information

Network channels
NotificationEntry

Header The NotificationEntry structure is described in more
detail below.Sub identifier

Value
Timestamp

MsgData

Dataset identifier UINT16 Dataset type Contents

Single ADI An instance number of the Application Data object

Assembly Mapping
instance

An instance number of the Assembly Mapping instance

Transparent network
payload

Identifier of the user defined dataset.
The identifier of a transparent network payload is not related to
any Anybus object. The host application must ensure that the
identifier is unique within the set of defined transparent network
payloads.

Network channels BITS16 The dataset will be forwarded to the channels defined by this bit field

Bit 0: MQTT

Bit 1-15: Reserved, shall be set to 0

NotificationEntry The contents of the NotificationEntry depends on the dataset type defined in CmdExt[0] in
the response, see below for details.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 131 (178)

NotificationEntry

A notification of a dataset is represented by a NotificationEntry. A NotificationEntry can represent a value or an
event with an identifier, and also include e.g. a timestamp of the value.

Field Data Type Contents

Header BITS16 Bit header that specifies what optional content that will follow this header, and bit
notifications.
Bits that add an optional field, starting from bit index 0 in ascending order. Optional
fields appears in the bit order of this header.

Bit: Descriptions:

0: Sub identifier field exists
1: Value field exists
2: Timestamp field exists

3-15: Reserved, set to 0

Sub identifier UINT16 Second identifier of value, actual content depends on the dataset type in CmdExt[0]

Value UINT32 Length of the payload in the Value field

Defined by the value
attribute identified by
the identifier fields

The value pointed out by the Identifier and Sub identifier fields

Timestamp UINT64 Timestamp of the value
Formatted in nanoseconds since 00:00:00 (UTC), 1January 1970

Depending on dataset type, the available fields and bit notifications in the NotificationEntry structure are
either required, optional, or not needed. The mapping of the NotificationEntry fields and bit notifications to
each dataset type, is described in the table below.

NotificationEntry
element

Single ADI Assembly Mapping
instance

Transparent network payload

Sub identifier Enabled if the value included is a subset of the
ADI elements. THhe sub identifier contains the
start element index and the number of
consecutive elements included in the
NotificationEntry.
LSB: Index to the first element included.
MSB: Number of consecutive elements included.

Not used Not used

Value ADI attribute 5, Value Assembly Data User defined payload as an array
of OCTET

Timestamp Optional Optional Not used

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 132 (178)

13.6 Application File System Interface Object (EAh)
Category
Extended

Object Description
This object is used to enlarge the available file system in the Anybus CompactCom.

The file system in the Anybus CompactCom includes a directory named “Application”. Commands that are sent
via FTP from the PC, addressing this directory, will be routed by the Anybus CompactCom to the application,
see the figure below. The application has to handle all events, arriving in this manner, in a correct way.

The object can then be used to create and delete file system interface instances dynamically during runtime.
Each instance is a handle to a file stream and contains services for file system operations. The object is mostly
similar in structure to the Anybus File System Interface Object (0Ah).

ABCC-API

host µC

host flash

host internal
peripheral bus

Application File System Interface Object (EAh)

FTP

PC

Anybus
CompactCom

Host microcomputer
Application File System Interface Object (EAh)

Host flash
memory

Anybus CompactCom API

Host internal
peripheral bus

Application
File System

 File A1

 File A2

 Directory A1

 File A1:1

 File A1:2

Anybus
CompactCom
File System

 Application

Fig. 24

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 133 (178)

Supported Commands
For object specific command details, see Anybus File System Interface Object (0Ah), p. 83

Object: Get_Attribute (01h)

Set_Attribute (02h)

Create (03h)

Delete (04h)

Instance: Get_Attribute (01h)

File Open (10h)

File Close (11h)

File Delete (12h)

File Copy (13h)

File Rename (14h)

File Read (15h)

File Write (16h)

Directory Open (20h)

Directory Close (21h)

Directory Delete (22h)

Directory Read (23h)

Directory Create (24h)

Directory Change (25h)

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 134 (178)

Object Attributes (Instance #0)
Name Access Data Type Value/Description

1 Name Get Array of CHAR “Application File System Interface”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max no. of instances Get UINT16 20 (recommended)

13 Total disc size Get UINT32 Disc size in bytes.

14 Free disc size Get UINT32 Free disc sizes in bytes.

Instance Attributes (Instance #1... 20
Name Access Type Description

1 Instance Type Get UINT8 Value:
0:
1:
2:

Meaning:
Reserved
File instance
Directory instance

2 File size Get UINT32 File size (0 for a directory)

3 Path Get Array of CHAR The file path to where the instance operates

File System Errors
In case of errors for services calling the file system interface object, the module will return FFh (object specific
error). A descriptive file system error will be returned in the error response data field.

Name Description

1 FILE_OPEN_FAILED Could not open file

2 FILE_CLOSE_FAILED Could not close file

3 FILE_DELETE_FAILED Could not delete file

4 DIRECTORY_OPEN_FAILED Could not open directory

5 DIRECTORY_CLOSE_FAILED Could not close directory

6 DIRECTORY_CREATE_FAILED Could not create directory

7 DIRECTORY_DELETE_FAILED Could not delete directory

8 DIRECTORY_CHANGE_FAILED Could not change directory

9 FILE_COPY_OPEN_READ_FAILED Could not open file for copy

10 FILE_COPY_OPEN_WRITE_FAILED Could not open file for destination

11 FILE_COPY_WRITE_FAILED Could not write file when copying

12 FILE_RENAME_FAILED Could not rename file

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 135 (178)

13.7 Assembly Mapping Object (EBh)
Category
Extended

Object Description
This object provides support for the possibility to establish I/O connections to different sets of data
(assemblies). Assemblies represent, for example, PDOs on EtherCAT or assembly instances on EtherNet/IP.
Each assembly is represented by an instance of this object, implemented in the host application.

The sum of the sizes of all write assemblies must not exceed the maximum supported write process data size.

If the application supports the modular device object, all ADIs within one assembly mapping must be in slot
order.

If this object is not implemented, the module will provide only one read and one write assembly on the
network.

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Write_Assembly_Data (10h)

Read_Assembly_Data (11h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Assembly mapping”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of assembly mappings

4 Highest instance no. Get UINT16 Highest assembly mapping number

11 Write PD instance list Get Array of UINT16 List of currently present instances that can be mapped to write
process data

12 Read PD instance list Get Array of UINT16 List of currently present instances that can be mapped to read
process data

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 136 (178)

Instance Attributes (Instance #1 ... n)
Name Access Type (if using

263 bytes
message size)

Type (if using
1536 bytes
message size)

Description

1 Assembly
descriptor

Get UINT32 UINT32 Bit 0: 0 = Write assembly
1 = Read assembly

Bit 1: 0 = ADI Assembly Map is static
1 = ADI Assembly Map is dynamic

Bit 2–31 0 = Reserved
2 ADI Assembly

Map 0
Get Array of BITS32

[0-61]
Array of BITS32
[0-379]

Array of ADI items populating this assembly. See “ADI Assembly
Map” below

3 ADI Assembly
Map 1

Get Array of BITS32
[62-123]

Array of BITS32
[380-759]

...
12 ADI Assembly

Map 10
Get Array of BITS32

[620-681]
Array of BITS
[3800-4095]

13 Name Get Array of CHAR Array of CHAR Assembly instance name string
(optional)
For EtherCAT, this attribute is used as the object name for the
corresponding PDO configuration object.

Set access is supported for attributes #2–12 if dynamic remapping is allowed from the network, i. e. if bit 1 in
the assembly descriptor is set to “1”.

ADI Assembly Map

The ADIs constituting an assembly are defined in ADI assembly maps. A total of 4096/682 ADIs are allowed for
each assembly, for message sizes of 1536/263 respectively. Large ADI assembly maps have to be split up in
segments of 380/62 ADI items. Each segment has to be entered as a list in instance attributes #2–#12. Each
ADI assembly map attribute must be fully populated with ADI items before using the next attribute.

The ADI item format:

Bits Description

0-15 ADI number
16-23 Index of first element to map

24-31 Number of consecutive elements to map

Upon a network connection to a read assembly, the Anybus CompactCom module will read all ADI assembly
map attributes and generate matching Remap_ADI_Read_Area commands.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 137 (178)

Command Details: Write_Assembly_Data
Details

Command Code: 10h

Valid for: Instance

Description

This command is used to write data to all ADIs within a write assembly mapping.

• Command details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0-n] Assembly data

• Response details:

The application can accept the write request, or send an error response.

– If the written assembly contains an ADI currently mapped to the process data channel, and the
Anybus CompactCom module state is PROCESS_ACTIVE, then it is recommended to NAK the request
and send error response: “Attribute controlled from another channel”.

– Requests where the assembly data size is incorrect shall generate an error response with error “Not
enough data”, “Too much data” or “Segmentation data overflow”.

Command Details: Read_Assembly_Data
Details

Command Code: 11h

Valid for: Instance

Description

This command is used to read data from all ADIs within a read assembly mapping.

• Command details:

-

• Response details:

Field Contents

CmdExt[0] (reserved, 0)

CmdExt[1] (reserved, 0)

MsgData[0-n] Assembly data

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 138 (178)

13.8 Modular Device Object (ECh)
Category
Extended

Object Description
This object is used to describe a modular device. Modular devices consist of a backplane with a number of
slots. The first slot is occupied by the coupler which contains the Anybus CompactCom module. All other slots
may be empty or occupied by modules.

Each instance of this object represents a slot in the modular device. Instance #1 corresponds to the coupler.
Instances #2 and onwards correspond to slots in the backplane, occupied as well as empty. There are no
instance attributes, but the command Get_List returns a list of the module IDs that are found in the backplane.

When mapping ADIs to process data, the application shall map the process data of each module in slot order.
This means that process data mapping commands for ADIs that correspond to the coupler must occur before
mapping commands for ADIs that correspond to the module next to the coupler. If the application maps the
process data in any other order, the Anybus CompactCom module will enter EXCEPTION state.

The implementation of modular device functionality differs between networks. Please consult the
respective Network Guides for more information.

Supported Commands

Object: Get_Attribute (01h)

Get_List (15h)

Instance: -

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Modular device”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of physically connected modules in the backplane, including

the coupler.

4 Highest instance no. Get UINT16 Instance number of the last occupied slot, i.e. the highest instance
number currently used.

11 Number of slot Get UINT16 Number of available slots in the backplane, including the coupler
On most networks this attribute must not be set to a value higher
than 256

12 Number of ADIs per slot Get UINT16 Used to determine which ADI belongs to which slot, according to
the following formula:

ADI = slot * x + index + 1
slot = (ADI - 1) / x
index = (ADI - 1) MOD x
(x equals the value of THIS attribute)

For compatibility with EtherCAT, the value of this attribute
multiplied with the number of slots (attribute #11 above) must not
exceed 4096

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 139 (178)

Command Details: Get_List
Details

Command Code: 15h

Valid for: Object

Description

This command shall return a list of module type numbers representing the modules and empty slots in the
backplane. For supported list types, see below. List type 01h is mandatory to implement.

The application shall respond with a number of module type IDs including the coupler and empty slots. The
size of the array must be equal to or less than the requested number (less if a fewer number of instances than
requested exists in the application). The module type ID is selected by the implementor. It is a unique number
for each type of module in the backplane. The only value that is specified in advance is “empty slot” , which is
00000000h. If the requested starting order number is higher than the highest instance, an empty response
shall be returned. If an unsupported list type is requested, an error response with “Invalid CmdExt[1]” shall be
generated.

The Anybus CompactCom may issue several commands with increasing starting instance number to retrieve a
complete list.

• Command details:

Field Contents

CmdExt[0] Reserved (0)

CmdExt[1] List type, see below

MsgData[0–1] Starting instance number

MsgData[2–3] Requested number of instances

• Response details:

Field Type Contents

MsgData[0-3] UINT32 Module type ID of starting instance.

MsgData[4-7] UINT32 Module type ID of starting instance + 1
...

List Types
List Number List Type

00h Reserved
01h List of all module type IDs

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 140 (178)

13.9 Sync Object (EEh)
Category
Extended

Object Description
This object contains the host application SYNC settings. For more information about how to use SYNC in
applications, see

• Application Status Register, p. 30

• SYNC, p. 19

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Sync”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 141 (178)

Instance Attributes (Instance #1)
Name Access Data Type Value

1 Cycle time Get/Set UINT32 Application cycle time in nanoseconds

2 Output valid Get/Set UINT32 Output valid point relative to SYNC events, in nanoseconds
Default value: 0

3 Input capture Get/Set UINT32 Input capture point relative to SYNC events, in nanoseconds
Default value: 0

4 Output processing Get UINT32 The network master interprets this as the minimum required time,
in nanoseconds, between RDPDI interrupt and “Output valid”. The
host application interprets this as the maximum time available for
processing the output data.

5 Input processing Get UINT32 Maximum required time, in nanoseconds, from "Input capture" until
write process data has been completely written to the Anybus
CompactCom module

6 Min cycle time Get UINT32 Minimum cycle time supported by the application in nanoseconds

7 Sync mode Get/Set UINT16 This attribute is used to select synchronization mode. It enumerates
the bits in attribute #8
0: Non synchronous operation. (Default value if non synchronous
operation is supported)
1: Synchronous operation
2 - 65535: Reserved. Any attempt to set sync mode to an
unsupported value shall generate an error response

8 Supported sync modes Get UINT16 A list of the synchronization modes the application supports. Each
bit corresponds to a mode in attribute 7
Bit 0: 1 = Non synchronous mode supported
Bit 1: 1 = Synchronous mode supported
Bit 2 - 15: Reserved (0)

9 Control task cycle factor Set UINT16 If the synchronous task operates at a cycle that is longer than the
data cycle (see attribute#1, Cycle time), this attribute provides a
scaling factor for the cycle time such that:
Contral task duration = Control task cycle factor x Cycle time
The information may be used to e.g. interpolate output values, if
required by the process.
For PROFINET this is equivalent to PRFOINET Controller Cycle Factor
(CACF)
Note that synchronization to the application cycle is left to the
application to perform.
Default: 1

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Host Application Objects 142 (178)

13.10 Host Application Specific Object (80h)
Category
Extended

Object Description
The functionality of this object is not specified. The application is free to specify the functionality. E.g. the
object can be used to access data in the application using the SSI interface on Ethernet capable modules.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix A: Categorization of Functionality 143 (178)

A Categorization of Functionality
The objects, including attributes and services, of the Anybus CompactCom and the application
are divided into two categories: basic and extended.

A.1 Basic
This category includes objects, attributes and services that are mandatory to implement or to use.
They will be enough for starting up the Anybus CompactCom and sending/receiving data with
the chosen network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this
category.

A.2 Extended
Use of the objects in this category extends the functionality of the application. Access is given to
the more specific characteristics of the industrial network, not only the basic moving of data to
and from the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the
available network functionality is enabled and accessible, access to the specification of the
industrial network may be required.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix B: Network Comparison 144 (178)

B Network Comparison
The Anybus CompactCom 40 software interface is designed to be as generic as possible without
sacrificing network functionality or integration with the host system.

When designing the host application, it is important to be aware of the limitations and
possibilities of each networking system. In most cases, no additional software support is needed
to support a particular network. However, in order to fully exploit certain aspects of the network
functionality, a degree of dedicated software support may be necessary.

A summary of the features offered by the different network implementations is presented in the
table on the next page.

How to interpret the table is described below:

• The figures specify the values that are to be expected in a typical generic implementation.

• The figures in parenthesis specify the values that are possible with dedicated software
support.

• Of the maximum number of diagnostic instances there is always one instance reserved for
one of severity level “Major, unrecoverable” to force the module into the state EXCEPTION.

• If a data type is not supported, this means that the network has no direct counterpart for
that particular type. The data may however still be represented on the network, albeit in
some other format (e.g. a UINT64 may be represented as four UINT16s etc.)

• Network specific comments to the table are listed after the table.

The information in this chapter gives a rough idea of the possibilities on the different
network implementations. For in-depth information about a particular network, consult
the corresponding network guide.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix B: Network Comparison 145 (178)

Item

Et
he

rn
et
/I
P

CC
-L
in
k

CC
-L
in
k
IE

Fi
el
d

PR
O
FI
BU

S
DP

-V
1

PR
O
FI
N
ET

IR
T

De
vi
ce
N
et

M
od

bu
s-
TC

P

Et
he

rC
AT

Et
he

rn
et

PO
W
ER

LI
N
K

BA
Cn

et
/I
P

CA
N
op

en

Network Data
Format

LSB first LSB first LSB first MSB first MSB
first

LSB first LSB first LSB first LSB first MSB
first

LSB first

Acyclic Data
Support

Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Max. no. of
Elements Per ADI
(Acyclic access)

255 N/A 255 240 255 255 32 (255) 255 254 1 254
(high)

Max. ADI Size (in
bytes) (Acyclic
access)

1524 N/A 1524 240 1308 512 32
(1524)

1524 1524 4 1524

Lowest
Addressable ADI no.

1 1 1 1 1 1 1 1 1 1 1

Highest
Addressable ADI no.

65535 65535 65535 65025 32767 65535 3839
(61424)

57343
(16383)

57343 65535 76343

Max. Write Process
Data (in bytes)

1448 368 1536 244 1308 512 1536 1486 1490 N/A 512

Min. Write Process
Data (in bytes)

0 0 0 0 0 0 0 0 0 N/A 0

Max. Read Process
Data (in bytes)

1448 368 1536 244 1308 512 1536 1486 1490 N/A 512

Min. Read Process
Data (in bytes)

0 0 0 0 0 0 0 0 0 N/A 0

Max. Process Data
(Read + Write, in
bytes)

2896 736 3072 488 2616 1024 3072 2972 2980 N/A 1024

Min. Process Data
(Read + Write, in
bytes)

0 0 0 1 0 0 0 0 0 N/A 0

Requires “Get/Set_
Indexed_Attribute”

No No No No No No No Yes Yes No Yes

Requires “Get_
Instance_Number_
By_Order”

Yes No No No Yes Yes No Yes No Yes No

Runtime
Remapping

Yes No No Yes Yes No No Yes Yes No Yes

Max. no. of
Diagnostic
Instances

6 6 2 6 6 6 6 6 1 1 6

Supports Network
Reset Type 0:
“Power-on-reset”

Yes No No No Yes Yes No Yes Yes Yes Yes

Supports Network
Reset Type 1:
“Factory default
reset”

Yes No No No Yes Yes No Yes No No Yes

Supports SINT64 Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Supports UINT64 Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Supports FLOAT Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Cycle time 1 ms ~1 ms 200 µs -
200 ms

- 250 µs 10 ms - 100 µs 200 µs -
214748-
3 µs

N/A N/A

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix B: Network Comparison 146 (178)

B.1 Network Specific Comments
• EtherNet/IP (EIP):

– The command Get_Instance_Number_By_Order is needed when accessing attributes in
the Parameter Object from a CIP network.

– The command Get_Instance_Number_By_Order is also used for modules, that support
internal web pages, when the parameter web page is opened.

• CC-Link (CCL):

– The max. no of elements per ADI and the max. ADI size depend on ADI mapping, please
consult the Anybus CompactCom 40 CC-Link Network Guide

– The cycle time is given for transmission speed 10 Mbps and only one Remote device
occupying one station on the network. Depends on network configuration.

• PROFIBUS (DPV1):

– Due to technical reasons, it is generally not recommended to use ADI numbers 1...256,
since this may cause problems when using certain PROFIBUS configuration tools.
Lowest addressable ADI no. would in that case be 257.

• DeviceNet (DEV):

– The command Get_Instance_Number_By_Order is needed when accessing attributes in
the Parameter Object from a CIP network.

• Modbus-TCP (EIT):

– The Highest addressable ADI no. default value is 3839.

– If changing Number of ADI indexing bits and limiting ADI size, the highest addressable
ADI is as high as 61424.

• EtherCAT (ECT):

– The Highest addressable ADI when the module is in generic mode is 57343.

– The Highest addressable ADI when the modular device profile is enabled is 16383.

– The command Get_Instance_Number_By_Order (or alternatively, Get_Instance_
Numbers) is used during initialization to find number of ADIs

– Network Reset Type 0 is supported for firmware upgrade purposes.

• Ethernet POWERLINK (EPL):

s

– The network puts no limit to max. ADI Size.. The present implementation allows 30 kB /
ADI.

– The command Get_Instance_Number_by_Order is used for XDD file generation.

• BACnet/IP:

– Read Process Data not supported

– When a BACnet product isn’t in advanced mode, the command Get_Instance_Number_
By_Order is used to perform initial mapping.

• CANopen:

– It is not guaranteed that the entire read process data buffer has been updated when
sent to the host application, as PDOs are sent from the master or other producing
nodes at different times.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix C: Industrial Ethernet Network Comparison 147 (178)

C Industrial Ethernet Network Comparison
The Anybus CompactCom 40 series product family support a number of Industrial Ethernet
networks. In the product family there is also a Common Ethernet module, offering an Ethernet
platform which can be used as is or to which you can download the Ethernet firmware of your
choice.

The table below shows Ethernet features that are available for the different networks.

For features, specific to a particular network, and for in-depth information about a
particular network, consult the corresponding network guide.

It is recommended to contact technical support at HMS Industrial Networks prior to
submitting a device for conformance testing.

Item

Et
he

rn
et
/I
P

PR
O
FI
N
ET

IR
T

M
od

bu
s-
TC

P

Et
he

rC
AT

Et
he

rn
et

PO
W
ER

LI
N
K

Co
m
m
on

Et
he

rn
et

CC
-L
in
k
IE

Fi
el
d

BA
Cn

et
/I
P

Application
interfaces

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

8/16-bit
DPRAM (30
ns)
SPI (max. 20
Mbit/s)
Shift register
(12.5 MHz)

Network cycle time ≥ 1 ms ≥ 250 µs N/A ≥ 100 µs ≥ 200 µs N/A ≥ 230 µs N/A

Latency 160 µs with
32 bytes of
process data

tbd N/A < 250 ns < 15 µs N/A < 2µs N/A

Jitter 40 µs with
32 bytes of
process data

tbd N/A < 200 ns 200 ns N/A N/A N/A

Max. process data
(in/out, byte)

1448 / 1448 1440 / 1440
including
status byte

1536 / 1536 1486 / 1486 1490 / 1490 - 1536 / 1536 N/A

Max. parameter
data (in/out, byte)

1448 1512 / 1294 248 / 248 1524 /1524 1490 / 1490 - 960 / 960 4 / 4

IT protocol support TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

TCP, UDP,
FTP, HTTP,
SMTP

No TCP, UDP,
FTP, HTTP,
SMTP

Web server
included

Yes Yes Yes Yes Yes Yes No Yes

Transparent
Ethernet (RMII,
separate product
version)

Yes Yes Yes Yes No No No No

Network accessible
FLASH disk

Yes, 28
Mbyte

Yes, 28
Mbyte

Yes, 28
Mbyte

Yes, 28
Mbyte

Yes, 28
Mbyte

Yes, 28
Mbyte

No Yes, 28
Mbyte

Socket
communication
support

Max 20
connections
at the same
time

Max 20
connections
at the same
time

Max 20
connections
at the same
time

Max 20
connections
at the same
time

Max 20
connections
at the same
time

Max 20
connections
at the same
time

No Max 8
connections
at the same
time

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix C: Industrial Ethernet Network Comparison 148 (178)

Item

Et
he

rn
et
/I
P

PR
O
FI
N
ET

IR
T

M
od

bu
s-
TC

P

Et
he

rC
AT

Et
he

rn
et

PO
W
ER

LI
N
K

Co
m
m
on

Et
he

rn
et

CC
-L
in
k
IE

Fi
el
d

BA
Cn

et
/I
P

Socket data
throughput

max. 70
Mbit/s

20 Mbit/s - - 20 Mbit/s - - -

Port disabling
supported

Yes No Yes No N/A No No Yes

Diagnostic
capabilities

LED outputs,
ABCC
Diagnostic
Object,
EtherNet/IP
diagnostic
counter
support,
web site

LED outputs,
ABCC
Diagnostic
Object, web
site, SNMP
MIB2

LED, ABCC
Diagnostic
Object, web
site

LED outputs,
ABCC
Diagnostic
Object,
diagnostics
in ESC

LED outputs,
ABCC
Diagnostic
Object, web
site

- LED outputs,
ABCC
Diagnostic
Object,
acyclic “Get
Statistics”
service

LED, ABCC
Diagnostic
Object, web
site

Node address
setting

Configura-
tion object,
DIP switch,
via network,
IPconfig,
HTTP

Configura-
tion object,
via network,
IPconfig,
HTTP

Configura-
tion object,
DIP switch,
IPconfig,
HTTP

Configura-
tion object,
DIP switch,
IPconfig,
HTTP

Configura-
tion object,
DIP switch,
IPconfig,
HTTP

Configura-
tion object,
DIP switch,
IPconfig,
HTTP

Configura-
tion object,
DIP switch

Configura-
tion object,
DIP switch,
IPconfig,
HTTP

Approvals UL, cUL UL, cUL UL, cUL UL, cUL UL, cUL UL, cUL UL, cUL UL, cUL

IT security HTTP
authentica-
tion (basic +
digest), FTP
password

HTTP
authentica-
tion (basic +
digest), FTP
password

HTTP
authentica-
tion (basic +
digest), FTP
password

HTTP
authentica-
tion (basic +
digest), FTP
password

HTTP
authentica-
tion (basic +
digest), FTP
password

HTTP
authentica-
tion (basic +
digest), FTP
password

N/A (no IT
support)

HTTP
authentica-
tion (basic +
digest), FTP
password

Safety support CIP Safety,
T100 IO &
black
channel.
planned

PROFIsafe,
T100 IO &
black
channel

No FSoE, black
channel

TBD No No No

Secure Host IP
Configuration
Protocol (HICP)

Yes Yes Yes Yes Yes Yes No Yes

HMS Firmware
Manager
supported

Yes Yes Yes Yes Yes Yes Yes Yes

Note: EtherCAT network performance FSoE: Sample application FSoE black channel to safety
module.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix D: Object Overview 149 (178)

D Object Overview
Each device in the Anybus CompactCom 40 series supports a subset of the objects, described in
this design guide and in the respective network guides. The following tables give an overview.

If the firmware of a module has been upgraded recently, these tables may be subject to update in the
next revision of this document.

D.1 Anybus Module Objects
These objects are implemented in the product.

Et
he

rN
et
/I
P

CC
-L
in
k

CC
-L
in
k
IE

Fi
el
d

PR
O
FI
BU

S
DP

-V
1

PR
O
FI
N
ET

De
vi
ce
N
et

M
od

bu
s-
TC

P

Et
he

rC
AT

Et
he

rn
et

PO
W
ER

LI
N
K

BA
Cn

et
/I
P

Co
m
m
on

Et
he

rn
et

CA
N
op

en

01h Anybus Object X X X X X X X X X X X X

02h Diagnostic Object X X X X X X X X X X X X

03h Network Object X X X X X X X X X X X X

04h Network Configuration
Object

X X X X X X X X X X X X

07h Socket Interface Object X X X X X X X

08h Network CC-Link Object X

09h SMTP Client Object X X X X X X X

0Ah Anybus File System
Interface Object

X X X X X X X X X X X X

0Ch Network Ethernet
Object

X X X X X X X

0Dh CIP Port Configuration
Object

X

0Eh Network PROFINET IO
Object

X

10h PROFIBUS DP-V0
Diagnostic Object

X

11h Functional Safety
Module Object

X X

12h Network CC-Link IE
Field Object

X

All fieldbuses and networks can use the Anybus File System Interface Object (0Ah) for firmware update
from the host application.

For the following fieldbuses and networks, the Anybus File System Interface Object (0Ah) is available only
for firmware update from the host application: CC-Link, CC-Link IE Field, PROFIBUS DP-V1, and DeviceNet.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix D: Object Overview 150 (178)

D.2 Host Application Objects
These objects are possible to implement in the host application. Depending on the application,
not all objects available for a network, may be necessary.

Et
he

rN
et
/I
P

CC
-L
in
k

CC
-L
in
k
IE

Fi
el
d

PR
O
FI
BU

S
DP

-V
1

PR
O
FI
N
ET

De
vi
ce
N
et

M
od

bu
s-
TC

P

Et
he

rC
AT

Et
he

rn
et

PO
W
ER

LI
N
K

BA
Cn

et
/I
P

Co
m
m
on

Et
he

rn
et

CA
N
op

en

E2h MQTT Host Object X X

E3h OPC UA Object X X

E4h Energy Measurement
Object

X

E5h Asset Management
Object

X

E6h CC-Link IE Field
Network Host Object

X

E7h Energy Reporting
Object

X X

E8h Functional Safety
Object

X X

E9h POWERLINK Object X

EAh Application File System
Interface Object

X X X X X X X

EBh Assembly Mapping
Object

X X X

ECh Modular Device Object X X X X X

EDh CIP Identity Host Object X X

EEh Sync Object X X X X

EFh BACnet Host Object X

F0h Energy Control Object X X X

F5h EtherCAT Object X

F6h PROFINET IO Object X

F7h CC-Link Host Object X

F8h EtherNet/IP Host Object X

F9h Ethernet Host Object X X X X X X X X

FAh Modbus Host Object X

FBh CANopen Object X

FCh DeviceNet Host Object X

FDh PROFIBUS DP-V1 Object X

FEh Application Data Object X X X X X X X X X X X X

FFh Application Object X X X X X X X X X X X X

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix E: Conformance Test Information 151 (178)

E Conformance Test Information
Stand-Alone Mode
In order to pass conformance tests in stand-alone shift register mode, the host application has to
implement some virtual attributes.

E.1 EtherCAT
Virtual attributes, needed to pass EtherCAT certification test in shift register mode:

E.1.1 Mandatory Implementations
EtherCAT Object (F5h), instance #1:

Attribute # Attribute Name Value range Default value Description

1 Vendor ID UINT32 0xE000001B
HMS

HMS secondary vendor id. A
secondary vendor id will never pass
the CT test.

E.1.2 Optionally – Improved Functionality, Customization and Identification of the
Product
EtherCAT Object (F5h), instance #1:

Attribute # Attribute Name Value range Default value Description

2 Product code UINT32 00000036h
ABCC 40 ECT

6 Manufacture
Device Name

Array of CHAR
(Max 64 bytes)

“Anybus CompactCom
40 EtherCAT”

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix E: Stand-Alone Mode 152 (178)

E.2 CC-Link
Virtual attributes needed to pass CC-Link certification test in shift register mode:

E.2.1 Mandatory Implementations
Host CC-Link Object (F7h), instance #1:

Attribute # Attribute Name Value
range

Default
value

Description Validation in Test ref.

1 Vendor code NA NA Extracted from the
CLPA assigned member
number.

3.(1) Confirmation of station
information according BAP-
C0401-012-F.

E.2.2 Optionally – Improved Functionality, Customization and Identification of the
Product
Host CC-Link Object (F7h), instance #1:

Attribute # Attribute Name Value
range

Default
value

Description Validation in Test ref.

2 SW Version 1-63 Depends
on ABCC
version.

Incremented when the
CC-Link network
behavior is affected.

3.(1) Confirmation of station
information according BAP-
C0401-012-F.

3 Model code 1-127 127 Corresponds to the
module profile.

3.(1) Confirmation of station
information. 8(1) Profile
confirmation according BAP-
C0401-012-F.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix E: Stand-Alone Mode 153 (178)

E.3 Ethernet POWERLINK
Virtual attributes needed to pass Ethernet POWERLINK certification test in shift register mode:

E.3.1 Mandatory Implementations
POWERLINK Object (E9h), instance #1:

Attribute # Attribute
Name

Value range Default value Description Note.

1 Vendor ID UINT32 NA This value replace the default
value for CANopen identity
object (0x1018 sub-index 0x01).

A unique
Vendor-ID
SHALL be
assigned to the
vendor by
EPSG.

E.3.2 Optionally – Improved Functionality, Customization and Identification of the
Product
POWERLINK Object (E9h), instance #1:

Attribute # Attribute Name Value range Default value Description

2 Product code UINT32 0x00000028 This value replace the default value
for CANopen identity object (0x1018
sub-index 0x02).

3 Revision High word UINT16 0x0000 This value replace the default value
for CANopen identity object (0x1018
sub-index 0x03, high word).

4 Revision low word UINT16 ABCC (hardware
revision)

This value replace the default value
for CANopen identity object (0x1018
sub-index 0x03, low word).

6 Manufacture
Device Name

Array of CHAR
(max 64 bytes)

“Anybus CompactCom
40 Ethernet
POWERLINK”

Corresponds to Manufacturer Device
Name object (0x1008).

14 Manufacture Name Array of CHAR
(max 64 bytes)

“HMS” Will be used as part of Interface
Description string in the Interface
Group object (0x1030)

To ensure the functioning of the SYNC signal, define the following attributes in the SYNC Object
(EEh), instance #1:

Attribute # Attribute Name Value range Default value Description

1 Cycle time UINT32 - NMT Cycle Length Object 0x1006
(converted from microseconds to
nanoseconds).

7 Sync mode UINT16 - If attribute 8 indicates support for
synchronous operation, the ABCC
will set this attribute to 1 at the start
of synchronous operation and to 0 at
the start of non-synchronous
operation. If synchronous operation
is not supported the ABCC will never
change the value.

8 Supported sync
modes

UINT16 - Bit 0: Nonsynchronous operation.
(Default value if nonsynchronous
operation is supported.)
Bit 1: 1=Synchronous operation
supported.
Bit 2-15: Reserved. Set to zero.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix E: Stand-Alone Mode 154 (178)

E.4 EtherNet/IP
Virtual attributes, needed to pass EtherNet/IP certification/plugfest test in shift register mode:

E.4.1 Mandatory Implementations
EtherNet/IP Object (F8h), instance #1:

Attribute # Attribute Name Value range Default value Description

1 Vendor ID UINT16 0x005A
HMS

-

E.4.2 Optionally – Improved Functionality, Customization and Identification of the
Product
EtherNet/IP Object (F8h), instance #1:

Attribute # Attribute Name Value range Default value Description

3 Product code UINT16 0x0037
ABCC 40 EIP

Product code is assigned by the
vendor

4 Revision Struct of UINT8
UINT8

Anybus CompactCom
Firmware revision

Revision of end product

6 Product Name Array of CHAR
(Max 32 bytes)

“CompactCom 40
EtherNet/IP(TM)”

Product name

E.5 DeviceNet
Virtual attributes, needed to pass DeviceNet certification test in shift register mode:

E.5.1 Mandatory Implementations
DeviceNet Object (FCh), instance #1:

Attribute # Attribute Name Value range Default value Description

1 Vendor ID UINT16 0x005A
HMS

-

E.5.2 Optionally – Improved Functionality, Customization and Identification of the
Product
DeviceNet Object (FCh), instance #1:

Attribute # Attribute Name Value range Default value Description

3 Product code UINT16 0x003F
ABCC 40 DEV

Product code is assigned by the
vendor

4 Revision Struct of UINT8
UINT8

Anybus CompactCom
Firmware revision

Revision of end product

6 Product Name Array of CHAR
(Max 32 bytes)

“CompactCom 40
DeviceNet(TM)”

Product name

E.6 Modbus-TCP
Virtual attributes, needed to pass Modbus-TCP certification test in shift register mode:

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix E: Stand-Alone Mode 155 (178)

E.6.1 Mandatory Implementations
Modbus Host Object (FAh), instance #1:

Attribute # Attribute Name Value range Default value Description

1 Vendor Name Array of CHAR HMS -

E.6.2 Optionally – Improved Functionality, Customization and Identification of the
Product
Modbus Host Object (FAh), instance #1:

Attribute # Attribute Name Value range Default value Description

2 Product Code Array of CHAR
(Max 244
chars)

“Anybus CompactCom
40 Modbus-TCP”

Product code is assigned by the
vendor.

3 Major Minor
Revision

Array of CHAR
(Max 244
chars)

“” Revision of end product

4 Vendor URL Array of CHAR
(Max 244
chars)

“” Vendor supplied URL

5 Product Name Array of CHAR
(Max 244
chars)

“” Vendor defined Product name

6 Model Name Array of CHAR
(Max 244
chars)

“” Vendor defined Model name

7 User Application
Name

Array of CHAR
(Max 244
chars)

“” Name of the user application.

E.6.3 CANopen
Virtual attributes, needed to pass CANopen certification test in shift register mode:

Mandatory Implementations

CANopen Object (FBh), instance #1:

Attribute # Attribute Name Value range Default value Description

1 Vendor ID UINT32 0xE000001B The HMS Industrial Networks vendor
ID cannot be used for certification of
non-HMS products.

Optionally – Improved Functionality, Customization and Identification of the Product

CANopen Object (FBh), instance #1:

Attribute # Attribute Name Value range Default value Description

2 Product code UINT32 0000000Dh -

6 Manufacture
Device Name

Array of CHAR
(Max 64 bytes)

“Anybus CompactCom
40 CANopen”

-

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 156 (178)

F Runtime Remapping of Process Data
This appendix describes how to handle a request from the network to remap read or write
process data.

The functionality is available on EtherNet/IP, EtherCAT, PROFINET, PROFIBUS, and Ethernet
POWERLINK.

F.1 SPI Mode
In SPI mode, telegrams are sent in full duplex. In the pictures this is illustrated by showing MISO
and MOSI telegrams adjacent to each other. For more information on the SPI mode see SPI Host
Communication, p. 37

F.1.1 Read Process Data
When the application has received a Remap_ADI_Read_Area request from the Anybus
CompactCom 40 and has acknowledged the request, the Anybus CompactCom 40 will start
sending read process data to the application according to the new mapping, the next time it
receives new process data from the network. Not updated read process data will be sent
according to the old mapping.

The Anybus CompactCom 40 sends Remap_ADI_Read_Area requests to the application in states
where the read process data is inactive/invalid. Valid process data according to the new mapping
will typically not be detected until the next time the Anybus CompactCom 40 enters the
PROCESS_ACTIVE state.

A pp lica tion

H and le R em ap read

H and le R em ap A C K
Use new read process
data map on updated
process data
(RPD2)

RPD1 = Read Process Data according to previous mapping
RPD2 = Read Process Data according to new mapping
WPD = Write Process Data

MSG:

MSG:

RPD1

WPD

MSG:

MSG:
Remap read

WPD

RPD1

MISO

MOSI

MISO

MOSI

MSG:

MSG:

RPD2

WPD

MSG:

MSG:

RPD1

WPD
Remap ACK

MISO

MOSI

MISO

MOSI

Anybus
CompactCom

Fig. 25

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 157 (178)

F.1.2 Write Process Data
When the application has received a Remap_ADI_Write_Area request, it sends process data
according to the new mapping starting with the SPI telegram that acknowledges the Remap_
ADI_Write_Area request.

A pp lica tion Anybus
CompactCom

H and le R em ap read

H and le R em ap A C K

WPD1 = Write Process Data according to previous mapping
WPD2 = Write Process Data according to new mapping
RPD = Read Process Data

U se new write
p rocess da ta m ap
(WPD2)

MSG:

MSG:

RPD

WPD1

MSG:

MSG:
Remap write

WPD1

RPD

MISO

MOSI

MISO

MOSI

MSG:

MSG:

RPD

WPD2

MSG:

MSG:

RPD

WPD2
Remap ACK

MISO

MOSI

MISO

MOSI

Fig. 26

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 158 (178)

F.2 Parallel Mode, 8/16 Bits, Event Driven
F.2.1 Read Process Data

When the application has received a Remap_ADI_Read_Area request from the Anybus
CompactCom 40 and has acknowledged the request, the Anybus CompactCom 40 will start
sending read process data to the application according to the new mapping the next time it
receives such data from the network.

The Anybus CompactCom 40 sends Remap_ADI_Read_Area requests to the application in states
where the read process data is inactive/invalid. Valid process data according to the new mapping
will typically not be detected until the next time the Anybus CompactCom 40 enters the
PROCESS_ACTIVE state.

A pp lica tion Anybus
CompactCom

R em ap A C K

W PD

R em ap readM

RPD2

M

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

P rocess da ta

M essage

RPD1 = Read Process Data according to previous mapping
RPD2 = Read Process Data according to new mapping
WPD = Write Process Data

W PD

RPD1

Fig. 27

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 159 (178)

F.2.2 Write Process Data
When the application has received a Remap_ADI_Write_Area requests, it starts sending process
data according to the new mapping to the Anybus CompactCom 40 before acknowledging the
Remap_ADI_Write_Area request.

The Anybus CompactCom 40 regards the write process data as invalid between the time it sends
a Remap_ADI_Write_Area request to the application until the remap request is acknowledged or
not acknowledged.

A pp lica tion Anybus
CompactCom

R em ap A C K
Use new write
p rocess da ta m ap
(WPD2)

W PD1

R em ap writeM

RPD

M

H and le R em ap write

H and le R em ap A C K

P rocess da ta

M essage

W PD2

RPD

W PD2

WPD1 = Write Process Data, according to previous mapping
WPD2 = Write Process Data, according to new mapping
RPD = ReadProcess Data

Fig. 28

F.3 Backwards Compatible Modes
In this section is described runtime remapping of process data in parallel and serial modes,
backwards compatible to the Anybus CompactCom 30 series.

Please note that the telegrams are exchanged in a ping-pong fashion.

F.3.1 Parallel mode
Runtime remapping of process data in parallel mode is rather straightforward, see figures below.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 160 (178)

Read Process Data

A pp lica tion Anybus
CompactCom

R em ap A C K
E xpect new read
p rocess da ta m ap
(RPD2)

RPD1

W PD

R em ap readM

RPD2

W PDM

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

P rocess da ta

M essage (M = 1)

P ossib le m essage (M = X)

RPD = Read Process Data
WPD = Write Process Data

Fig. 29

Write Process Data

A pp lica tion A B C C

P rocess da ta

R em ap w rite

U se new w rite
p rocess da ta m ap
(WPD2)

W PD1

M R PD

W PD1M

R PD

W PD2

M essage (M = 1)

P ossib le m essage (M = X)

R em ap A C K

H and le R em ap w rite

H and le R em ap A C K

RPD = Read Process Data
WPD = Write Process Data

Fig. 30

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 161 (178)

F.3.2 Serial Mode
Please note that the telegrams are exchanged in a ping-pong fashion, and that a telegram
without a message ends each command. A number of telegrams will thus have to be exchanged
before the re-mapping takes effect

This mode is backwards compatible to Anybus CompactCom 30.

Read Process Data

A pp lica tion A B C C

R em ap A C K

E xpect new read
p rocess da ta m ap
(RPD2)

RPD1

W PD

R em ap read

RPD1

W PD

M

RPD1

W PDM

W PD

R PD2

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

N o m essage (M = 0)

P rocess da ta

M essage (M = 1)

P ossib le m essage (M = X)

RPD = Read Process Data
WPD = Write Process Data

Fig. 31

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 162 (178)

Write Process Data

A pp lica tion A B C C

P rocess da ta

R em ap w rite

U se new w rite
p rocess da ta m ap
(WPD2)

W PD1

M R PD

W PD1M

R PD

W PD2

M essage (M = 1)

P ossib le m essage (M = X)

R em ap A C K

H and le R em ap w rite

H and le R em ap A C K

W PD1

R PD

W PD1

R PD

No Message (M = 0)

RPD = Read Process Data
WPD = Write Process Data

Fig. 32

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix F: Runtime Remapping of Process Data 163 (178)

F.4 Example: Remap_ADI_Write_Area

ADI

2

3

4

b

c d e

5

8

12

(1 * UINT8)

(1 * UINT16)

(3 * UINT16)

(4 * UINT8)

(4 * UINT8)

(1 * UINT8)

a

f

j

h

l

i

m

g

k

n

Mapping Item 0 1 2 3
ADI Element

CmdExt[0...1]
Data[0...1]
Data[2...3]
Data[4...5]
Data[6]
Data[7]
Data[8...9]
Data[10]
Data[11]

Start remap from mapping item 1
Remove 2 mapping items (i.e. 1 and 2)
Insert 2 mapping items
New mapping item 1: Instance no. #8
New mapping item 1: Map from element 1 (k)
New mapping item 1: Map 3 elements (k... m)
New mapping item 2: Instance no. #12
New mapping item 2: Map from element 0 (n)
New mapping item 2: Map 1 element (n)

1
2
2
8
1
3

12
0
1

a b c d e f g h i

Initial Mapping:

Mapping Item 0 1 2 3
ADI Element a k l m n f g h i

Result:

Command Remap_ADI_Write_Area:

Fig. 33

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix G: CRC Calculation (16–bit) 164 (178)

G CRC Calculation (16–bit)
G.1 General

The following information applies only when using the serial interface.

To allow the receiving part to detect transmission errors, each serial telegram frame contains a
16-bit Cyclic Redundancy Check.

The CRC is calculated as follows:

1. Load a 16-bit register with FFFFh. (Let’s call it the CRC-register for simplicity)

2. XOR the first byte of the message with the low order byte of the CRC-register, putting the
result in the CRC-register.

3. Shift the CRC-register one bit to the right (towards the LSB), zero-filling the MSB.

4. Examine the LSB that was just shifted out from the register. If set, Exclusive-OR the CRC-
register with the polynomial value A001h (1010 0000 0000 0001).

5. Repeat steps 3 and 4 until 8 shifts have been performed.

6. XOR the next byte from the message with the low order byte of the CRC-register, putting
the result in the CRC-register

7. Repeat steps 3...6 until the complete message has been processed.

8. The CRC-register now contains the final CRC16-value.

G.2 Example
When implementing the CRC calculation algorithm, use these example strings (below) to ensure
that the algorithm yields the same results as the Anybus CompactCom module.

The array { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 } should yield the
following CRC16: { 0xb0, 0xcf }.

The array { 0x00, 0x55, 0xAA, 0xFF, 0x0F, 0x5A, 0xA5, 0xF0 } should yield the
following CRC16: { 0x11 , 0x03 }.

The array { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } should yield the
following CRC16: { 0x77 , 0x28 }.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix G: CRC Calculation (16–bit) 165 (178)

G.3 Code Example
This example uses a fast approach to calculate the CRC; all possible CRC-values are preloaded
into two arrays, which are simply indexed as the function increments through the message buffer.

const UINT8 abCrc16Hi[] =
{

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00,
0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00,
0xC1, 0x81, 0x40

};
const UINT8 abCrc16Lo[] =
{

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07,
0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF,
0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8,
0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F,
0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16,
0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30,
0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5,
0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE,
0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9,
0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22,
0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64,
0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A,
0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C,
0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3,
0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53,
0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C,
0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A,
0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84,
0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41,
0x81, 0x80, 0x40

};

UINT16 CRC_Crc16(UINT8* pbBufferStart, UINT16 iLength)
{

UINT8 bIndex;

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix G: CRC Calculation (16–bit) 166 (178)

UINT8 bCrcLo;
UINT8 bCrcHi;
bCrcLo = 0xFF;
bCrcHi = 0xFF;
while(iLength > 0)
{

bIndex = bCrcLo ^ *pbBufferStart++;
bCrcLo = bCrcHi ^ abCrc16Hi[bIndex];
bCrcHi = abCrc16Lo[bIndex];
iLength--;

}
return(bCrcHi << 8 | bCrcLo);

}

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix H: CRC Calculation (32–bit) 167 (178)

H CRC Calculation (32–bit)
The example below shows how the CRC algorithm can be implemented in SPI mode. Please note
that the order of bits and bytes have to be changed as SPI and the CRC algorithm use different
bytes and bits orders.

H.1 Example
When implementing the CRC calculation algorithm, use these example strings (below) to ensure
that the algorithm yields the same results as the Anybus CompactCom module.

The array { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 } should yield the
following CRC32: { 0xeb 0xf4 0x72 0x27 }.

The array { 0x00, 0x55, 0xAA, 0xFF, 0x0F, 0x5A, 0xA5, 0xF0 } should yield the
following CRC32: { 0xbe 0xa7 0x3a 0x2d }.

The array { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } should yield the
following CRC32: { 0x9a 0xf6 0x4b 0x49 }.

H.2 Code Example
This example uses a fast approach to calculate the CRC.

const UINT8 abBitReverseTable16[] = { 0x0, 0x8, 0x4, 0xC, 0x2, 0xA,
0x6, 0xE, 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF };

const UINT32 crc_table32[] = {
0x4DBDF21CUL, 0x500AE278UL, 0x76D3D2D4UL, 0x6B64C2B0UL,
0x3B61B38CUL, 0x26D6A3E8UL, 0x000F9344UL, 0x1DB88320UL,
0xA005713CUL, 0xBDB26158UL, 0x9B6B51F4UL, 0x86DC4190UL,
0xD6D930ACUL, 0xCB6E20C8UL, 0xEDB71064UL, 0xF0000000UL

};
UINT32 CRC_Crc32(UINT8* pbBufferStart, UINT16 iLength)
{

UINT8 bCrcReverseByte;
UINT16 i;
UINT32 lCrc = 0x0;
for(i = 0; i < iLength; i++)
{

bCrcReverseByte =
lCrc ^ abBitReverseTable16[(*pbBufferStart >> 4) & 0xf];

lCrc = (lCrc >> 4) ^ crc_table32[bCrcReverseByte & 0xf];
bCrcReverseByte =

lCrc ^ abBitReverseTable16[*pbBufferStart & 0xf];
lCrc = (lCrc >> 4) ^ crc_table32[bCrcReverseByte & 0xf];
pbBufferStart++;

}

lCrc = ((UINT32)abBitReverseTable16 [(lCrc & 0x000000F0UL) >> 4])|
((UINT32)abBitReverseTable16 [(lCrc & 0x0000000FUL)]) << 4 |
((UINT32)abBitReverseTable16 [(lCrc & 0x0000000FUL)]) << 4 |
((UINT32)abBitReverseTable16 [(lCrc & 0x0000F000UL) >> 12] << 8)|
((UINT32)abBitReverseTable16 [(lCrc & 0x00000F00UL) >> 8] << 12)|
((UINT32)abBitReverseTable16 [(lCrc & 0x00F00000UL) >> 20]<< 16)|
((UINT32)abBitReverseTable16 [(lCrc & 0x000F0000UL) >> 16]<< 20)|
((UINT32)abBitReverseTable16 [(lCrc & 0xF0000000UL) >> 28]<< 24) |
((UINT32)abBitReverseTable16 [(lCrc & 0x0F000000UL) >> 24]<< 28);

return lCrc;
}

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix I: Timing & Performance 168 (178)

I Timing & Performance
I.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for
each member of the Anybus CompactCom 40 family.

The following timing aspects, further described below, are measured:

Category Parameters

Startup Delay T1, T2

NW_INIT Handling T100

Event Based WrMsg Busy Time T103

Event Based Process Delay T101, T102

At the time of writing, network specific timing specifications for all networks has not yet
been publicly released. This information will be added continuously to all network guides
when available.

I.2 Internal Timing
I.2.1 Startup Delay

The following parameters are defined as the time measured from the point where /RESET is
released to the point where the specified event occurs.

Parameter Description Max. Unit.
T1 Anybus generates the first application

interrupt (parallel mode)
1.5 s

T2 The Anybus is able to receive and handle
the first application telegram (serial
mode)

1.5 s

I.2.2 NW_INIT Handling
The time required by the Anybus module to perform the necessary actions in the NW_INIT-state
is highly network specific. Furthermore, the number of commands issued towards the host
application in this state may vary, not only between different networks, but also between
different implementations (e.g. depending on the actual Process Data implementation etc.). This,
in turn, means that the response time of the host application has a major impact on this
parameter as well. It is therefore only possible to specify a maximum value that any Anybus
version, together with a typical host application implementation, can fulfill.

Specifying this parameter does not, in any way, imply that the host application is required, or
even expected, to supervise that it is met - the fact that the protocol is running and the correct
state is indicated should be a sufficient indication of the healthiness of the Anybus module. If,
however, the Anybus concept is not trusted in this respect, the host application may wait for a
timeout before a no-go situation is indicated to the end user. It should then be satisfactory to
use a rather long timeout value since this is, after all, during the start-up phase.

Parameter Conditions
No. of network specific commands Max.

No. of ADIs (single UINT8) mapped to Process
Data in each direction

32 or maximum amount in case the network specific maximum is
less.

Event based application message response time > 1 ms

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix I: Timing & Performance 169 (178)

Parameter Conditions
Ping-pong application response time > 10 ms

No. of simultaneously outstanding Anybus
commands that the application can handle

1

Parameter Description Communication Max. Unit.

T100 NW_INIT handling All event based modes
Required for modules
supporting quick
connect
Recommended for all
other modules

100 ms

Serial 19.2 kbps 30 s

(all other modes) 10 s

I.2.3 Event Based WrMsg Busy Time
The Event based WrMsg busy time is defined as the time it takes for the module to return the H_
WRMSG area to the application after the application has posted a message.

Parameter Description Max. Unit.
T103 H_WRMSG area busy time 500 μs

I.2.4 Event Based Process Data Delay
“Read process data delay” is defined as the time from when the last bit of the network frame
enters the module, to when the RDPDI interrupt is asserted to the application.

“Write process data delay” is defined in two different ways, depending on network type.

• For software stack based cyclic/polled networks, it is defined as the time from when the
module exchanges write process data buffers, to when the first bit of the new process data
frame is sent out on the network.

• For COS (Change Of State) networks, it is defined as the time from when the application
exchanges write process data buffers, to when the first bit of the new process data frame is
sent out on the network.

A maximum delay of 500 µs for 32 byte process data is defined for compatibility with old ping-
pong performance requirements, but high performance synchronous event based modules will
never have a delay of more than 15 µs for 32 byte process data.

Parameter Description Recommended max for 32
byte process data

Absolute max for
32 byte process
data

Unit

T101 Read process data delay 15 500 μs

T102 Write process data
delay

15 500 μs

At the time of writing, network specific timing specifications for all networks has not yet
been publicly released. This information will be added continuously to all network guides
when available.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix J: Backward Compatibility 170 (178)

J Backward Compatibility
The Anybus CompactCom M40 series of industrial network modules have significantly better
performance and include more functionality than the modules in the Anybus CompactCom 30
series. The 40 series is backward compatible with the 30 series in that an application developed
for the 30 series should be possible to use with the 40 series, without any major changes. Also it
is possible to mix 30 and 40 series modules in the same application.

This appendix presents the backwards compatibility issues that have to be considered for Anybus
CompactCom 40, when designing with both series in one application, or when adapting a 30
series application for the 40 series. For network specific information on backward compatibility,
please consult the Anybus CompactCom 40 network guides.

J.1 Initial Considerations
There are two options to consider when starting the work to modify a host application
developed for Anybus CompactCom 30-series modules to also be compatible with the 40-series
modules:

• Add support with as little work as possible i.e. reuse as much as possible of the current
design.

– This is the fastest and easiest solution but with the drawback that many of the new
features available in the 40-series will not be enabled (e.g. enhanced and faster
communication interfaces, larger memory areas, and faster communication protocols).

– You have to check the hardware and software differences below to make sure the host
application is compatible with the 40-series modules. Small modifications to your
current design may be needed.

• Make a redesign and take advantage of all new features presented in the 40-series.

– A new driver and host application example code are available at
www.anybus.com/starterkit40 to support the new communication protocol. This driver
supports both 30-series and 40-series modules.

– You have to check the hardware differences below and make sure the host application
is compatible with the 40-series modules.

This information only deals with differences between the 30-series and the 40-series.

Link to support page: www.anybus.com/support.

J.2 Hardware Compatibility
Anybus CompactCom is available in three hardware formats; Module, Chip, and Brick.

J.2.1 Module
The modules in the 30-series and the 40-series share physical characteristics, like dimensions,
outline, connectors, LED indicators, mounting parts etc. They are also available as modules
without housing.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

http://www.anybus.com/starterkit40
http://www.anybus.com/support

Appendix J: Backward Compatibility 171 (178)

Fig. 34 Anybus CompactCom M30/M40

J.2.2 Chip
The chip (C30/C40) versions of the Anybus CompactCom differ completely when it comes to
physical dimensions.

There is no way to migrate a chip solution from the 30-series to the 40-series without a
major hardware update.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix J: Backward Compatibility 172 (178)

J.2.3 Brick
The Anybus CompactCom B40-1 does not share dimensions with the Anybus CompactCom B30.
The B40-1 is thus not suitable for migration. However HMS Industrial Networks has developed a
separate brick version in the 40-series, that can be used for migration. This product, B40-2,
shares dimensions etc. with the B30. Please contact HMS Industrial Networks for more
information on the Anybus CompactCom B40-2.

Fig. 35 Anybus CompactCom B30

Fig. 36 Anybus CompactCom B40–1 (not for migration)

Fig. 37 Anybus CompactCom B40–2

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix J: Backward Compatibility 173 (178)

J.2.4 Host Application Interface

25
50

1
26

MD
1

A1 A3 A5 A7 A9 A1
1

A1
3

D6 D4 D2 D0 VD
D

VS
S

OM
1

CE IR
Q

RE
SE

T
GO

P0
GI

P0
LE

D2
B

LE
D1

B
Tx

/O
M3

MI
1

VS
S

VS
S A0 A2 A4 A6 A8 A1
0

A1
2 D7 D5 D3 D1 VD
D

VS
S

OM
0

OM
2

R/
W OE

GO
P1

GI
P1

LE
D2

A
LE

D1
A Rx MI
0

MD
0

Fig. 38

Some signals in the host application interface have modified functionality and/or functions which
must be checked for compatibility. See the following sections.

Tx/OM3

In the 30-series, this pin is only used for Tx. It is tri-stated during power up, and driven by the
Anybus CompactCom UART after initialization. In the 40-series this pin is used as a fourth
operating mode setting pin (OM3). During startup after releasing the reset, this pin is read to
determine the operating mode to use. The pin is then changed to a Tx output.

In the 40-series, this pin has a built-in weak pull-up. If this pin, on a 30-series module or brick is
unconnected, pulled high, or connected to a high-Z digital input on the host processor, it will be
compatible with the 40-series. An external pull-up is recommended, but not required.

If this pin is pulled low by the host during startup in a 30-series application, any 40-series
module or brick, substituted in the application, will not enter the expected operating
mode.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“Application Connector Pin Overview”

Module Identification (MI[0..1])

These pins are used by the host application (i.e. your product) to identify what type of Anybus
CompactCom that is mounted. The identification differs between the 30-series and the 40-series.

If your software use this identification you need to handle the new identification value.

MI1 MI0 Module Type

LOW LOW Active Anybus CompactCom 30

HIGH LOW Active Anybus CompactCom 40

MI[0..1] shall only be sampled by the application during the time period from power up to the
end of SETUP state. The pins are low at power up and before reset release.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“Settings/Sync”.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix J: Backward Compatibility 174 (178)

GIP[0..1]/LED3[A..B]

These pins are tri-stated inputs by default in the 30-series. In the 40-series, these pins are tri-
stated until the state NW_INIT. After that they become open-drain, active low LED outputs
(LED3A/LED3B).

No modification of the hardware is needed, if your current design has

• tied these pins to GND

• pulled up the pins

• pulled down the pins

• left the pins unconnected

However, if the application drive the pins high, a short circuit will occur.

If you connect the pins to LEDs, a pull-up is required.

In the 40-series, there is a possibility to set the GIP[0..1] and GOP[0..1] in high impedance state
(tri-state) by using attribute #16 (GPIO configuration) in the Anybus object (01h). I.e. if it is not
possible to change the host application hardware, this attribute can be configured for high
impedance state of GIP and GOP before leaving NW_INIT state.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“LED Interface/D8-D15 (Data Bus)”.

GOP[0..1]/LED4[A..B]

These pins are outputs (high state) by default in the 30-series. In the 40-series, these pins are tri-
stated until the state NW_INIT, and after that they become push-pull, active low LED outputs
(LED4A/LED4B).

This change should not affect your product.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
3.2.3, “LED Interface/D8-D15 (Data Bus)”.

Address Pins A[11..13]

The address pins 11, 12, and 13 are ignored by the 30-series. These pins must be high when
accessing the 40-series module in backwards compatible 8-bit parallel mode. If you have left
these pins unconnected or connected to GND, you need to make a hardware modification to tie
them high.

Max Input Signal Level (VIH)

The max input signal level for the 30-series is specified as VIH=VDD+0,2 V, and for the 40-series as
VIH=3.45 V. Make sure that you do not exceed 3.45 V for a logic high level.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix J: Backward Compatibility 175 (178)

RMII Compatibility

If the RMII mode is being used on an Anybus CompactCom 40 module and it is desired to remain
compatible with the 30 series, it is important to disable this connection when switching to an
Anybus CompactCom 30 module due to pin conflicts. The RMII port of the host processor should
be set to tristate by default, and only be enabled if an RMII capable Anybus CompactCom 40 is
detected. In case the RMII connection cannot be disabled through an internal hardware control
on the host processor, it will be necessary to design in external hardware (i.e. a FET bus switch)
to prevent short circuits

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
3.2.5, “RMII — Reduced Media-Independent Interface”.

J.3 General Software
J.3.1 Extended Memory Areas

The memory areas have been extended in the 40-series, and it is now possible to access larger
sizes of process data (up to 4096 bytes instead of former maximum 256 bytes) and message data
(up to 1524 bytes instead of former maximum 255 bytes). The 30-series has reserved memory
ranges that the application should not use. The 40-series implements new functionality in some
of these memory areas.

To use the extended memory areas you need to implement a new communication protocol which is not
part of this document.

Memory areas not supported by the specific network cannot be used. Make sure you do not access these
areas, e.g. for doing read/write memory tests.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), Section
“Memory Map”

J.3.2 Faster Ping-Pong Protocol
The ping-pong protocol (the protocol used in the 30-series) is faster in the 40-series. A 30-series
module typically responds to a so called ping within 10-100 µs. The 40-series typically responds
to a ping within 2 µs.

Interrupt-driven applications (parallel operating mode) may see increased CPU load due to the
increased speed.

J.3.3 Requests from Anybus CompactCom to Host Application During Startup
All requests to software objects in the host application must be handled and responded to (even
if the object does not exist). This applies for both the 30-series and the 40-series. The 40-series
introduces additional objects for new functionality.

There may also be additional commands in existing objects added to the 40-series that must be
responded to (even if it is not supported).

If your implementation already responds to all commands it cannot process, which is the
expected behavior, you do not need to change anything.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix J: Backward Compatibility 176 (178)

J.3.4 Anybus Object (01h)
Attribute 30-series 40-series Change/Action/Comment

#1, Module Type 0401h 0403h Make sure the host application accepts the new
module type value for the 40-series.

#15, Auxiliary Bit Available Removed It is not possible to turn off the “Changed Data
Indication” in the 40-series. Also see “Control
Register CTRL_AUX-bit” and “Status Register
STAT_AUX-bit” below.

#16, GPIO Configuration Default: General
input and output
pins

Default: LED3 and
LED4 outputs

See also ..

• GIP[0..1]/LED3[A..B], p. 174

• GOP[0..1]/LED4[A..B], p. 174

J.3.5 Control Register CTRL_AUX-bit

30-series The CTRL_AUX bit in the control register indicates to the Anybus CompactCom if the process data
in the current telegram has changed compared to the previous one.

40-series The value of the CTRL_AUX bit is always ignored. Process data is always accepted.

All released Anybus CompactCom 30 example drivers from Anybus CompactCom comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

J.3.6 Status Register STAT_AUX-bit

30-series The STAT_AUX bit in the status register indicates if the output process data in the current
telegram has changed compared to the previous one. This functionality must be enabled in the
Anybus object (01h), Attribute #15. By default, the STAT_AUX bit functionality is disabled.

40-series The STAT_AUX bit indicates updated output process data (not necessarily changed data) from the
network compared to the previous telegram. The functionality is always enabled.

All released Anybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Status Register”.

J.3.7 Control Register CTRL_R-bit

30-series The application may change this bit at any time.

40-series For the 8-bit parallel operating mode, the bit is only allowed to transition from 1 to 0 when the
STAT_M-bit is set in the status register. When using the serial operating modes, it is also allowed
to transition from 1 to 0 in the telegram immediately after the finalizing empty fragment.

All released Anybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

Appendix J: Backward Compatibility 177 (178)

J.3.8 Modifications of Status Register, Process Data Read Area, and Message Data
Read Area
In the 40-series, the Status Register, the Process Data Read Area, and the Message Data Read
Area are write protected in hardware (parallel interface). If the software for some reason writes
to any of those areas, a change is needed.

All releasedAnybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Anybus® CompactCom™ 40 Software Design Guide HMSI-216-125 4.2 en-US

last page

© 2021 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se HMSI-216-125 4.2 en-US / 2021-09-20 / 23404

	1 Preface
	1.1 About this Document
	1.2 Related Documents
	1.3 Document History
	1.4 Document Conventions
	1.5 Document Specific Conventions
	1.6 Trademarks

	2 About the Anybus CompactCom 40
	2.1 General Information
	2.2 Features

	3 Software Introduction
	3.1 Background
	3.2 The Object Model
	3.2.1 Basics
	3.2.2 Addressing Scheme
	3.2.3 Object Categories
	3.2.4 Standard Object Implementation

	3.3 Network Data Exchange
	3.4 Diagnostics
	3.5 File System
	3.6 Modular Device
	3.7 SYNC
	3.7.1 General Information
	3.7.2 Functionality
	3.7.3 Synchronization Lock
	3.7.4 SYNC Pulse
	3.7.5 Network Translation
	3.7.6 Anybus CompactCom 40 SYNC Implementation

	3.8 Multilingual Support
	3.9 Firmware Download
	3.9.1 Important
	3.9.2 Using Firmware Manager II
	3.9.3 Using the Internal File System
	3.9.4 Using FTP

	4 Host Communication Layer
	4.1 General Information
	4.1.1 Communication Basics

	4.2 Memory Map
	4.3 Communications Registers
	4.3.1 Module Capability Register
	4.3.2 LED Status Register
	4.3.3 Application Status Register
	4.3.4 Anybus CompactCom Module Status Register
	4.3.5 Buffer Control Register
	4.3.6 Interrupt Mask Register
	4.3.7 Interrupt Status Register
	4.3.8 Control Register (Read/Write)
	4.3.9 Status Register (Read Only)
	4.3.10 Supervised Bit (SUP)
	4.3.11 Auxiliary Bit (STAT_AUX, CTRL_AUX)

	5 Parallel Host Communication
	5.1 Flow Control
	5.1.1 Communication Basics

	5.2 Anybus Event Driven Watchdog
	5.3 Application Event Driven Watchdog

	6 SPI Host Communication
	6.1 General Information
	6.2 SPI Frame Format
	6.2.1 Data Definitions for the MOSI (Master Output, Slave Input) Frame
	6.2.2 Data Definitions for the MISO (Master Input, Slave Output) Frame

	6.3 Interrupts
	6.4 Message Fragmentation
	6.5 SPI Error Handling
	6.6 Application Event Driven Watchdog

	7 Shift Register Host Communication
	7.1 General Information
	7.2 Reset

	8 Serial Host Communication (UART)
	8.1 General Information

	9 The Anybus State Machine
	9.1 General Information
	9.2 State Dependent Actions

	10 Object Messaging
	10.1 General Information
	10.1.1 Basic Principles
	10.1.2 Source ID
	10.1.3 Error Handling

	10.2 Message Layout
	10.3 Message Segmentation
	10.3.1 Command Segmentation Procedure
	10.3.2 Response Segmentation Procedure

	10.4 Data Format
	10.4.1 Available Data Types
	10.4.2 Bit Fields
	10.4.3 Handling of Array of Char (Strings)
	10.4.4 OCTET
	10.4.5 PADx

	10.5 Command Specification
	10.5.1 General Information
	10.5.2 Command Codes
	10.5.3 Error Codes
	10.5.4 Get_Attribute
	10.5.5 Set_Attribute
	10.5.6 Create
	10.5.7 Delete
	10.5.8 Reset
	10.5.9 Get_Enum_String
	10.5.10 Get_Indexed_Attribute
	10.5.11 Set_Indexed_Attribute

	11 Initialization and Startup
	11.1 General Information
	11.2 Startup Procedure
	11.2.1 Suggested Startup Procedure when Upgrading from Network

	11.3 Anybus Setup (SETUP State)
	11.4 Network Initialization (NW_INIT State)

	12 Anybus Module Objects
	12.1 General Information
	12.2 Object Revisions
	12.3 Anybus Object (01h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Virtual Attributes
	Black List / White List
	Anybus IP license
	Command Details: Reset
	Exception Codes
	Object Specific Error Codes

	12.4 Diagnostic Object (02h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... N)
	Severity
	Event Codes
	Command Details: Create
	Command Details: Delete

	12.5 Network Object (03h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Map_ADI_Write_Area
	Command Details: Map_ADI_Read_Area
	Command Details: Map_ADI_Write_Ext_Area
	Command Details: Map_ADI_Read_Ext_Area

	12.6 Network Configuration Object (04h)
	Category
	Object Description
	Differentiation of Input Devices
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... n)

	12.7 Anybus File System Interface Object (0Ah)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... 4)
	File System Errors
	Command Details: File Open
	Command Details: File Close
	Command Details: File Delete
	Command Details: File Copy
	Command Details: File Rename
	Command Details: File Read
	Command Details: File Write
	Command Details: Directory Open
	Command Details: Directory Close
	Command Details: Directory Delete
	Command Details: Directory Read
	Command Details: Directory Create
	Command Details: Directory Change
	Command Details: Format Disc
	Examples

	12.8 Functional Safety Module Object (11h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Error_Confirmation
	Command Details: Set_IO_Config_String
	Command Details: Get_Safety_Output_PDU
	Command Details: Get_Safety_Input_PDU
	Object Specific Error Codes

	12.9 Time Object (13h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #n)
	Time Protocols

	13 Host Application Objects
	13.1 General Information
	13.2 Implementation Guidelines
	13.3 Functional Safety Object (E8h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.4 Application Data Object (FEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... n)
	Notes on Parameter Access
	Command Details: Get_Instance_Number_By_Order
	Command Details: Remap_ADI_Write_Area
	Command Details: Remap_ADI_Read_Area
	Command Details: Get_Instance_Numbers

	13.5 Application Object (FFh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Reset
	Command Details: Reset_Request
	Command Details: Change_Language_Request
	Command Details: Reset_Diagnostic
	Command Details: Get_Data_Notification

	13.6 Application File System Interface Object (EAh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... 20
	File System Errors

	13.7 Assembly Mapping Object (EBh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1 ... n)
	Command Details: Write_Assembly_Data
	Command Details: Read_Assembly_Data

	13.8 Modular Device Object (ECh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Command Details: Get_List
	List Types

	13.9 Sync Object (EEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	13.10 Host Application Specific Object (80h)
	Category
	Object Description

	A Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B Network Comparison
	B.1 Network Specific Comments

	C Industrial Ethernet Network Comparison
	D Object Overview
	D.1 Anybus Module Objects
	D.2 Host Application Objects

	E Conformance Test Information
	E.1 EtherCAT
	E.1.1 Mandatory Implementations
	E.1.2 Optionally – Improved Functionality, Customization and Identification of the Product

	E.2 CC-Link
	E.2.1 Mandatory Implementations
	E.2.2 Optionally – Improved Functionality, Customization and Identification of the Product

	E.3 Ethernet POWERLINK
	E.3.1 Mandatory Implementations
	E.3.2 Optionally – Improved Functionality, Customization and Identification of the Product

	E.4 EtherNet/IP
	E.4.1 Mandatory Implementations
	E.4.2 Optionally – Improved Functionality, Customization and Identification of the Product

	E.5 DeviceNet
	E.5.1 Mandatory Implementations
	E.5.2 Optionally – Improved Functionality, Customization and Identification of the Product

	E.6 Modbus-TCP
	E.6.1 Mandatory Implementations
	E.6.2 Optionally – Improved Functionality, Customization and Identification of the Product
	E.6.3 CANopen

	F Runtime Remapping of Process Data
	F.1 SPI Mode
	F.1.1 Read Process Data
	F.1.2 Write Process Data

	F.2 Parallel Mode, 8/16 Bits, Event Driven
	F.2.1 Read Process Data
	F.2.2 Write Process Data

	F.3 Backwards Compatible Modes
	F.3.1 Parallel mode
	F.3.2 Serial Mode

	F.4 Example: Remap_ADI_Write_Area

	G CRC Calculation (16–bit)
	G.1 General
	G.2 Example
	G.3 Code Example

	H CRC Calculation (32–bit)
	H.1 Example
	H.2 Code Example

	I Timing & Performance
	I.1 General Information
	I.2 Internal Timing
	I.2.1 Startup Delay
	I.2.2 NW_INIT Handling
	I.2.3 Event Based WrMsg Busy Time
	I.2.4 Event Based Process Data Delay

	J Backward Compatibility
	J.1 Initial Considerations
	J.2 Hardware Compatibility
	J.2.1 Module
	J.2.2 Chip
	J.2.3 Brick
	J.2.4 Host Application Interface

	J.3 General Software
	J.3.1 Extended Memory Areas
	J.3.2 Faster Ping-Pong Protocol
	J.3.3 Requests from Anybus CompactCom to Host Application During Startup
	J.3.4 Anybus Object (01h)
	J.3.5 Control Register CTRL_AUX-bit
	J.3.6 Status Register STAT_AUX-bit
	J.3.7 Control Register CTRL_R-bit
	J.3.8 Modifications of Status Register, Process Data Read Area, and Message Data Read Area

