
AAnnyybbuuss®® CCoommppaaccttCCoomm™™ 3300

SOFTWARE DESIGN GUIDE
HMSI-168-97 3.1 en-US ENGLISH

Important User Information
Liability
Every care has been taken in the preparation of this document. Please inform HMS Industrial Networks of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks, reserve the right to modify our products in line with our policy of continuous product development. The
information in this document is subject to change without notice and should not be considered as a commitment by
HMS Industrial Networks. HMS Industrial Networks assumes no responsibility for any errors that may appear in this
document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements
including any applicable laws, regulations, codes, and standards.

HMS Industrial Networks will under no circumstances assume liability or responsibility for any problems that may
arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks cannot assume
responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights
HMS Industrial Networks has intellectual property rights relating to technology embodied in the product described in
this document. These intellectual property rights may include patents and pending patent applications in the USA
and other countries.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Table of Contents Page

1 Preface ... 5
1.1 About this Document..5

1.2 Related Documents ..5

1.3 Document History ..5

1.4 Document Conventions ...6

1.5 Document Specific Conventions..6

1.6 Trademark Information ...7

2 About the Anybus CompactCom 30 ... 8
2.1 General Information ...8

2.2 Features ...8

3 Software Introduction... 9
3.1 Background...9

3.2 The Object Model .. 11

3.3 Network Data Exchange .. 15

3.4 Diagnostics ... 16

3.5 Multilingual Support ... 17

4 Host Communication Layer... 18
4.1 General Information ... 18

4.2 Handshake Registers... 19

4.3 Process Data Subfield ... 21

4.4 Anybus Watchdog .. 23

4.5 Application Watchdog... 24

4.6 Serial Host Communication.. 25

4.7 Parallel Host Communication ... 30

5 The Anybus State Machine ... 32
5.1 General Information ... 32

5.2 State Dependent Actions ... 33

6 Object Messaging .. 34
6.1 General Information ... 34

6.2 Message Layout... 36

6.3 Data Format.. 36

6.4 Flow Control ... 37

6.5 Command Specification... 39

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

7 Initialization and Startup .. 45
7.1 General Information ... 45

7.2 Initial Handshake ... 45

7.3 Anybus Setup (SETUP State)... 46

7.4 Network Initialization (NW_INIT State)... 47

8 Anybus Module Objects.. 48
8.1 General Information ... 48

8.2 Object Revisions .. 48

8.3 Anybus Object (01h) ... 49

8.4 Diagnostic Object (02h) ... 54

8.5 Network Object (03h) ... 58

8.6 Network Configuration Object (04h) .. 62

9 Host Application Objects .. 64
9.1 General Information ... 64

9.2 Implementation Guidelines.. 64

9.3 Application Data Object (FEh)... 66

9.4 Application Object (FFh) .. 75

9.5 Host Application Specific Object (80h) ... 80

A Categorization of Functionality .. 81
A.1 Basic .. 81

A.2 Extended .. 81

B Network Comparison .. 82

C Object Overview.. 86
C.1 Anybus Module Objects .. 86

C.2 Host Application Objects ... 87

D Timing & Performance .. 88
D.1 General Information ... 88

D.2 Internal Timing .. 89

D.3 Anybus Response Time ... 90

D.4 Process Data ... 92

E Runtime Remapping of Process Data... 96
E.1 Parallel mode .. 96

E.2 Serial Mode .. 98

E.3 Example: Remap_ADI_Write_Area .. 100

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

F CRC Calculation (16–bit) ... 101
F.1 General .. 101

F.2 Example ... 101

F.3 Code Example ... 102

This page intentionally left blank

Preface 5 (104)

1 Preface
1.1 About this Document

This document is intended to provide a good understanding of the Anybus CompactCom
platform. It does not cover any of the network specific features offered by the Anybus
CompactCom 30 products; this information is available in the appropriate Network Guide.

The reader of this document is expected to be familiar with high level software design and
industrial network communication systems in general. For additional information,
documentation, support etc., please visit the support website at www.anybus.com/support.

1.2 Related Documents
Document Author Document ID

Anybus CompactCom M30 Hardware Design Guide HMS HMSI-168-31

Anybus CompactCom B30 Design Guide HMS HMSI-27-242

Anybus CompactCom Host Application Implementation Guide HMS HMSI-27-334

Anybus CompactCom 30 Network Guides (separate document for
each supported fieldbus or network system)

HMS

Anybus CompactCom Implementation Tutorial HMS HMSI-168-106

Anybus CompactCom 30 Drive Profile Design Guides HMS

1.3 Document History
Version Date Description

1.00 - 2.09 See information in earlier versions of document
3.0 2017-08-22 Moved from FM to DOX

General update

3.1 2019-03-01 Rebranded
Minor corrections

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

http://www.anybus.com/support

Preface 6 (104)

1.4 Document Conventions
Ordered lists are used for instructions that must be carried out in sequence:

1. First do this

2. Then do this

Unordered (bulleted) lists are used for:

• Itemized information

• Instructions that can be carried out in any order

...and for action-result type instructions:

► This action...

→ leads to this result

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

Monospaced text is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Document Conventions, p. 6

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

Caution
This instruction must be followed to avoid a risk of personal injury.

WARNING
This instruction must be followed to avoid a risk of death or serious injury.

1.5 Document Specific Conventions
• The terms “Anybus” or “module” refers to the Anybus CompactCom module.

• The terms “host” or “host application” refer to the device that hosts the Anybus.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the
hexadecimal value.

• Intel byte order is assumed unless otherwise stated.

• Object Instance equals Instance #0.

• Object Attributes resides in the Object Instance.

• The terms “Anybus implementation” and “Anybus version” generally refers to the
implementation in the Anybus module, i.e. network type and internal firmware revision.

• Unless something is clearly stated to be optional, it shall be considered mandatory.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

http://www.hms-networks.com

Preface 7 (104)

• When writing, fields declared as “reserved” shall be set to zero.

• When reading, fields bits declared as “reserved” shall be ignored.

• Fields which are declared as “reserved” must not be used for undocumented purposes.

• A byte always consists of 8 bits.

• A word always consists of 16 bits.

1.6 Trademark Information
• Anybus® is a registered trademark of HMS Industrial Networks.

• EtherNet/IP is a trademark of ODVA, Inc.

• DeviceNet is a trademark of ODVA, Inc.

•
EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff
Automation GmbH, Germany.

All other trademarks are the property of their respective holders.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

About the Anybus CompactCom 30 8 (104)

2 About the Anybus CompactCom 30
2.1 General Information

The Anybus CompactCom 30 network communication device is a high performance, low cost
communication solution for industrial field devices. Typical applications are Frequency Inverters,
PLCs, HMIs, Visualization Devices, Instruments, Scales, Robotics and Intelligent measuring devices.

The Anybus CompactCom 30 software interface is designed to be network protocol independent,
allowing the host application to support all major networking systems using the same software
driver, without loss of functionality.

To provide flexibility and room for expansion, an object oriented addressing scheme is used
between the host application and the Anybus CompactCom. This allows for a very high level of
integration, since the host communication protocol enables the Anybus CompactCom to retrieve
information directly from the host application using explicit object requests rather than memory
mapped data.

This document does not cover Passive Anybus CompactCom modules. For further information, consult
the separate network interface appendices for these products.

2.2 Features
• Host interface is network protocol independent

• Multilingual support

• High level of integration

• Cyclic and Acyclic data

• Optional support for advanced network specific features

• Serial or Parallel operation

• Interrupt operation (optional)

• Free source level (C-language) software driver available

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 9 (104)

3 Software Introduction
3.1 Background

The primary function of an industrial network interface is to exchange information with other
devices on the network. Traditionally, this has mostly been a matter of exchanging cyclic I/O and
making it available to the host device via two memory buffers.

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data from Fieldbus

Network Interface

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data to Fieldbus

Ne
tw

or
k

Fig. 1

As demand for higher level network functionality increases, the typical role of a network
interface has evolved towards including acyclical data management, alarm handling, diagnostics
etc.

Generally, the way this is implemented differs fundamentally between different networking
systems. This means that supporting and actually taking advantage of this new functionality is
becoming increasingly complex, if not impossible, without implementing dedicated software
support for each network.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 10 (104)

By utilizing modern object oriented technology, the Anybus CompactCom provides a simple and
effective way of supporting most networking systems, as well as taking advantage of advanced
network functionality, without having to write separate software drivers for each network.
Acyclic requests are translated in a uniform manner, and dedicated objects provide diagnostic
and alarm handling according to each network standard.

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data from Fieldbus

Network Interface

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Data to Fieldbus

Diagnostic Handling

Cyclic Data

Cyclic Data

Alarm

Diagnostics

Ne
tw

or
k

Acyclic Request

Acyclic Response

Acyclic Handling

Fig. 2

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 11 (104)

3.2 The Object Model
3.2.1 Basics

To provide a flexible and logical addressing scheme for both the host application and the Anybus
module, the software interface is structured in an object structured manner. While this approach
may appear confusing at first, it is nothing more than a way of categorizing and addressing
information.

Related information and services are grouped into entities called ‘Objects’. Each object can hold
subentities called ‘Instances’, which in turn may contain a number of fields called ‘Attributes’.
Attributes typically represents information or settings associated with the Object. Depending on
the object in question, Instances may either be static or created dynamically during runtime.

#1
Attributes:

#2
#3
#4
#5

Instance #1

Instance #2

Instance #3

#1
Attributes:

#2
#3
#4
#5

Object #1
(Instance #0)

Fig. 3

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 12 (104)

3.2.2 Addressing Scheme
Objects, and their contents, are accessed using Object Messaging. Each object message is tagged
with an object number, instance, and attribute, specifying the location of the data or setting
associated with the message.

This addressing scheme applies to both directions; i.e. just like the Anybus module, the
host application must be capable of interpreting incoming object requests and route
them to the appropriate software routines.

Example:

The module features an object called the “Anybus Object”, which groups common settings
relating the Anybus module itself.

In this object, instance #1 contains an attribute called ‘“Firmware version”’ (attribute #2). To
retrieve the firmware revision of the module, the host simply issues a Get Attribute request to
object #1 (Anybus Object), Instance #1, Attribute #2 (Firmware version).

3.2.3 Object Categories
Based on their physical location, objects are grouped into two distinct categories:

Anybus Module Objects These objects are part of the Anybus firmware, and typically controls the behavior of the
module and its actions on the network.

Host Application Objects These objects are located in the host application firmware, and may be accessed by the
Anybus module. This means that the host application must implement proper handling
of incoming object requests.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 13 (104)

3.2.4 Standard Object Implementation
The standard object implementation has been designed to cover the needs of all major
networking systems, which means that it is generally enough to implement support for these
objects in order to get sufficient functionality regardless of network type.

Optionally, support for network specific objects can be implemented to gain access to advanced
network specific functionality. Such objects are described separately in each network guide.

Network
Object

Anybus
Object

Diagnostic
Object Router

Driver

Router

Driver

Network
Configuration

Object

Host Application

Application
Object

Application Data
Object

A D I

Host Interface

Network Specific
Objects

Network Specific
Objects

Fig. 4

Anybus Module Objects

The following objects are implemented in the standard Anybus CompactCom 30 firmware:

• Anybus Object

• Diagnostic Object

• Network Object

• Network Configuration Object

• Network Specific Objects

Exactly how much support that needs to be implemented for these objects depends on the
requirements of the host application.

See also...

• Anybus Module Objects, p. 48

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 14 (104)

Host Application Objects

The following objects can be implemented in the host application.

• Application Data Object (Mandatory)

• Application Object (Optional)

• Network Specific Objects (Optional)

It is mandatory to implement the Application Data Object and the Application Object. The exact
implementation however depends heavily on the requirements of the host application.
Implementation of the Application Object is optional, but highly recommended.

See also...

• Host Application Objects, p. 64

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 15 (104)

3.3 Network Data Exchange
Data that is to be exchanged on the network is grouped in the Application Data Object. This
object shall be implemented in the host application firmware, and each instance within it (from
now on referred to as “ADI”, i.e. Application Data Instance) represents a block of network data.

ADIs are normally associated with acyclic parameters on the network side. For example, on
DeviceNet and EtherNet/IP, ADIs are represented through a dedicated vendor specific CIP object,
while on PROFIBUS, ADIs are accessed through acyclic DP-V1 read/write services. On EtherCAT
and other protocols that are based on the CANopen Object Dictionary, ADIs are mapped to PDOs,
defined in the object dictionary.

ADIs can also be mapped as Process Data, either by the host application or from the network
(where applicable). Process Data is exchanged through a dedicated data channel in the Anybus
CompactCom host protocol, and is normally associated with fast cyclical network I/O. The exact
representation of Process Data is highly network specific; for example on PROFIBUS, Process
Data correlates to IO data.

Translation

Application Parameter

Application Parameter

Process Data Handling

Translation

Host Application0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Process Data Buffer*
(Read)

Object Response

*) These buffers holds data from ADI's that are mapped to Process Data.

Ne
tw

or
k

Acyclic Request

Cyclic Data

Acyclic Response

0101101101010110010011
0000101010110100111011
1000010101100000100010
0100110010111000000001
0010001101000100001010

Process Data Buffer*
(Write)Cyclic Data

(Dedicated Channel)

Application Data
Object

ADI 1

ADI 2

ADI 3
Application Parameter

Object Request

Fig. 5

Each ADI may be tagged with a name, data type, range and default value, all of which may be
accessed from the network (if supported by the network in question). This allows higher level
network devices (e.g. network masters, configuration tools etc.) to recognize acyclic parameters
by their actual name and type (when applicable), simplifying the network configuration process.

Some networking systems allows both cyclic and acyclic access to the same parameter. In the
case of the Anybus CompactCom 30, this means that an ADI may be accessed via explicit object
requests and Process Data simultaneously. The Anybus module makes no attempt to synchronize
this data in any way; if necessary, the host application must implement the necessary
mechanisms to handle this scenario.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 16 (104)

The Anybus interface uses little endian memory addressing. This means that the byte order is
from the least significant byte (LSB) to the most significant byte (MSB). The Anybus will however
handle ADI values transparently according to the actual network representation (indicated to the
application during initialization). The application driver is responsible for byte swap if required.
Use of this approach is decided because of the following reasons:

• The Anybus can not hold information about the data type of all ADIs due to memory
limitations and start-up time demands.

• The alternative to read the data type prior to every parameter write or read request would
be too time consuming.

See also...

• Process Data Subfield, p. 21

• The Anybus State Machine, p. 32

• Network Object (03h), p. 58

• Application Data Object (FEh), p. 66

3.4 Diagnostics
The Anybus CompactCom 30 features a dedicated object for host related diagnostics. To report a
diagnostic event, the host application shall create an instance within this object. When the event
has been resolved, the host simply removes the diagnostic instance again.

Each event is tagged with an Event Code, which specifies the nature of the event, and a Severity
Code, which specifies the severity of the event. The actual representation of this information is
highly network specific.

Host Application

Ne
tw

or
k

Diagnostics Application Diagnostic & Status Handling

Diagnostic
Object

Event

Event

Event

Fig. 6

See also...

• Diagnostic Object (02h), p. 54

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Software Introduction 17 (104)

3.5 Multilingual Support
Where applicable, the Anybus CompactCom 30 supports multiple languages. This mainly affects
instance names and enumeration strings, and is based on the current language setting in the
Anybus Object. Note that this also applies to Host Application Objects, which means that the
host application should be capable of changing the language of enumeration strings etc.
accordingly.

When applicable, the Anybus CompactCom 30 forwards change-of-language-requests from the
network to the Application Object. It is then up to the host application to grant or reject the
request, either causing the module to change its language settings or to reject the original
network request.

Supported languages:

• English (default)

• German

• Spanish

• Italian

• French

See also...

• Application Object (FFh), p. 75

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 18 (104)

4 Host Communication Layer
4.1 General Information
4.1.1 Basic Principles

On its lowest level, the host interface communication is based on a half-duplex protocol.
Telegrams are exchanged in a ping-pong fashion, with the only exceptions being the very first
telegram issued by the host application during startup, and possible re-transmissions due to
transmission errors (only applicable when using the serial host interface).

The host application and the Anybus CompactCom share an equal responsibility of maintaining a
telegram exchange rate that provides an acceptable throughput, yet does not exceed the
performance capabilities of the local CPU.

Host Application Anybus Module

Telegram

Telegram

Telegram

Telegram

Protocol
violation!

Fig. 7

The Anybus CompactCom will respond as quickly as possible based on present conditions, while
the application should respond as fast as required to fulfil its own timing demands, or to fulfil the
demands of the actual network, whichever is highest.

The parallel- and serial interfaces share the same basic protocol, with some slight differences to
cover the needs for each interface (i.e. CRC for serial transmission etc.).

4.1.2 Telegram Contents
Each telegram consists of three subfields:

Handshake registers This field controls the communication between the hsot and the Anybus CompactCom.

See Handshake Registers, p. 19

Message subfield This field is used for object messaging, an embedded sub-protocol which carries
messages between the host application and the module. This field is present in all
telegrams, however its contents may or may not be relevant depending on certain bits in
the handshake registers.

See Object Messaging, p. 34

Process Data Subfield This field provides a dedicated channel for fast cyclical network I/O, known as process
data.

See Process Data Subfield, p. 21

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 19 (104)

4.2 Handshake Registers
4.2.1 Control Register (Read/Write)

This register controls the communication towards the Anybus CompactCom.

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

CTRL_T CTRL_M CTRL_R CTRL_AUX - - - -

Bit Description

CTRL_T The host application shall toggle this bit when sending a new telegram. CTRL_T must be set to “1” in the
initial telegram sent by the application to the module.

CTRL_M If set, the message subfield in the current telegram is valid.
See Message Fragmentation, p. 26

CTRL_R If set, the host application is ready to receive a new command.
See Flow Control, p. 37

CTRL_AUX See Auxiliary Bit (STAT_AUX, CTRL_AUX), p. 20

- (reserved, set to zero)

4.2.2 Status Register (Read Only)
This register holds the current status of the Anybus CompactCom.

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

STAT_T STAT_M STAT_R STAT_AUX SUP S2 S1 S0

Bit Description

STAT_T When the module issues new telegrams, this bit will be set to the same value as CTRL_T in the last
telegram received from the host application.

STAT_M If set, the message subfield in the current telegram is valid.
See Message Fragmentation, p. 26

STAT_R If set, the Anybus CompactCom is ready to process incoming commands.
See Flow Control, p. 37

STAT_AUX See Auxiliary Bit (STAT_AUX, CTRL_AUX), p. 20.

SUP Value: Meaning:

0: Module is not supervised.

1: Module is supervised by another network device.

S[0... 2] These bits indicates the current state of the module (see also The Anybus State Machine, p. 32).

S2 S1 S0 Anybus State

0 0 0 SETUP
0 0 1 NW_INIT

0 1 0 WAIT_PROCESS

0 1 1 IDLE
1 0 0 PROCESS_ACTIVE

1 0 1 ERROR
1 1 0 (reserved)

1 1 1 EXCEPTION

The Status Register shall be regarded as cleared at start-up. The first telegram issued by the host
application must therefore not contain a valid message subfield since STAT_R is effectively
cleared (0).

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 20 (104)

4.2.3 Supervised Bit (SUP)
While the Anybus State Machine reflects the state of the cyclic data exchange, the SUP-bit
indicates the overall status of the network communication, including acyclic communication. For
example, on CIP, this bit indicates that the master has a connection towards the Anybus
CompactCom. This connection may be an I/O connection, or an acyclic (explicit) connection. In
case of the latter, the communication will be “silent” for extended periods of time, and the state
machine will indicate that the network is Idle. The SUP-bit will however indicate that there still is
a connection towards the module.

Exactly how this functionality should be handled, the offered level of security, and how to
correctly activate it is network specific and often depends on external circumstances, e.g.
configuration of the network as well as other network devices. Whether use of the SUP-bit is
appropriate must therefore be decided for each specific application and network.

See also ...

• Status Register (Read Only), p. 19

It is important to recognize that this bit reflects the network state at the time of
transmission of each telegram. In case a message from the network, such as a parameter
data request or other command, for some reason is delayed (for example if the
application has cleared the CTRL_R-bit for some time), the application may have to take
alternative actions depending on the situation.

4.2.4 Auxiliary Bit (STAT_AUX, CTRL_AUX)
By default, this bit is not used and shall be zero. Optionally, it is possible to specify additional
functionality for this bit in the Anybus Object (Instance Attribute #15, ‘Auxiliary Bit’).

At the time of writing, the following functionality has been defined:

Default Not used; STAT_AUX and CTRL_AUX shall be zero.

Changed Data Indication In this mode, the CTRL_AUX- and STAT_AUX bits indicate if the process data in the
current telegram has changed compared to the previous one.

See Changed Data Indication, p. 22

See also ...

• See Process Data Subfield, p. 21, (Changed Data Indication)

• See Anybus Module Objects, p. 48 (Anybus Object, instance attribute #15)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 21 (104)

4.3 Process Data Subfield
4.3.1 General Information

There are two kinds of process data:

Read Process Data Read process data represents data received from the network, and is present (if used) in
telegrams received from the Anybus CompactCom.

Write Process Data Write process data represents data that shall be sent to the network, and is present (if
used) in telegrams sent to the Anybus CompactCom.

Exactly how the Process Data is represented on the network varies, for example on PROFIBUS, it
is exchanged as IO data, while on CANopen, it is exchanged through PDOs.

The process data subfield does not exist until the module is fully initialized. This is
generally not an issue when using the parallel host interface, however it is important to
note that it affects the telegram length when using the serial host interface.

The Anybus CompactCom does not perform any byte swapping on this data; the host
application is thus solely responsible for byte swapping if needed by the implementation.

4.3.2 Process Data Mapping
The actual size and structure of the process data subfield is based on the process data map,
which can be specified by the host application during startup, and in the case of certain Anybus
implementations also from the network.

Process data mapping is basically a structured way of defining the cyclic I/O size on a higher
level, and enables the host application to define data structures etc. by their actual data types
instead of specifying anonymous blocks of binary data.

See also ...

• Network Data Exchange, p. 15

• Network Object (03h), p. 58 (command details for Map_ADI_Write_Area and Map_ADI_
Read_Area)

• Application Data Object (FEh), p. 66 (command details for Remap_ADI_Write_Area and
Remap_ADI_Read_Area)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 22 (104)

4.3.3 Changed Data Indication

This functionality is optional and is not enabled by default.

Optionally, it is possible to have a changed data indication with each telegram through the use of
the auxiliary bits (STAT_AUX and CTRL_AUX). When this functionality is enabled, these bits are
independently used as changed data signals for read and write process data respectively, as
described below.

• Changed Data Indication of Read Process Data

The Anybus CompactCom indicates if the Read Process Data has changed as follows.

– STAT_AUX is set (1) in telegrams containing Read Process Data which differs from that
of the last telegram which contained Read Process Data.

– STAT_AUX is cleared (0) in telegrams containing Read Process Data which equals that
of the last telegram which contained Read Process Data.

– The first telegram containing Read Process Data will be compared to an ‘imaginary’
previous process data buffer containing all zeroes.

– STAT_AUX is always set in the first telegram containing a Read Process Data map that
has been modified by Remap_ADI_Read_Area.

– The host application may choose to discard the Read Process Data in telegrams where
STAT_AUX is cleared (0).

• Changed Data Indication of Write Process Data

The host application indicates if the Write Process Data has changed as follows.

– CTRL_AUX is set (1) in telegrams containing Write Process Data which differs from that
of the last telegram which contained Write Process Data.

CTRL_AUX is cleared (0) in telegrams containing Write Process Data which equals that
of the last telegram which contained Write Process Data.

The first telegram containing Write Process Data shall be compared to an ‘imaginary’
previous process data buffer containing all zeroes.

CTRL_AUX shall always be set in the first telegram containing a Write Process Data map
that has been modified by Remap_ADI_Write_Area.

Setting CTRL_AUX (1) in telegrams where the Write Process Data is unchanged is
acceptable although it may add extra load on the Anybus CompactCom.

See also ...

• Anybus Object (01h), p. 49 (Instance Attribute #15)

• Application Data Object (FEh), p. 66 (command details for Remap_ADI_Write_Area)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 23 (104)

4.4 Anybus Watchdog
The host application can establish whether or not the module is working properly by measuring
the telegram response time. If this time exceeds a certain value, the module can be assumed to
be malfunctioning. The host application can then enter a safe state, reset the module, or take
similar actions.

Host Application Anybus Module

Telegram

Telegram

Telegram

Start timer

Stop timer

Start timer

Anybus
failure

Timeout.

Fig. 8

Suggested minimum timeout values:

Interface Minimum timeout value
Parallel 10 ms

Serial, 19.2 kbps 1050 ms

Serial, 57.6 kbps 360 ms

Serial, 115.2 kbps 180 ms

Serial, 625 kbps 60 ms

These are only suggested minimum values that are guaranteed to be met by the Anybus module in all
cases. An appropriate value for a particular application depends highly on safety demands, quality of
serial communications (if applicable) etc.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 24 (104)

4.5 Application Watchdog
If enabled, this feature allows the Anybus CompactCom to establish whether or not the host
application is working properly by measuring its telegram response time. If this time exceeds a
specified value, the Anybus CompactCom considers the host application as not working and takes
action accordingly.

The actions performed when a timeout occurs are network specific, however common to all
Anybus CompactCom implementations is that the module shifts to the state EXCEPTION.

Host Application Anybus Module

Telegram

Telegram

Telegram

Host
application

failure

Start timer

Stop timer

Start timer

Timeout.

Fig. 9

When using the serial host interface, the watchdog timer is started when the module initiates a new
transmission and stopped when the module receives a valid telegram that is not a re-transmission.

See also...

Anybus Object (01h), p. 49 (Instance Attribute #4, ‘Application watchdog timeout’)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 25 (104)

4.6 Serial Host Communication
4.6.1 General Information

On the serial host interface, telegrams are transmitted through a common asynchronous serial
interface. The baudrate is determined by certain signals on the host interface connector of the
module; consult the Anybus CompactCom 30 Hardware Design Guide for further information.

Other communication settings are fixed to the following values:

Data bits: 8

Parity: None

Stop bits: 1

As is the case with most asynchronous communication devices, the actual baud rate used
on the Anybus CompactCom may differ slightly from the ideal baud rate.

The baud rate deviation of the Anybus CompactCom is less than ±1.5%. To ensure proper
operation, the baud rate deviation in the host application must not exceed ±1.5%.

4.6.2 Serial Telegram Frame
1 byte 16 bytes Up to 256 bytes 2 bytes

Handshake
register field

Message subfield Process data subfield CRC16

1st byte (last byte)

Handshake Register Field This field contains the Control Register in telegrams sent to the Anybus CompactCom,
and the Status Register in telegrams received from the Anybus CompactCom.

Message Subfield To maintain throughput for the Process Data, the message subfield is limited to 16 bytes
when using the serial interface. Longer messages are exchanged as several smaller
fragments.

See Message Fragmentation, p. 26.

Process Data Subfield This field contains the Write Process Data in telegrams sent to the Anybus module, and
the Read Process Data in telegrams received from the Anybus CompactCom.

Note that this field does not exist when the Anybus CompactCom is operating in the
‘SETUP’-state.

CRC16 This field holds a 16 bit Cyclic Redundancy Check (Motorola format, i.e. MSB first). The
CRC covers the entire telegram except for the CRC itself.

See CRC Calculation (16–bit), p. 101.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 26 (104)

4.6.3 Message Fragmentation
To ensure Process Data throughput at all times, messages longer than 16 bytes are transmitted
as multiple small (≤16 bytes) fragments. These fragments are then assembled by the receiving
part and processed as a complete message, i.e. the receiver must wait until a complete message
has been received before processing it. Note that this includes any fundamental errors that may
have been detected in the first fragment (e.g. data field too large, command with error bit set
(E=1) etc.).

Each message must be followed by an additional “empty” fragment (i.e. a telegram with CTRL_M
or STAT_M=0) to indicate to the receiver that the message has been completed.

In the example below a message with 80 bytes of message data is sent to the module as 6
smaller fragments. An additional “empty” fragment ends the message.

MsgData[0...79]

Header
(8 bytes)

Message Frame:

CTRL_M=1

CTRL_M=1

CTRL_M=1

CTRL_M=1

CTRL_M=1

CTRL_M=1

Fragment #1

Fragment #2

Fragment #4

Fragment #3

Fragment #5

Fragment #6

CTRL_M=0

Header + MsgData[0...7]

MsgData[8...23]

MsgData[40...55]

MsgData[24...39]

MsgData[56...71]

MsgData[72...79]

(no message)Fragment #7

Fragmentation Sequence:

Fig. 10

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 27 (104)

A fragmented message may be aborted at any time by issuing an “empty” fragment (i.e. a
telegram with CTRL_M or STAT_M=0), causing a fragmentation error at the receiving end.

The example shows a message with 72 bytes of message data, sent by the module as several
smaller fragments. The message is aborted prematurely using an “empty” fragment.

MsgData[0...71]

Header
(8 bytes)

Message Frame:

STAT_M=1

STAT_M=1

STAT_M=1

STAT_M=1

Fragment #1

Fragment #2

Fragment #4

Fragment #3

Header + MsgData[0...7]

MsgData[8...23]

MsgData[40...55]

MsgData[24...39]

Fragmentation Sequence:

STAT_M=0Fragment #5 (no message)

Fig. 11

Smaller messages (i.e. ≤16 bytes) are sent without fragmentation, however an additional
“empty” fragment must still be sent to signal to the receiver that a full message has been
completed. In the eample a small message (16 bytes) is sent to the host application. An
additional “empty” fragment ends the message.

Header
(8 bytes)

MsgData[0...7]

Message Frame:

STAT_M=1

STAT_M=0

Fragment #1

Fragment #2

Header + MsgData[0...7]

(no message)

Fragmentation Sequence:

Fig. 12

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 28 (104)

4.6.4 Transmission Errors
Transmission errors are handled as follows:

• A telegram is ignored in the event of a reception error (i.e. a CRC mismatch).

• Any transmission error shall, after a timeout, result in a re-transmission of the last telegram
by the host application (suggested retransmission timeout values for different baud rates
are specified in the table below).

• The module detects re-transmissions by monitoring CTRL_T.

To make this concept successful, the host application must fulfil the following requirements:

• The telegram transmission time must be less than TSEND (See table)

• The re-transmission timeout must not be less than TTIMEOUT (See table)

Baud Rate TSEND TTIMEOUT

19.2 kbps 175 ms 350 ms

57.6 kbps 60 ms 120 ms

115.2 kbps 30 ms 60 ms

625 kbps 6 ms 20 ms

Note that it is the timeout itself that shall trigger the retransmission rather than the
actual CRC error; it is not allowed to make a re-transmission directly after detecting a CRC
error.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 29 (104)

Scenario 1: Anybus CompactCom Detects a CRC Error

In this example, the Anybus CompactCom encounters a CRC mismatch. The erroneous telegram
is simply ignored, causing a timeout in the host application, eventually forcing it to retransmit
the original telegram.

Host Application Anybus Module

Telegram (CTRL_T=0)

Telegram (STAT_T=0)

Telegram (CTRL_T=1)

Telegram (STAT_T=1)

Telegram (CTRL_T=0) Error

Telegram (CTRL_T=0, retransmission)

Telegram (STAT_T=0)

Expected CTRL_T=1
(OK, send next)

Expected CTRL_T=0
(OK, send next)

Expected CTRL_T=0
(OK, send next)

CRC error detected
(Telegram ignored)

Start timer

Timeout
(Retransmit)

Start timer

Stop timer

Start timer

Stop timer

Start timer

Stop timer

TSEND

TTIMEOUT

Fig. 13

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 30 (104)

Scenario 2: Error detected by Host

In this example, the host encounters a CRC mismatch. Just like the Anybus CompactCom, it must
ignore the erroneous telegram, eventually causing a timeout, which shall in turn generate a re-
transmission.

Host Application Anybus Module

Telegram (CTRL_T=1, retransmission)

Telegram (CTRL_T=1)

Telegram (STAT_T=1)

Telegram (STAT_T=1, retransmission)

Expected CTRL_T=1
(OK, send next)

Expected CTRL_T=0
(Not OK, retransmit)

CRC error detected
(Telegram ignored)

Timeout
(Retransmit)

Start timer

Start timer

Stop timer

TTIMEOUT
Error

Fig. 14

Note that it is the timeout itself that shall trigger the re-transmission rather than the
actual CRC-error; it is not allowed to make a re-transmission directly after detecting a
CRC-error.

4.7 Parallel Host Communication
4.7.1 General Information

When using the parallel host interface, telegrams are exchanged via a shared memory area; the
telegram subfields are simply accessed via pre-defined memory locations (see memory map
below).

Telegram transmission is triggered via the control register, and the reception of a new telegram
is indicated in the status register. This means that the process data and message sub-fields must
be written prior to accessing the control register.

While waiting for reception of a telegram, any access to the parallel interface other than polling
of the Status Register must be avoided.

See also ...

• Handshake Registers, p. 19

Internally, an interrupt is triggered in the module each time the control register is
modified. It is therefore important not to use bit handling or other read-modify-write
instructions directly on this register, since the module may interpret this as multiple
accesses. All bit handling etc. must instead be performed in a temporary register, and
written back.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Communication Layer 31 (104)

4.7.2 Memory Map
The address offset specified below is relative to the base address of the module., i.e. from the
beginning of the area in host application memory space where the parallel interface has been
implemented.

Address Offset: Area: Access: Notes:

0000h... 37FFh (reserved) - (reserved for future use)

3800h... 38FFh Process Data Write Area Write Only See Process Data Subfield, p. 21

3900h... 39FFh Process Data Read Area Read Only See Process Data Subfield, p. 21

3A00h... 3AFFh (reserved) -

3B00h... 3C06h Message Write Area Write Only See Object Messaging, p. 34"

3C07h... 3CFFh (reserved) -

3D00h... 3E06h Message Read Area Read Only See Object Messaging, p. 34"

3E07h... 3FFDh (reserved) -

3FFEh Control Register Read/Write See Handshake Registers, p. 19

3FFFh Status Register Read Only See Handshake Registers, p. 19

C-programmers are reminded to declare the entire shared memory area as volatile.

4.7.3 Parallel Telegram Handling
On the parallel interface, transmission and reception is managed through the Handshake
Registers.

See also ...

• Handshake Registers, p. 19

Telegram Transmission

To transmit a telegram, perform the following steps:

1. If applicable, write the Write Process Data to the Process Data Write Area (3800h...38FFh)

2. If applicable, write the message to the Message Write Area (3B00h...3C06h)

3. Update the Control Register to trigger the transmission.

Telegram Reception

Telegram reception is signalled by the STAT_T-bit in the Status Register. The host application can
either poll the Status Register cyclically to detect new telegrams, or rely on interrupt operation.

Interrupt Operation (Highly
Recommended)

If implemented, an interrupt is generated each time the module issues a new telegram.
Generally, it is strongly recommended to use this feature as it can significantly reduce
overhead compared to polling the Status Register cyclically.

Polled Operation The host application must poll the Status Register cyclically and study the STAT_T-bit;
when the value of this bit equals the value of the CTRL_T-bit, the Anybus CompactCom
has issued a new telegram.

To ensure valid results when polling the Status Register, it is required to use a read-until-
two-consecutive-readings-agree procedure.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

The Anybus State Machine 32 (104)

5 The Anybus State Machine
5.1 General Information

A fundamental part of the Anybus CompactCom 30 is the Anybus State Machine. At any given
time, the state machine reflects the status of the module and the network, see Status Register
(Read Only), p. 19.

The state machine shall be regarded as a Moore machine; i.e. the host application is not required
to keep track of all state transitions, however it is expected to perform certain tasks in each state

SETUP
(00h)

WAIT_PROCESS
(02h)

PROCESS_ACTIVE
(04h)

IDLE
(03h)

EXCEPTION
(07h)

(Power up)

(From all states)

ERROR
(05h)

NW_INIT
(01h)

Fig. 15

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

The Anybus State Machine 33 (104)

5.2 State Dependent Actions
The expected actions for each state are listed below.

State Description Expected Actions

SETUP Anybus CompactCom Setup in progress.
The module may not send commands to the
application in this state.

See Anybus Setup (SETUP State), p. 46

NW_INIT The Anybus CompactCom module is currently
performing network-related initialization
tasks.
Telegrams now contain Process Data (if such
data is mapped), however the network
Process Data channel is not yet active.

See .Network Initialization (NW_INIT State), p.
47

WAIT_PROCESS The network Process Data channel is
temporarily inactive.

The host application shall regard the Read
Process Data as not valid.

IDLE The network interface is idle. The exact
interpretation of this state is network specific.
Depending on the network type, the Read
Process Data may be either updated or static
(unchanged).

The host application may act upon the Read
Process Data, or go to an idle state.

PROCESS_ACTIVE The network Process Data channel is active
and error free.

Perform normal data handling.

ERROR There is at least one serious network error. The Read Process Data shall be regarded as
not valid. Optionally, the host application may
perform network specific actions.
Write Process Data could still be forwarded
to the master, so the application must keep
this data updated.

EXCEPTION The module has ceased all network
participation due to a host application related
error.
This state is unrecoverable, i.e. the module
must be restarted in order to be able to
exchange network data.

Correct the error if possible (details about the
error can be read from the Anybus Object,
see).
When done, reset the Anybus CompactCom
30.

The host application must keep the Write Process Data updated in NW_INIT (initial data),
WAIT_PROCESS, IDLE, ERROR and PROCESS_ACTIVE since this data is buffered by the
Anybus CompactCom, and may be sent to the network after a state shift.

See also ...

• Network Configuration Object (04h), p. 62

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 34 (104)

6 Object Messaging
6.1 General Information
6.1.1 Basic Principles

Object messaging involves two types of messages; commands and responses. On the message
level, there is no master-slave relationship between the host application and the Anybus
CompactCom module; both parts may issue commands, and are required to respond. Commands
and responses are always associated with an instance within the Anybus object model. This can
either be the object itself (addressed through instance #0), or an instance within it.

Commands can be issued at any time (provided that the receiving end is ready to accept new
commands), while responses must only be sent as a reaction to a previously received command.
Unexpected or malformed responses must always be discarded.

Host Application Anybus Module

Command 1

Response 1

Command 2

Command 3

Response 3

Response 2

Fig. 16

Commands and responses are treated asynchronously, i.e. new commands may be issued before
a response has been returned on the previous one. This also means that commands are not
guaranteed to be executed in order of arrival, and that responses may return in arbitrary order
(see figure). When necessary, the host application must wait for the response of any command
to which the action or result may affect successive commands.

6.1.2 Source ID
To keep track of which response that belongs to which command, each message is tagged with a
Source ID. When issuing commands, the host application may choose Source IDs arbitrarily,
however when responding to commands issued by the Anybus module, the Source ID in the
response must be copied from the original command.

See also ...

• Message Layout, p. 36

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 35 (104)

6.1.3 Error Handling
When a command for some reason cannot be processed, the receiver is still obliged to provide a
response. In such case, an error shall be flagged in the header of the response message, together
with an appropriate error code in the message data field.

The command initiator must then examine the response to see whether it is a successful
response to the command or an error message. Error counters are available in the Anybus Object
(01h).

If the network communication because of the error cannot continue, the module should enter
the EXCEPTION state.

See also...

• Message Layout, p. 36

• Error Codes, p. 40

• State Dependent Actions, p. 33

• Error Counters, p. 35

• Anybus Object (01h), p. 49

6.1.4 Error Counters
The following error counters are available:

Error Counter Abbr. Description

Discarded commands DC Incremented if a command has been received with the R bit cleared
Discarded responses DR Incremented if the E bit in the response is cleared, but

• the size or other data in the response (or similar) differs form what is expected,
making the response unusable

• the Source ID is not from the client sending the request

• contains a command that was not sent by the client.

Serial reception errors SE Incremented for

• a CRC error

• a serial error, e.g. framing, overrun etc.

Fragmentation errors FE Incremented if a fragmentation error has occurred on the serial channel.

All error counters stop counting at FFFFh.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 36 (104)

6.2 Message Layout
An object message consists of an 8 byte header followed by message related data.

Offset

Contents

Description
b-
7

b-
6

b-
5

b-
4

b-
3

b-
2

b-
1

b-
0

0 Source ID See Source ID, p. 34

1 Object Specifies a source/destination within the Anybus object model

2 Instance (lsb)

3 Instance (msb)

4 E 0: Message is either a Command, or a successful Response
1: Message is an Error Response

C 0: Message is a Response
1: Message is a Command

Command Code See Command Specification, p. 39

5 Message Data Size Size of the MsgData[] field in bytes (up to 255 bytes).

6 CmdExt[0] Command-specific extension. See Command Specification, p. 39.

7 CmdExt[1]

8...n MsgData[0...n] Message data field.

6.3 Data Format
6.3.1 Available Data Types

The Anybus CompactCom 30 uses the following data types as standard. Additional network
specific data types are described in each separate network interface appendix (when applicable)

Type Bits Description Range Available on
All Networks

Valid
for
Proc-
ess
Data

0 BOOL 8 Boolean 0 = False, !0 = True Yes Yes

1 SINT8 8 Signed 8 bit integer -128... +127 Yes Yes

2 SINT16 16 Signed 16 bit integer -32768...+32767 Yes Yes

3 SINT32 32 Signed 32 bit integer -231... +(231-1) Yes Yes

4 UINT8 8 Unsigned 8 bit integer 0... +255 Yes Yes

5 UINT16 16 Unsigned 16 bit integer 0... +65535 Yes Yes

6 UINT32 32 Unsigned 32 bit integer 0... +(232-1) Yes Yes

7 CHAR 8 Character (ISO 8859-1) 0... +255 Yes No

8 ENUM 8 Enumeration 0... +255 Yes Yes
16 SINT64 64 Signed 64 bit integer -263... +(263-1) No Yes

17 UINT64 64 Unsigned 64 bit integer 0... +(264-1) No Yes

18 FLOAT 32 Floating point (IEC 60559) ±1.17549435E-38...
±3.40282347E+38

No Yes

• Arrays of type CHAR will be translated to the native string type of the network.

• The commands “Set_Indexed_Attribute” and “Get_Indexed_Attribute” cannot be used for
the data type CHAR .

• Data of type ENUM are enumerations, limited to a consecutive range of values starting at
zero.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 37 (104)

6.3.2 Handling of Array of Char (Strings)

This section is mainly applicable when using arrays of CHAR in ADIs.

Arrays of type CHAR will be translated to the native string type (when applicable). The maximum
string length, and the buffer space required to store it, is defined by the data type and the
number of elements.

All elements of an array of CHAR are significant; the Anybus module does not expect any
termination characters when reading, nor does it generate any when writing. The actual length
of the string is defined in the payload size given in the commands Get_Attribute and Set_
Attribute.

Generally, it is recommended to keep the “number of elements”, “data type”, and the message
payload length, as consistent as possible. There is no guarantee that the Anybus module will
check consistency between the payload length and the actual buffer space.

See also ...

• Application Data Object (FEh), p. 66

6.4 Flow Control
In some cases, the host application or the Anybus CompactCom may be busy or for some other
reason temporarily unable to process new commands. To deal with such situations, CTRL_R and
STAT_R are used to give the receiving part the possibility to signal whether it is ready to handle
new commands or not.

These following rules apply:

• Responses are not blocked by these bits, i.e. when issuing a command, the host application
must always have enough free resources to process a response to that command.

• CTRL_R and STAT_R are only checked between messages; i.e. when using the serial host
interface, it is not possible to pause or cancel an ongoing message fragmentation using
these bits.

• If the host application issues a command while STAT_R is cleared (0), that command will be
discarded by the module, in turn causing the DC error counter to be incremented.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 38 (104)

Host Application Anybus Module

CTRL_R = 1

STAT_R = 1

STAT_R = 1

CTRL_R = 1

STAT_R = 1

CTRL_R = 0

STAT_R = 1

CTRL_R = 0

STAT_R = 1

CTRL_R = 1

CTRL_R = 1

Send
Command #1

Send
Command #2

Pending
Command #2

Process
Command #1

Respond to
Command #1

Respond to
Command #2

Done!

Fig. 17

See also ...

• Handshake Registers, p. 19

• Instance attribute #8 in Anybus Object (01h), p. 49

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 39 (104)

6.5 Command Specification
6.5.1 General Information

This chapter covers global commands, i.e. commands which have the same command code
regardless of which object that is being accessed.

Some objects have special requirements, which are handled through object-specific commands.
In such cases, unlike global commands, the same command code may have different meaning
depending on context (i.e. which object that is being accessed). Object specific commands are
described separately for each object (when applicable).

See also...

• Anybus Module Objects, p. 48

• Host Application Objects, p. 64

Regarding generic command descriptions it should be noted that while a command has a defined
generic description and structure, the actual effect of it may differ greatly depending on the
context.

For example:

• Application issues Reset →Network Configuration Object = resets network settings

• Network Reset →Anybus issues Reset →Application Object = Anybus shifts to EXCEPTION
and awaits a hardware reset

Fields marked as reserved must be treated with caution. Reserved fields in messages sent
to the Anybus CompactCom must be set to 0 (zero), since they may have a defined use in
future Anybus revisions. In messages received from the Anybus CompactCom, reserved
fields shall simply be ignored.

6.5.2 Command Codes
The following commands are global, i.e. the same command code is used regardless of which
object that is being accessed. The commands are described in the subsections below.

Command Code Command Name
00h (reserved)

01h Get_Attribute

02h Set_Attribute

03h Create

04h Delete
05h Reset

06h Get_Enum_String

07h Get_Indexed_Attribute

08h Set_Indexed_Attribute

09h... 0Fh (reserved)

10h... 30h (reserved for object specific commands)

31h... 3Eh (reserved)

3Fh (reserved for object specific commands)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 40 (104)

6.5.3 Error Codes
If a command for some reason cannot be executed, the first byte in message data field (MsgData
[]) of the response is used to supply details about problem to the command initiator.

Additional object specific error information may also be added in the message data section.

Value Error Meaning

00h (reserved) -

01h
02h Invalid message format Command and error bit set

03h Unsupported object Object not registered

04h Unsupported instance The target instance does not exist

05h Unsupported command The target object does not support the specified command

06h Invalid CmdExt[0] Invalid value of CmdExt[0] or invalid combination of CmdExt
[0] and CmdExt[1}

07h Invalid CmdExt[1] Invalid setting in CmdExt[1]

08h Attribute not Set-able The requested attribute is not Set-able

09h Attribute not Get-able The requested attribute is not Get-able

0Ah Too Much Data Too much data in message data field

0Bh Not Enough Data Not enough data in message data field

0Ch Out of range A specified value is out of range

0Dh Invalid state The command is not supported in the current state

0Eh Out of resources The target object cannot execute the command due to
limited resources

0Fh Segmentation failure Invalid handling of the segmentation protocol

10h Segmentation buffer overflow Too much data received

11h... FEh (reserved) -

FFh Object Specific Error The object returned extended error information. Additional
details may or may not be included in the message data
field (MsgData[0...n])

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 41 (104)

6.5.4 Get_Attribute
Details

Command Code: 01h

Valid For: (depends on context)

Description

This command retrieves the value of an attribute. The attribute number must be left intact in an
error response.

• Command details:

Field Contents

CMDExt[0] Attribute number

CMDExt[1] (reserved)

• Response details:

Field Contents

MsgData[0..n] Attribute Value

6.5.5 Set_Attribute
Details

Command Code: 02h

Valid For: (depends on context)

Description

This command assigns a value to an attribute. The attribute number must be left intact in an
error response

• Command details:

Field Contents

CMDExt[0] Attribute number

CMDExt[1] (reserved)

MsgData[0..n] Attribute Value

• Response details:

(No data)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 42 (104)

6.5.6 Create
Details

Command Code: 03h

Valid For: Object Instance (Instance #0)

Description

This command creates a new instance within the object. If successful, the data portion of the
response contains the number of the newly created instance.

• Command details:

Object Specific

Not all objects have any specific details for this command. If there are any object specific
details, they are found in the description of the object in question.

• Response details:

Field Contents

MsgData[0] The number of the created Instance (low byte)

MsgData[1] The number of the created Instance (high byte)

6.5.7 Delete
Details

Command Code: 04h

Valid For: Object Instance (Instance #0)

Description

This command deletes a previously created instance (see above). If successful, all resources
occupied by the specified instance will be released.

• Command details:

Field Contents

CMDExt[0] Instance number to delete (low byte)

CMDExt[1] Instance number to delete (high byte)

• Response details (Success):

(No data)

• Response details (Error):

Field Contents

Invalid CMDExt[0] The specified instance does not exist.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 43 (104)

6.5.8 Reset
Details

Command Code: 05h

Valid For: (depends on context)

Description

This command performs a reset command on an object.

• Command details:

Field Contents

CMDExt[0] (reserved)

CMDExt[1] 00h = Power-on reset (actual power-on or simulated)
01h = Factory default reset
02h = Power-on + Factory default reset

• Response details:

(No data)

6.5.9 Get_Enum_String
Details

Command Code: 06h

Valid For: (depends on context)

Description

This command retrieves attributes which are of enumeration type (ENUM). The returned value is
the literal string associated with the specified enumeration value.

• Command details:

Field Contents

CMDExt[0] The number of the attribute

CMDExt[1] The enumeration value

• Response details (Success):

Field Contents

MsgData[0..n] The enumeration string.

• Response details (Error):

Field Contents

Invalid CMDExt[0..n] The enumeration value is out of range.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Object Messaging 44 (104)

6.5.10 Get_Indexed_Attribute
Details

Command Code: 07h

Valid For: (depends on context)

Description

This command retrieves the value of a single element of an attribute which consists of multiple
elements (i.e. an array). Note that this command cannot be used to access attributes of type
CHAR.

• Command details:

Field Contents

CMDExt[0] The number of the attribute

CMDExt[1] Index (first element has index 0)

• Response details (Success):

Field Contents

MsgData[0..n] Value

• Response details (Error):

Field Contents

Invalid CMDExt[0..n] Index is out of range

6.5.11 Set_Indexed_Attribute
Details

Command Code: 08h

Valid For: (depends on context)

Description

This command assigns a value to a single element of an attribute which consists of multiple
elements (i.e. an array). Note that this command cannot be used to access attributes of type
CHAR.

• Command details:

Field Contents

CMDExt[0] The number of the attribute

CMDExt[1] Index (first element has index 0)

MsgData[0...n] Value to set

• Response details (Success):

(No data)

• Response details (Error):

Field Contents

Invalid CMDExt[1] Index is out of range

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Initialization and Startup 45 (104)

7 Initialization and Startup
7.1 General Information

Before network participation, the following steps must be completed:

1. Initial Handshake

The purpose of the startup procedure is to make sure that both parts (the host application
and the Anybus CompactCom module) are ready to communicate. Normally an Anybus
CompactCom module is ready to communicate in less than 1.5 s. The module will then enter
the state SETUP. For more information, see Initial Handshake, p. 45.

2. Anybus CompactCom Setup

This step determines how the module shall operate. When done, the module will enter the
state NW_INIT.

For more information, see Anybus Setup (SETUP State), p. 46.

3. Network Initialization

At this stage, the module will attempt to read and evaluate information from the host
application. When finished, the module will enter the state WAIT_PROCESS.

For more information, see Network Initialization (NW_INIT State), p. 47.

When the module is restarted after a firmware download, the application must wait for
the upgrade to finish, before anything else is done, see below.

7.2 Initial Handshake
The startup procedure is slightly different depending on which type of host interface that is used.

7.2.1 Parallel Host Interface
The parallel host interface has two alternatives to handle the initial handshake:

• The host application shall wait 1.5 s after reset, followed by reading the Status Register.

• (Fast startup) When an interrupt arrives the host application immediately reads the Status
Register and then enters the state SETUP.

1.5 s or time to
interrupt detected

Wait (Anybus enters ‘SETUP’-state)

Release
Reset

Read
Status Register

Fig. 18

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Initialization and Startup 46 (104)

7.2.2 Serial Host Interface
The host application must wait at least 1.5s after reset before it sends its first telegram.

Min. 1.5s

Wait... (Anybus enters ‘SETUP’-state)

Release
Reset

Send
1st Telegram

Fig. 19

The Status Register shall be regarded as cleared at startup; this means that the first telegram must not
contain any message data since the STAT_T-bit is considered to be set to 0 (zero).

7.3 Anybus Setup (SETUP State)
This stage involves four distinctive steps:

1. Gather information about the Anybus CompactCom 30 (Optional)

The host application may retrieve the network type, as well as other properties that may be
relevant when configuring the module, from the Anybus Object (01h). This information may
also be used to select different implementations based on e.g. the module type value.

2. Network Configuration (Optional)

At this stage, the host application should update all instances in the Network Configuration
Object of which the value originates from physical switches (i.e. node address, baud rate
etc.). Settings which originate from “soft” input devices such as a keypad and display should
not be updated at this point.

3. Process Data Mapping (Optional)

The host application may optionally map ADIs to Process Data.

This step is optional, but may be required by some networking systems and/or Anybus
CompactCom implementations.

Certain Anybus CompactCom implementations may attempt to alter the Process Data map
during runtime. For more information, see application data object.

4. Finalize the Setup

The setup procedure is finalized by setting the attribute Setup Complete in the Anybus
Object (01h) to TRUE.

If successful, the module now shifts to the state NW_INIT (below), or in case of failure, to
the state EXCEPTION. In case of the latter, further information can then be read from the
attribute Exception in the Anybus Object (01h).

See also..

• Network Data Exchange, p. 15

• The Anybus State Machine, p. 32

• Anybus Object (01h), p. 49

• Network Configuration Object (04h), p. 62

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Initialization and Startup 47 (104)

7.4 Network Initialization (NW_INIT State)
At this stage, the Anybus CompactCom 30 will attempt to read and evaluate information from
the host application. The host application is required to respond to incoming requests to Host
Application Objects. If the requested object or attribute is not implemented in the host
application, simply respond with an error message. The module will in those cases use its own
default values for the requested attributes, or configured virtual attributes.

The host application is free to update any instances in the Network Configuration Object,
including those that do not originate from physical switches.

If a serious error is encountered (i.e. any error which prevents the module from proceeding) in
this state, the module will shift to the state EXCEPTION. Further information can then be read
from the attribute Exception in the Anybus Object (01h).

When done, the module enters the state WAIT_PROCESS.

The transition to this state is critical, especially if using the serial host interface, since
telegrams from this point may (depending on the setup) contain Process Data. It is
important to keep Write Process Data updated in this state since this data is buffered by
the module and may be sent to the network on the next state transition.

See also..

• The Anybus State Machine, p. 32

• Network Configuration Object (04h), p. 62

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 48 (104)

8 Anybus Module Objects
8.1 General Information

The objects in this chapter are implemented as standard in all Anybus CompactCom
implementations. Their functionality is categorized to indicate when and how to use the objects.

See also...

• Data Format, p. 36

• Error Codes, p. 40

• Categorization of Functionality, p. 81

For detailed information about each object, see...

• Anybus Object (01h), p. 49

• Diagnostic Object (02h), p. 54

• Network Object (03h), p. 58

• Network Configuration Object (04h), p. 62

8.2 Object Revisions
The purpose of the Object Revision attribute is to make it possible for the host application to
determine if the revision of the object in the Anybus module is compatible with the software
implementation in the host application, and/or to make it possible to choose different
implementations based on the object revision.

As a general rule, the object revision is updated when the object is changed in such a way that
the change may cause compatibility issues in the host application software implementation.
Minor changes, such as when an attribute or command has been added, are normally not cause
for a revision change.

The definition of the Object Revision attribute has changed during early development.
This means that Object Revisions in early Anybus CompactCom implementations has
been incremented also even for minor changes. When applicable, a note will be added to
each network interface appendix stating from which firmware revision the present
definition is used.

In case of questions, please contact www.anybus.com/support.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

http://www.anybus.com/support

Anybus Module Objects 49 (104)

8.3 Anybus Object (01h)
Category
Basic

Object Description
This object assembles data about the Anybus CompactCom 30 itself. The data in question does not as such
represent the industrial network the Anybus CompactCom is adapted to, but describes data inherent to the
module. This data is available for use in the application. The values may differ, depending on industrial
network, and are in that case described in the respective appendices.

Most attributes in this object have access type “get” where data can be fetched using the command Get_
Attribute. The only attribute that is mandatory to set is “Setup complete” (instance #1, attribute #5), which is
used by the application to notify the module that it has finished the setup. If the configuration is not accepted,
the module will shift to the state EXCEPTION, and information can be read from instance #1, attribute #6
(Exception Code).

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Anybus”

2 Revision Get UINT8 04h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Description

1 Module Type Get UINT16 Value: Meaning:

0401h: Standard Anybus CompactCom 30

0402h: Anybus CompactCom Drive Profile 30

(Other) (reserved for future products)

2 Firmware version Get struct of:
UINT8 Major
UINT8 Minor
UINT8 Build

Firmware version. Note that this value shall generally not be used to
determine if a particular functionality is available or not. Please use
the attribute Revision of each individual object for this purpose

3 Serial number Get UINT32 Unique serial number

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 50 (104)

Name Access Data Type Description

4 Application watchdog
timeout

Get/Set UINT16 Application watchdog configuration

Value:
0:
(other):

Meaning:
Disabled (default)
Timeout value (ms)

If enabled, the watchdog timeout time is active immediately,
regardless of the state of the application. The internal timer is
reloaded every time it is restarted, so the value of this attribute can
be changed during runtime.

5 Setup complete Get/Set BOOL This attribute shall be set to TRUE when the Anybus Setup stage has
been completed. If the configuration is accepted, the Anybus
CompactCom shifts to the state NW_INIT. If not, i.e. if a serious
error is detected in the configuration, the module will shift to the
state EXCEPTION. In such case further information can be read from
the attribute Exception Code (below)
See also...
Anybus Setup (SETUP State), p. 46

6 Exception code Get ENUM See Exception Codes below.

7 FATAL event Get/Set struct of: (HMS
Specific)

The latest FATAL event (if any) is logged to this instance. Used for
evaluation by HMS support.
(The contents of this attribute is only used as input to HMS support
during application development)

8 Error Counters Get struct of: Error counters (stops counting at FFFFh).
(The contents of this attribute is only used during application
development.)

UINT16 DC DC: Discarded commands (received with R = 0)

UINT16 DR DR: Discarded (unexpected) responses

UINT16 SE SE: Serial reception errors

UINT16 FE FE: Fragmentation errors

9 Language Get/Set ENUM Current language:

Value: Enumeration String:

00h:
01h:
02h:
03h:
04h:

“English” (default)
“Deutsch”
“Español”
“Italiano”
“Français”

See also...
Application object , including details for command Change_
Language_request.

10 Provider ID Get UINT16 Preprogrammed and stored permanently in FLASH by HMS during
production (contact HMS for further information).

Value:
0001h:
FFFFh:
Other:

Meaning:
HMS Industrial Networks
(reserved)
Provider specific

11 Provider specific info Get/Set UINT16 The information stored in this attribute is provider-specific, i.e. it has
no predefined meaning and is not evaluated nor used by the Anybus
module.
Any value written to this attribute will be stored in nonvolatile
memory. Default value is 0000h.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 51 (104)

Name Access Data Type Description

12 LED colors Get struct of:
UINT8 LED1A
UINT8 LED1B
UINT8 LED2A
UINT8 LED2B

This attributes specifies the colors of the network status LEDs. See
Anybus CompactCom M30 Hardware Design Guide for more
information.
Value:
00h:
01h:
02h:
03h:
04h:
05h:
06h:

Meaning:
None (not used)
Green
Red
Yellow
Orange
Blue
White

13 LED status Get UINT8 Bit field holding the current state of the network status LEDs as
follows:
Bit:
b0:
b1:
b2:
b3:
b4... 7:

Contents:
LED1A status (0=OFF, 1=ON)
LED1B status (0=OFF, 1=ON)
LED2A status (0=OFF, 1=ON)
LED2B status (0=OFF, 1=ON)
(reserved)

14 (reserved) - - -

15 Auxiliary Bit Get/Set UINT8 See also...

• Auxiliary Bit (STAT_AUX, CTRL_AUX), p. 20

• table below

16 GPIO configuration Get/Set UINT16 This attribute makes it possible to use the host interface GPIO pins
for special purposes.
See below for more information
Default: 0000h

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 52 (104)

Exception Codes
When in the state EXCEPTION, this attribute provides additional information.

Enumeration String Description

00h No exception -

01h Application timeout The host application has not responded within the specified watchdog timeout
period.

02h Invalid device address The selected device address is not valid for the actual network.
03h Invalid communication settings The selected communication settings are not valid for the actual network.

04h Major unrecoverable app event The host application has reported a major unrecoverable event to the Diagnostic
object.

05h Wait for reset The module is waiting for the host application to execute a reset.

06h Invalid process data config The Process Data configuration is invalid.

07h Invalid application response The host application has provided an invalid response to a command.

08h Nonvolatile memory checksum error At least one of the parameters stored in nonvolatile memory has been restored
to its default value due to a checksum error.

09h Safety module error Something is wrong with the safety module. More information can be found in
the Exception Information attribute in the Functional Safety Object.
The only Anybus CompactCom 30 series module to implement functional safety
is Anybus CompactCom 30 PROFINET 2-Port, the Functional Safety Objects are
described in the network interface appendix for that module.

0Ah Insufficient application implementation The application does not implement the functionality required for the Anybus
module to continue its operation.

(other) (reserved) -

See also...

• The Anybus State Machine, p. 32

Auxiliary Bit
This attribute defines the function for the CTRL_AUX and STAT_AUX bits.

Function CTRL_AUX STAT_AUX

00h None (default) No function, set to 0 (zero). No function, always 0 (zero).

01h Changed Data indication 0: Write Process Data
unchanged
1: Write Process Data
updated

0: Read Process Data
unchanged
1: Read Process Data
updated

(other) (reserved) - -

See also...

• Handshake Registers, p. 19

• Auxiliary Bit (STAT_AUX, CTRL_AUX), p. 20

Object Specific Error Codes
The following object-specific error codes may be returned by the module as a response to setting the attribute
Setup complete.

Error Description

01h Invalid process data configuration The Process Data configuration is invalid

02h Invalid device address The selected device address is not valid for the actual network
03h Invalid communication settings The selected communication settings are not valid for the actual network

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 53 (104)

GPIO Configuration
This attribute makes it possible to use the GPIO (General Purpose IO) pins for other purposes than general IO.
The attribute will have to be set during setup for any changes to take effect. The functionality is not introduced
in all members of the Anybus CompactCom 30 product family, please consult the network appendices for more
information

Please note that the general output pins are defined as active low.

Function Description

0000h Standard GIP[0..1] are used as general input pins.
GOP[0..1] are used as general output pins.

0001h Extended LED functionality GIP[0..1] are used as network specific, active low LED outputs associated with
the left, or single port.
GOP[0..1] are used as network specific, active low LED outputs associated with
the right port on dual port modules.

(other) (reserved)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 54 (104)

8.4 Diagnostic Object (02h)
Category
Specific to each industrial network, see network guides.

Object Description
This object provides a standardized way of reporting diagnostic events to the network. Exactly how this is
represented on the network differs, however common to all implementations is that the module enters the
state EXCEPTION in case of a major unrecoverable event.

When the module has been started and initialized, no instances exist in the module. When a diagnostic event,
e.g. a blown fuse, occurs in the application, the application creates an instance with information on severity
and kind of event. The information in this instance remains available for the application, until the application
deletes the instance. The event code in the instance is processed by the module, to transfer correct network-
specific information about the event to the network used.

Supported Commands

Object: Get Attribute (01h)

Create (03h)

Delete (04h)

Instance: Get Attribute (01h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Diagnostic”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 (depends on number of created diagnostic events)

4 Highest instance no. Get UINT16 (network specific)

11 Max no. of instances Get UINT16 Max. no. of instances that can be created (network specific)
Of the maximum number of instances there should always be one
instance reserved for an event of severity level “Major,
unrecoverable”, to force the module into the state EXCEPTION.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 55 (104)

Instance Attributes (Instance #1... N)
Name Access Type Description

1 Severity Get UINT8 See below

2 Event Code Get UINT8 See below.
3 NW specific extension Get Array of UINT8 Network specific event information (optional)

Severity Levels
Bit Combination Severity Comment

00h Minor, recoverable -

10h Minor, unrecoverable Unrecoverable events cannot be deleted

20h Major, recoverable -

30h Major, unrecoverable Causes a state-shift to EXCEPTION

(other) - (reserved for future use)

Recoverable events shall be deleted by the application when the cause of the error is gone.

Unrecoverable events cannot be deleted. They remain active until the Anybus CompactCom is reset or power
is turned off.

Event Codes
Meaning Comment

10h Generic Error -

20h Current -

21h Current, device input side -

22h Current, inside the device -

23h Current, device output side -

30h Voltage -

31h Mains Voltage -

32h Voltage inside the device -

33h Output Voltage -

40h Temperature -

41h Ambient Temperature -

42h Device Temperature -

50h Device Hardware -

60h Device Software -

61h Internal Software -

62h User Software -

63h Data Set -

70h Additional Modules -

80h Monitoring -

81h Communication -

82h Protocol Error -

90h External Error -

F0h Additional Functions -

FFh NW specific Definition is network-specific; consult separate network guide for further
information.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 56 (104)

Command Details: Create
Details

Command Code: 03h

Valid For: Object

Description

Creates a new instance, in this case representing a new diagnostic event in the host application.

• Command details:

Field Contents

CMDExt[0] Severity

CMDExt[1] Event Code, see previous page

MsgData[0...n] Network specific extension (optional, definition is network specific)

• Response details (Success):

Field Contents

MsgData[0...1] The number of the instance that was created as a result from the command

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 57 (104)

Command Details: Delete
Details

Command Code: 04h

Valid For: Object

Description

Deletes an existing instance, i.e. a previously created diagnostic event.

Instances representing unrecoverable events cannot be deleted.

• Command details:

Field Contents

CMDExt[0] The number of the instance to delete (low byte)

CMDExt[1] The number of the instance to delete (high byte)

• Response details (Error):

Error Contents Comment
Object Specific Error MsgData[0] = FFh -

MsgData[1] = 01h Error code (Not removed).
The event could not be removed, either because the event itself is
unrecoverable or due to a network specific reason.

See also:

– Error Codes, p. 40

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 58 (104)

8.5 Network Object (03h)
Category
Basic

Object Description
This object holds general information about the network (i.e. network type, data format etc.). It is also used
when mapping ADIs as Process Data from the host application side.

See also...

• Application Object (FFh), p. 75

• Application Data Object (FEh), p. 66

Supported Commands

Object: Get_Attribute (01h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Map_ADI_Write_Area (10h)

Map_ADI_Read_Area (11h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Network”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 (Module type dependent)

4 Highest instance no. Get UINT16 (Module type dependent)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 59 (104)

Instance Attributes (Instance #1)
Name Access Category Type Description

1 Network type Get Extended UINT16 (See separate Network Guide and/or table below)

2 Network type string Get - Array of CHAR

3 Data format Get Basic ENUM Network data format:
Value:
00h:
01h:

Enumeration String:
“LSB First”
“MSB First”

4 Parameter data support Get Extended BOOL This attribute indicates if the network supports acyclic
data services. It can also be used for deciding what
ADIs to map to Process Data.

Value:
True:
False:

Meaning:
Network supports acyclic data access
No support for acyclic data

5 Write Process Data size Get - UINT16 The current write Process Data size (in bytes).
Updated on every successful Map_ADI_Write_Area or
Remap_ADI_Write_Area.

6 Read Process Data size Get - UINT16 The current read Process Data size (in bytes).
Updated on every successful Map_ADI_Read_Area or
Remap_ADI_Read_Area.

7 Exception Information Get - UINT8 Additional network specific information may be
presented here if the module has entered the
EXCEPTION state (see separate network guide).

Network type Network Type String

0099h “BACnet MS/TP”

009Ah “BACnet/IP”

0020h “CANopen”

0090h “CC-Link”
0065h “ControlNet”
0025h “DeviceNet”
0087h “EtherCAT”
009Ch “EtherNet/IP (2–port)”

009Bh “EtherNet/IP (2-Port) BB DLR”

0045h “Modbus RTU”
0093h “Ethernet Modbus-TCP 2-Port”
0005h “PROFIBUS DP-V1”
0096h “PROFINET IO 2–Port”
0098h “Sercos III”

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 60 (104)

Command Details: Map_ADI_Write_Area
Details

Command Code: 10h

Valid For: Instance

Description

This command maps an ADI as Write Process Data. If successful, the response data contains the offset of the
mapped ADI from the start of the Write Process Data image.

• It is strongly recommended not to map an ADI more than once (i.e. map it multiple times to the Read- or
Write Process Data, or map it to both the Read- and Write Process Data) since this is not accepted by
some networks.

• It is not possible to map only part of an ADI, i.e. all elements of an ADI must always be mapped.

• Certain Anybus CompactCom implementations allow the network to remap the Process Data during
runtime. For more information, see Application Data Object (FEh).

See also...

• Application Data Object (FEh), p. 66

• Application Object (FFh), p. 75

Error control is only performed on the command parameters. The Anybus module does not verify the
correctness of these parameters by a read of the actual ADI attributes.

• Command details:

Field Contents

CmdExt[0] Instance number of the ADI (low byte)

CmdExt[1] Instance number of the ADI (high byte)

MsgData[0] Data Type of the ADI, see Data Format, p. 36

MsgData[1] Number of elements in the ADI

MsgData[2] Order Number of the ADI (low byte)

MsgData[3] Order Number of the ADI (high byte)

The Order Number in the mapping command equals that of the command Get_Instance_Number_By_
Order in the Application Data Object.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 61 (104)

• Response details (Success):

Field Contents

MsgData[0] Offset of the mapped ADI from the start of the Write Process Data

• Response details (Error):

Error Contents
Invalid CmdExt[0] The ADI number is not valid.

Invalid State Mapping of ADIs is only allowed in the SETUP state

Object Specific Error Object specific error, see MsgData[1] for details:

01h: Invalid data type The data type is not valid for Process Data

02h: Invalid number of elements The number of elements is not valid (zero)

03h: Invalid total size The requested mapping is denied because the resulting total data
size would exceed the maximum permissible (depending on
network type)

04h: Multiple mapping The requested mapping was denied because the specific network
does not accept multiple mapping of ADIs

05h: Invalid Order Number The order number is not valid (zero)

06h: Invalid map command
sequence

The order in which the commands were received is invalid

Error control is only performed on the command parameters. The Anybus module does not verify the
correctness of these parameters by a read of the actual ADI attributes.

Command Details: Map_ADI_Read_Area
Details

Command Code: 11h

Valid For: Instance

Description

This command is identical to Map_ADI_Write_Area, described above, except that it maps ADIs to Read Process
Data.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 62 (104)

8.6 Network Configuration Object (04h)
Category
Network specific

Object Description
This object contains network specific configuration parameters that may be set by the end user, typically
settings such as baud rate, node address etc. Although the actual definition of the instances in this object are
network specific, instance 1 and 2 are fixed in that they are always of an 8-bit data type.

When possible, the following convention is used for these instances:

Instance no. Data type Parameter

1 Any 8 bit data type Currently selected network device address (or similar).

2 Any 8 bit data type Currently selected network communication bit rate (or similar).

The instance values in this object must be updated whenever their originating value changes. Mechanical
switches or similar need therefore be continuously monitored by the host application.

Instances tagged with ‘shared’ access (indicated by the descriptor) must be regarded as volatile; a set’ access towards
such an instance may or may not alter its value. The Anybus CompactCom will not respond with an error in case the
value remains unaffected.

Differentiation of Input Devices
The Anybus CompactCom makes a distinction between parameters originating from “hardwired” input devices
(i.e. physical mechanical switches) and parameters specified using a “soft” input device such a keypad and
display. This permits the Anybus module to fulfill network specific needs related to the actual origin of a
parameter (e.g. some networks require that a change of value on physical switches is visually acknowledged on
the on-board LEDs).

This distinction is based on the following actions from the host application (see table).

State Actions (Host Application) Anybus Behavior

SETUP Poll and update parameters
originating from physical switches
(make sure to issue at least one Set
command for each one of the
affected parameters). Do not update
parameters originating from “soft”
input devices (do not issue any Set
commands for these parameters yet).

The Anybus CompactCom identifies the affected parameters as originating from
physical switches. The remainder are assumed to originate from “soft” input
devices.

(other states) Poll and update all parameters (i.e.
physical switches and “soft” input
methods) as necessary.

The Anybus CompactCom keeps track of the parameters which were updated
during the SETUP state, and is thus able to treat them differently if required by
the network.

Supported Commands

Object: Get_Attribute (01h)

Reset (05h) (The actual behavior is network specific)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Anybus Module Objects 63 (104)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Network Configuration”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 (Network dependent)

4 Highest instance no. Get UINT16 (Network dependent)

Instance Attributes (Instance #1... N)
Each instance represents a network configuration parameter. The attributes within it provides a
comprehensive description of the parameter (name, data type etc.). Instance names and enumeration strings
are multilingual .The actual strings are of course network specific, but the maximum number of characters is
limited to thirteen (13).

Name Access Category Type Description

1 Name Get Application
specific

Array of CHAR Parameter name (e.g. “Node address”)

2 Data type Get Application
specific

UINT8 Data type, see Data Format, p. 36

3 Number of elements Get Application
specific

UINT8 Number of elements of the specified data type

4 Descriptor Get Application
specific

UINT8 Bit field specifying the access rights for the parameter

Bit:
b0:
b1:
b2:

Access:
1: Get Access
1: Set Access
1: Shared Access
Instances tagged with shared access must
be regarded as volatile; a Set-access
towards such an instance may or may not
alter its value. The Anybus CompactCom
will not respond with an error in case the
value remains unaffected.

5 Value Determined
by attribute
#4

Application
specific

Determined by
attribute #2

Actual parameter value. Stored in nonvolatile memory
Get access: the actually used value will be returned
Set access: the configured (and possibly the actual)
value will be written

Instance #1 and instance #2 are categorized as Basic, if they exist in an application. All other instances of this
object are categorized in the respective network guides.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 64 (104)

9 Host Application Objects
9.1 General Information

The objects in this group are meant to be implemented within the host application software. The
Anybus module will issue commands towards these objects to access the settings and data
within them. Their functionality is categorized to indicate when and how to use the objects.

See also ...

• Data Format, p. 36

• Anybus Module Objects, p. 48

• Categorization of Functionality, p. 81

For detailed information about each object, see...

• Application Object (FFh), p. 75

• Application Data Object (FEh), p. 66

9.2 Implementation Guidelines
Implementation of an object is generally a matter of parsing incoming commands and forming
suitable responses. While the exact details as of how this is done is beyond the scope of this
document, it is important to follow the following basic rules:

• An implemented object must feature all object attributes (instance #0) as specified in this
document and/or the network interface appendix.

• In case a command for some reason cannot be executed (i.e. if a particular object, attribute
or command hasn’t been implemented), respond with a suitable error code to indicate the
source of the problem.

• Support for the Application Data Object is mandatory.

• Support for the Application Object is optional, albeit highly recommended.

• Support for Network Specific Objects is optional, but recommended. It shall however be
noted that the standard functionality provided by the Anybus CompactCom limits network
functionality to the use of certain predefined device information and services. These
limitations may be more or less significant and are described in each separate network
interface appendix. In case this standard functionality is inadequate, i.e. vendor specific
information or enhanced network functionality is required, Network Specific Objects may be
implemented in the host application.

• During startup the module will attempt to retrieve values of attributes in the Network
Specific Objects. If the module tries to access an object that is not implemented, respond
with an error message (03h, Unsupported Object). If an attribute is not implemented in the
host application, respond with an error message (06h, “Invalid CmdExt[0]”). The module will
then use its default value. Also, if the module tries to retrieve a value of an attribute that is
not listed in the network appendix, respond with an error message (06h, “Invalid CmdExt
[0]”.

• Support for Process Data remapping (by means of commands ‘Remap_ADI_Write_Area’ and
‘Remap_ADI_Read_Area’) is optional for the Anybus CompactCom 30 range and may
provide better network integration for certain networks.

See also ...

• Error Codes, p. 40

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 65 (104)

The purpose of the Object Revision attribute is to make it possible for the Anybus
CompactCom to establish whether or not the object implementation in the host
application is compatible with that of the Anybus CompactCom, and to use different
implementations if necessary. It is therefore imperative that the Object Revision attribute
reflects the actual implementation, and that it is incremented based on changes in this
document and/or the network guide only.

In case of questions, contact the HMS Industrial Networks technical support services at
www.anybus.com/support.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

http://www.anybus.com/support

Host Application Objects 66 (104)

9.3 Application Data Object (FEh)
Category
Basic. Please note that this object is mandatory.

Object Description
Each instance within this object (a.k.a. Application Data Instance or ADI) correlates to a block of data to be
represented on the network. Each time such data is accessed from the network, the module translates such
requests into object requests towards this object (or instances within it). The module may also access this
object spontaneously if necessary. The exact representation on the network is highly network specific; e.g. on
DeviceNet, ADIs are represented as dedicated CIP objects, while on PROFIBUS, ADIs are accessed by means of
acyclic DP-V1 read and write services.

To allow the network and the Anybus CompactCom to efficiently scan the host application for ADIs, regardless
of their instance number, this object implements the additional command Get_Instance_Number_By_Order.
This command retrieves the ADI instance number as if the ADIs were sorted in a numbered list, allowing the
Anybus CompactCom to query only for the instances that are actually implemented in the host application. The
order number is also used when mapping ADIs to Process Data, see descriptions of the commands Map_ADI_
Write_Area in the Network Object (03h), p. 58.

In the example below, the host application has four ADIs with instance numbers 1,3, and 100.

Instance # Implemented Order Number

1 Yes 1
2 No -

3 Yes 2
4... 99 No -

100 Yes 3

In this particular case, the host application shall respond with instance number 100 to a Get_Instance_
Number_By_Order request for Order Number 3.

Please take the following into consideration when designing an application:

• The Anybus module does not take over the host application responsibility for error control of parameter
requests, even if a request is clearly erroneous (e.g. a write request to an ADI with zero byte data, or an
attempt to access an attribute that doesn’t exist, will not be filtered out by the module).

• The response time in the host application (i.e. the time spent processing an incoming request towards this
object prior to responding to it) must be taken into consideration, since some networks may impose
certain timing demands. Where applicable, special timing requirements etc. are specified in each separate
network guide.

• Implementation of the following commands is mandatory when using products with profile support:

– Get_Profile_Instance_Numbers (11h)

– Remap_ADI_Write_Area (13h)

– Remap_ADI_Read_Area (14h)

• Implementation the following commands is mandatory if remapping of Process Data is to be supported
(object rev. 2 and higher).

– Remap_ADI_Write_Area (13h)

– Remap_ADI_Read_Area (14h)

– Get_ADI_Info (12h)

• Implementation of the command Get_ADI_Info is mandatory since object rev. 2.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 67 (104)

Supported Commands

Object: Get_Attribute (01h)

Get_Instance_Number_By_Order (10h)

Get_Profile_Instance_Numbers (11h)

Remap_ADI_Write_Area (13h)

Remap_ADI_Read_Area (14h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Get_Indexed_Attribute (07h)

Set_Indexed_Attribute (08h)

Get_ADI_Info (12h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Application Data”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 (depends on application)
4 Highest instance no. Get UINT16

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 68 (104)

Instance Attributes (Instance #1... n)
Name Access Type Description

1 Name Get Array of CHAR ADI name (can be multilingual)

2 Data type Get Array of UINT8 Data type of ADI value (see Data Format, p. 36)

3 Number of elements Get UINT8 Number of elements of the specified data type. It is strongly
recommended not to use ADIs with Number of elements set to zero
since this is not accepted by some networks.

4 Descriptor Get UINT8 Bit field specifying the access rights for the ADI value etc.
b3 and b4 are mandatory if remapping of Process Data is supported.

Bit: Access:
b3 and b4 are mandatory if remapping of Process Data is
supported.

b0: 1: Get Access

b1: 1: Set Access

b2: -: (reserved, set to zero)

b3: 1: Can be mapped as Write Process Data

b4: 1: Can be mapped as Read Process Data

5 Value(s) Determined
by attribute
#4

Determined by
attribute #2

ADI value(s)
Indexed elements can be of different types and sizes as specified in
attribute #2.
This attribute consists of all elements packed together with bit
alignment. No implicit padding should be used. See table below for
specific alignment restrictions and explicit padding.

6 Max. value Get Determined by
attribute #2

The maximum permitted ADI value.
Implementation of this attribute is optional. If not implemented, the
module will use the maximum value of the specified data type for
this attribute.

7 Min. value Get Determined by
attribute #2

The minimum permitted ADI value. Implementation of this attribute
is optional. If not implemented, the module will use the minimum
value of the specified data type for this attribute.

8 Default value Get Determined by
attribute #2

The default ADI value. Implementation of this attribute is optional. A
zero value (float: +Min. value) will be used if not implemented.

• The byte order of attributes #5–8 is network dependent; the Anybus does not perform any byte swapping.

• The Max/Min/Default attributes is common for all elements in the ADI. That is, there is no separate Max/
Min/Default value for each element in the array.

• Once defined, the number of elements is fixed and must, together with the data type, represent the
buffer space needed to handle the array. It is not permitted change to the number of elements during
runtime.

• The instance value(s) must fit entirely into the message data field. The number of elements, multiplied by
the size of each element in bytes, must therefore never exceed 255 bytes.

• The only attributes that may be changed during runtime are attribute #1 and #5. Once defined, all other
attributes must be considered fixed; changing them during runtime is not permitted.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 69 (104)

Command Details: Get_Instance_Number_By_Order
Details

Command Code: 10h

Valid for Object

Description

This command requests the actual instance number of an ADI as if sorted in an ordered list.

• Command details:

Field Contents

CmdExt[0] Requested Order Number (low byte)

CmdExt[1] Requested Order Number (high byte)

• Response details (Success):

Field Contents

MsgData[0...1] The instance number of profile ADI

• Response details (Error):

Error Contents
Invalid CmdExt[0] The requested Order Number is not associated with an ADI.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 70 (104)

Command Details: Get_Profile_Instance_Numbers
Details

Command Code: 11h

Valid for Object

Description

This command is only applicable for products with built-in support for network profiles, such as the Anybus CompactCom
30 Drive Profile range of products; it is not used by the standard version of the Anybus CompactCom 30.

This command retrieves a list of the ADI instance numbers associated with a certain profile. The number of
ADIs used for this, their purpose, data type etc., are dictated by the actual profile; the application may
however assign instance numbers as needed to suit the implementation.

When using the Anybus CompactCom 30 Drive Profile range of products, implementation of this
command is mandatory. For further information, consult the Anybus CompactCom 30 Drive Profile
Design Appendix. When using the standard version of the Anybus CompactCom 30, implementation of
this command is not necessary.

• Command details:

Field Contents

CmdExt[0] (reserved, ignore)

CmdExt[1] Value: Profile:
00h (reserved)

01h Drive Profile
(other) (reserved for future use)

• Response details:

Field Type Meaning

MsgData[0...1] UINT16 The instance number of profile ADI 1

MsgData[2...3] UINT16 The instance number of profile ADI 2

...
MsgData[(2n-2)... (2n-1)] UINT16 The instance number of profile ADI n

The contents of this list is entirely profile dependent and is specified in the separate profile design guide (i.
e. the Anybus CompactCom Drive Profile Design Appendix).

Optional or conditional profile ADIs that are not supported by the host application shall be indicated with
an instance number of zero.

The Anybus module enters the EXCEPTION state if any of the following occurs:

– the size of the response did not match the requested profile

– a required parameter was marked as not supported (see note 2)

– the application indicated an error in the response

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 71 (104)

Command Details: Get_ADI_Info
Details

Command Code: 12h

Valid for Instance

Description

This command is used to gather the object attributes Data type, Number of elements and Descriptor of an ADI
in a single response message.

Implementation is mandatory since object rev. 2.

• Command details:

Field Contents

CmdExt[0] (reserved, ignore)

CmdExt[1]

• Response details (Success):

Field Contents

MsgData[0] Data type

MsgData[1] Number of elements

MsgData[2] Descriptor

• Response details (Error):

Error Meaning

04h Unsupported instance

Command Details: Remap_ADI_Write_Area
Details

Command Code: 13h

Valid for Object

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 72 (104)

Description

The Anybus module issues this command when the network requests changes in the Process Data map. The
ADIs are mapped at the insertion point in the same order as stated by the command. The command can
remove and/or insert multiple mapping items, starting at the point indicated by the mapping item number in
CmdExt[0], where a mapping item is an ADI previously mapped by a Map_ADI_Write_Area command, or an
ADI (or elements of a multi-element ADI) previously mapped by a Remap_ADI_Write_Area command.

The following set of data is included in the command data for each inserted mapping item:

• The ADI number

• The index to the first element to map

• The number of consecutive elements to map

The command may be issued in the following Anybus CompactCom states: NW_INIT, WAIT_PROCESS, IDLE and
ERROR.

All actions specified in the command shall either be carried out or rejected, i.e. the Process Data map must
remain unchanged if the command was not accepted.

The Anybus module is limited to one outstanding remap command at a time.

See also...

• Network Object (03h), p. 58

• Runtime Remapping of Process Data, p. 96

To support this procedure, the host application must be capable of remapping the Process Data during
runtime. This is a mandatory requirement for object rev. 2, and optional for object rev. 3. Support for
this command is highly recommended and is required when using the Anybus CompactCom Drive Profile
range of products. It may also provide better network integration for certain networks in the standard
product range.

• Command details:

Field Contents

CmdExt[0] Start of remap (low byte) (mapping item number, 0 = first)

CmdExt[1] Start of remap (high byte) (mapping item number, 0 = first)

Data[0-1] The number of current mapping items to remove

Data[2-3] The number of mapping items to insert (0... 62)

Data[4-5] New mapping item 1: ADI number

Data[6] New mapping item 1: Index to the first element to map

Data[7] New mapping item 1: Number of consecutive elements to map

Data[8-9] New mapping item 2: ADI number

Data[10] New mapping item 2: Index to the first element to map

Data[11] New mapping item 2: Number of consecutive elements to map

... (etc.)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 73 (104)

• Response details (Success):

Field Contents

MsgData[0] The resulting total size of the write process data area in bytes (low byte)

MsgData[1] The resulting total size of the write process data area in bytes (high byte)

• Response details (Error):

Error Code Error Meaning

01h Mapping item error The requested mapping is denied because of a NAK to at least one mapping
item

02h Invalid total size The requested mapping is denied because the resulting total data size would
exceed the maximum permissible for the application

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 74 (104)

Command Details: Remap_ADI_Read_Area
Details

Command Code: 14h

Valid for Object

Description

This command is used to (re-)map ADIs to the read process data area. It is otherwise equivalent to Remap_
ADI_Write_Area.

A successful transfer of an ACK to a remap command indicates the point where the process data map will be
changed. For serial applications, this means that a changed process data map shall be expected or used in
telegrams following the empty telegram (or telegrams in case of retransmissions) after the ACK (see
runtimeremapping).

Handling of changed data indication (Auxiliary Bit) during a remap is described in Changed Data Indication, p.
22.

• Network Object (03h), p. 58

• Runtime Remapping of Process Data, p. 96

To support this procedure, the host application must be capable of remapping the Process Data during
runtime. This is a mandatory requirement in the case of the Anybus CompactCom Drive Profile range of
products, but may also provide better network integration for certain networks in the standard product
range. For these products. support for this command is optional, but highly recommended.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 75 (104)

9.4 Application Object (FFh)
Category
Extended

Object Description
This object groups general settings for the host application. It is not mandatory, but it is highly recommended
to implement this object and its commands to be able to support multiple languages and network reset
requests.

Supported Commands

Object: Get_Attribute (01h)

Reset (05h)

Reset_Request (10h)

Change_Language_Request (11h)

Instance: Get_Attribute (01h)

Set_Attribute (02h)

Get_Enum_String (06h)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Application”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 76 (104)

Instance Attributes (Instance #1)
Name Access Type Description

1 Configured Get BOOL Indicates if the application parameters have been changed from
their out-of-box value.
Value:
False:
True:

Meaning:
Out-of-box state.
Configured, settings have been altered.

See details for commands “Reset” and “Reset_Request” below

2 Supported languages Get Array of ENUM List specifying which languages that are supported by the host
application.

Value: Meaning:

00h: “English”.

01h: “Deutsch”.
02h: “Español”.

03h: “Italiano”.
04h: “Français”.

See also ...

• Anybus Object (01h), p. 49, instance #1, attribute #9

• Details for command Change_Language_Request below.

Command Details: Reset
Details

Command Code: 05h

Valid for: Object

Description

This command is issued by the module when a reset is required. Depending on the network type, it may, or
may not, be preceded by a “Reset_Request” command.

• Command details:

Field Contents Comment

CmdExt[0] (reserved, ignore) -

CmdExt[1] 00h: Power-on reset This shall be regarded as a device reset, i.e. the host application shall reset the
module via the /RESET signal.
The Anybus module enters the state EXCEPTION prior to issuing this type of
request.

01h: Factory default
reset

This shall cause the host application to return to an application specific out-of-
box state. Any network-specific procedures necessary to set the module to this
state are performed automatically.
The state of the Anybus module, prior to this request, is network specific.

02h: Power-on +
Factory default

A combination of the two above.
The Anybus module enters the state EXCEPTION prior to issuing this type of
request.

• Response details:

(No data)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 77 (104)

Command Details: Reset_Request
Details

Command Code: 10h

Valid for: Object

Description

On certain networks, this command may be issued prior to the Reset command (see below). This is, as the
name implies, a request and not an actual reset command.

The requested reset can be either a Power-on reset, a Factory Default reset, or both. A Power-on reset shall be
regarded as a device reset.

If the request is granted, the host application must also be prepared to receive a corresponding Reset
command (see figure).

The host application is also free to respond with an error in case a reset for some reason cannot be executed.
In such case, no Reset command will be issued by the module.

Host Application Anybus Module Network

Reset request (power-on)

Reset_Request (power-on)

(request granted)

Reset acknowledge

Reset (power-on)

State = EXCEPTION

Fig. 20

Host Application Anybus Module Network

Reset request (power-on)

Reset_Request (power-on)

(reset not granted)

Reset refused acknowledge

Fig. 21

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 78 (104)

This command is issued by the module when a reset is required. Depending on the network type, it may, or
may not, be preceded by a “Reset_Request” command.

• Command details:

Field Contents

CmdExt[0] (reserved, ignore)

CmdExt[1] 00h: Power-on reset
01h: Factory default reset

02h: Power-on + Factory default

• Response details:

(No data)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 79 (104)

Command Details: Change_Language_Request
Details

Command Code: 11h

Valid for: Object

Description

This command will be issued by the module when a change of the current language is requested from the
network.

If accepted, it will result in a corresponding change of the Language Attribute (#9) in the Anybus Object (01h).
The host application must also adjust its internal language settings accordingly.

• Command details:

Field Contents

CmdExt[0] Reserved. Value = 00h

CmdExt[1] The requested language

Value:
00h:
01h:
02h:
03h:
04h:

Language:
English.
German
Spanish.
Italian.
French.

• Response details:

(No data)

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Host Application Objects 80 (104)

9.5 Host Application Specific Object (80h)
Category
Extended

Object Description
The functionality of this object is not specified. The application is free to specify the functionality. E.g. the
object can be used to access data in the application using the SSI interface on Ethernet capable modules.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix A: Categorization of Functionality 81 (104)

A Categorization of Functionality
The objects, including attributes and services, of the Anybus CompactCom and the application
are divided into two categories: basic and extended.

A.1 Basic
This category includes objects, attributes and services that are mandatory to implement or to use.
They will be enough for starting up the Anybus CompactCom and sending/receiving data with
the chosen network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this
category.

A.2 Extended
Use of the objects in this category extends the functionality of the application. Access is given to
the more specific characteristics of the industrial network, not only the basic moving of data to
and from the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the
available network functionality is enabled and accessible, access to the specification of the
industrial network may be required.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix B: Network Comparison 82 (104)

B Network Comparison
The Anybus CompactCom 30 software interface is designed to be as generic as possible without
sacrificing network functionality or integration with the host system.

When designing the host application, it is important to be aware of the limitations and
possibilities of each networking system. In most cases, no additional software support is needed
to support a particular network. However, in order to fully exploit certain aspects of the network
functionality, a degree of dedicated software support may be necessary.

A summary of the features offered by the different network implementations is presented in the
table on the next page.

How to interpret the table is described below:

• The figures specify the values that are to be expected in a typical generic implementation.

• The figures in parenthesis specify the values that are possible with dedicated software
support.

• Of the maximum number of diagnostic instances there is always one instance reserved for
one of severity level “Major, unrecoverable” to force the module into the state EXCEPTION.

• If a data type is not supported, this means that the network has no direct counterpart for
that particular type. The data may however still be represented on the network, albeit in
some other format (e.g. a UINT64 may be represented as four UINT16s etc.)

• Network specific comments to the table are listed after the table.

The information in this chapter gives a rough idea of the possibilities on the different
network implementations. For in-depth information about a particular network, consult
the corresponding network guide.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix B: Network Comparison 83 (104)

Item

Et
he

rn
et
/I
P

CC
-L
in
k

PR
O
FI
BU

S
DP

-V
1

PR
O
FI
BU

S
DP

-V
0

PR
O
FI
N
ET

De
vi
ce
N
et

CA
N
op

en

M
od

bu
s

RT
U

M
od

bu
s/

TC
P

Co
nt
ro
lN
et

Et
he

rC
AT

SE
RC

O
S
III

BA
Cn

et
IP

BA
Cn

et
M
ST
P

Network Data
Format

LSB
first

LSB
first

MSB
first

MSB
first

MSB
first

LSB
first

LSB
first

LSB first LSB first LSB first LSB first LSB first MSB
first

MSB
first

Acyclic Data
Support

Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Max. no. of
Elements Per
ADI

255 255 64
(240)

N/A 255 255 254 32 (255) 32 (255) 255 255 255 1 1

Max. ADI Size
(in bytes)

255 255 64
(240)

N/A 255 255 254 32 (255) 32 (255) 255 255 255 4 4

Lowest
Addressable
ADI no.

1 N/A 1 N/A 1 1 1 1 1 1 1 1 1 1

Highest
Addressable
ADI no.

65535 N/A 65025 N/A 32767 65535 16383 4062
(65023)

4062
(65023)

65535 16383 32767 65535 65535

Max. Write
Process Data
(in bytes)

256 14-44
(256)

152
(244)

80
(244)

256 256 256 256 256 256 256 256 256 256

Min. Write
Process Data
(in bytes)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max. Read
Process Data
(in bytes)

256 14-46
(256)

152
(244)

80
(244)

256 256 256 256 256 256 256 256 0 0

Min. Read
Process Data
(in bytes)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max. Process
Data (Read +
Write, in bytes)

512 28-90
(512)

152
(368)

80
(380)

512 512 512 512 512 512 512 512 256 256

Min. Process
Data (Read +
Write, in bytes)

0 0 1 1 0 0 0 0 0 0 0 0 0 0

Requires “Get/
Set_Indexed_
Attribute”

No No No No No No Yes No No (Yes) No Yes No No No

Requires “Get_
Instance_
Number_By_
Order”

Yes No No No Yes Yes No No Yes Yes Yes Yes Yes Yes

Max. no. of
Diagnostic
Instances

6 6 6 (1) 10 (10) 6 (1) 6 6 6 6 6 6 6 1 1

Supports
Network Reset
Type 0:
“Power-on-
reset”

Yes No No No No Yes Yes No No Yes No No Yes Yes

Supports
Network Reset
Type 1:
“Factory
default reset”

Yes No No No Yes Yes Yes No No Yes Yes Yes No No

Supports
SINT64

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No

Supports
UINT64

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No

Supports
FLOAT

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Extended LED
functionality

No No No No No No No No No Yes Yes No No No

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix B: Network Comparison 84 (104)

• EtherNet/IP (EIP):

– The command “Get_Instance_Number_By_Order” is used weh accessing attributes in
the Parameter Ojbect from a CIP network.

– For modules, that support internal web pages, the command “Get_Instance_Number_
By_Order” is used when the parameter web page is opened

• CC-Link (CCL):

– The amount of process data depends on the data types of the mapped ADIs. For more
information see CC-Link network interface appendix.

• PROFIBUS (DPV1):

– Due to technical reasons, it is generally not recommended to use ADI numbers 1 ...
256, since this may cause problems when using certain PROFIBUS configuration tools.

– Considering size of process data, check PROFIBUS DPV1 network interface appendix for
addressing limitations.

• PROFIBUS (DPV0):

– Considering size of process data, check PROFIBUS DPV0 network interface appendix for
addressing limitations.

• PROFINET:

– If API 0 is not used, or if transparent mode is used, the ADI data size will at the most be
244 bytes as the header (11 bytes) must be inserted in the Get/Set_Record message.
For more information see PROFINET network appendix.

– Considering size of process data, check PROFINET network interface appendix for
addressing limitations.

– For modules, that support internal web pages, the command “Get_Instance_Number_
By_Order” is used when the parameter web page is opened

• DeviceNet (DEV):

– The command “Get_Instance_Number_By_Order” is used weh accessing attributes in
the Parameter Ojbect from a CIP network.

• Modbus-TCP (EIT):

– The command “Get_Instance_Number_By_Order” is used weh accessing attributes in
the Parameter Ojbect from a CIP network.

• ControlNet:

– For modules, that support internal web pages, the command “Get_Instance_Number_
By_Order” is used when the parameter web page is opened

• EtherCAT (ECT):

– For EtherCAT products, the command “Get_Instance_Number_By_Order” is used
during initialization to find number of ADIs

• SERCOS III:

– Of addressable ADIs, around 16000 ADIs can be reached from SERCOS III

– For modules, that support internal web pages, the command “Get_Instance_Number_
By_Order” is used when the parameter web page is opened

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix B: Network Comparison 85 (104)

• BACnet/IP:

– For modules, that support internal web pages, the command “Get_Instance_Number_
By_Order” is used when the parameter web page is opened

– When a BACnet product isn’t in advanced mode, the command “Get_Instance_
Number_By_Order” is used to perform initial mapping.

• BACnet MSTP:

– When a BACnet product isn’t in advanced mode, the command “Get_Instance_
Number_By_Order” is used to perform initial mapping.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix C: Object Overview 86 (104)

C Object Overview
Each device in the Anybus CompactCom 30 series supports a subset of the objects, described in
this design guide and in the respective network guides. The following tables give an overview.

If the firmware of a module has been upgraded recently, these tables may be subject to update in the
next revision of this document.

C.1 Anybus Module Objects
These objects are implemented in the product.

Et
he

rn
et
/I
P

CC
-L
in
k

PR
O
FI
BU

S
DP

-V
1

PR
O
FI
BU

S
DP

-V
0

PR
O
FI
N
ET

De
vi
ce
N
et

CA
N
op

en

M
od

bu
s

RT
U

M
od

bu
s/

TC
P

Co
nt
ro
lN
et

Et
he

rC
AT

SE
RC

O
S
III

BA
Cn

et
IP

BA
Cn

et
M
ST
P

01h Anybus Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

02h Diagnostic Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes

03h Network Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

04h Network Configuration
Object

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

05h Additional Diagnostic
Object

No No Yes No No No No No No No No No No No

07h Socket Interface Object Yes No No No Yes No No No Yes No No Yes Yes No

08h Network CC-Link Object No Yes No No No No No No No No No No No No

09h SMTP Client Object Yes No No No Yes No No No Yes No No Yes Yes No

0Ah Anybus File System
Interface Object

Yes No No No Yes No No No Yes No No Yes Yes No

0Bh Network PROFIBUS DP-
V1 Object

No No Yes Yes No No No No No No No No No No

0Ch Network Ethernet
Object

Yes No No No Yes No No No Yes No No Yes Yes No

0Dh CIP Port Configuration
Object

Yes No No No No No No No No No No No No No

0Eh Network PROFINET IO
Object

No No Yes No Yes No No No No No No No No No

0Fh PROFINET Additional
Diagnostic Object

No No No No Yes No No No No No No No No No

10h PROFIBUS DP-V0
Diagnostic Object

No No Yes Yes No No No No No No No No No No

11h Functional Safety
Module Object

No No No No Yes No No No No No No No No No

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix C: Object Overview 87 (104)

C.2 Host Application Objects
These objects are possible to implement in the host application. Depending on the application,
not all objects available for a network, may be necessary.

Et
he

rn
et
/I
P

CC
-L
in
k

PR
O
FI
BU

S
DP

-V
1

PR
O
FI
BU

S
DP

-V
0

PR
O
FI
N
ET

De
vi
ce
N
et

CA
N
op

en

M
od

bu
s

RT
U

M
od

bu
s/

TC
P

Co
nt
ro
lN
et

Et
he

rC
AT

SE
RC

O
S
III

BA
Cn

et
IP

BA
Cn

et
M
ST
P

E7h Energy Reporting
Object

No No No No No No No No No No No No No No

E8h Functional Safety
Object

No No No No Yes No No No No No No No No No

EAh Application File System
Interface Object

No No No No No No No No No No No No No No

EDh CIP Identity Host Object
(FDh)

No No No No No No No No No Yes No No No No

EFh BACnet Host Object No No No No No No No No No No No No Yes Yes

F0h Energy Control Object No No No No Yes No No No No No No No No No

F1h SERCOS III Object No No No No No No No No No No No Yes No No

F3h ControlNet Host Object No No No No No No No No No Yes No No No No

F5h EtherCAT Object No No No No No No No No No No Yes No No No

F6h PROFINET IO Object No No No No Yes No No No No No No No No No

F7h CC-Link Host Object No Yes No No No No No No No No No No No No

F8h EtherNet/IP Host Object Yes No No No No No No No No No No No No No

F9h Ethernet Host Object Yes No Yes No Yes No No No Yes No No Yes Yes No

FAh Modbus Host Object No No No No No No No Yes Yes No No No No No

FBh CANopen Object No No No No No No Yes No No No No No No No

FCh DeviceNet Host Object No No No No No Yes No No No No No No No No

FDh PROFIBUS DP-V1 Object No No Yes Yes No No No No No No No No No No

FEh Application Data Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

FFh Application Object Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 88 (104)

D Timing & Performance
D.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for
each member of the Anybus CompactCom 30 family.

The following timing aspects, further described below, are measured:

Category Parameters

Startup Delay T1, T2

NW_INIT Delay T3

Telgram Delay T4

Command Delay T5

Anybus Read Process Data Delay (Anybus Delay) T6, T7, T8

Anybus Write Process Data Delay (Anybus Delay) T12, T13, T14

Network System Read Process Data Delay
(Network System Delay)

T9, T10, T11

Network System Write Process Data Delay
(Network System Delay)

T15, T16, T17

At the time of writing, network specific timing specifications for all networks may not yet
been publicly released. This information will be added continuously to all network guides
when available. In case of questions, contact HMS Industrial Networks.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 89 (104)

D.2 Internal Timing
D.2.1 Startup Delay

The following parameters are defined as the time measured from the point where /RESET is
released to the point where the specified event occurs.

Parameter Description Max. Unit.
T1 Anybus generates the first application

interrupt (parallel mode)
1.0 s

T2 The Anybus is able to receive and handle
the first application telegram (serial
mode)

1.0 s

D.2.2 NW_INIT Delay
The time required by the Anybus module to perform the necessary actions in the NW_INIT-state
is highly network specific. Furthermore, the number of commands issued towards the host
application in this state may vary, not only between different networks, but also between
different implementations (e.g. depending on the actual Process Data implementation etc.). This,
in turn, means that the response time of the host application has a major impact on this
parameter as well. It is therefore only possible to specify a maximum value that any Anybus
version, together with a typical host application implementation, can fulfill.

Specifying this parameter does not, in any way, imply that the host application is required, or
even expected, to supervise that it is met - the fact that the protocol is running and the correct
state is indicated should be a sufficient indication of the healthiness of the Anybus module. If,
however, the Anybus concept is not trusted in this respect, the host application may wait for a
timeout before a no-go situation is indicated to the end user. It should then be satisfactory to
use a rather long timeout value since this is, after all, during the start-up phase.

Parameter Conditions
No. of network specific commands Max.

No. of ADIs (single UINT8) mapped to Process
Data in each direction

32 or maximum amount in case the network specific maximum is
less.

Application response time < 10 ms

No. of simultaneously outstanding Anybus
commands that the application can handle

1

Parameter Description Communication Max. Unit.

T3 NW_INIT delay Serial 19.2 kbps 30 s

(all other modes) 10 s

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 90 (104)

D.3 Anybus Response Time
D.3.1 Overview

Host application
response time

T5

Command

Response

Command

Response

Host Application Anybus Anybus Internal Object

T4

Fig. 22

D.3.2 Telegram delay
The Telegram Delay is defined as the time required by the Anybus CompactCom 30 to respond to
a telegram.

It is assumed that commands are issued one by one, i.e. that no new commands are issued
towards the Anybus CompactCom 30 prior to receiving a response to the previous one.

Parameter Conditions
Communication All modes
Host application response time ≥ 0.2 ms

Anybus state All states

No. of ADIs (single UINT8) mapped to Process
Data in each direction

32 or maximum amount in case the network specific maximum is
less

Bus load, no. of nodes, baud rate etc. Normal

No. of simultaneously outstanding Anybus
commands

1

Parameter Description Avg. Max. Unit.

T4 Anybus telegram delay < 0.4 1.5 ms

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 91 (104)

D.3.3 Command Delay
The Command Delay is defined as the time required by the Anybus CompactCom 30 to respond
to commands which are handled internally, i.e. commands where no network information is
exchanged. The measurement is ended when the Anybus CompactCom 30 has finished
processing and is ready to send a response.

It is assumed that commands are issued one by one, i.e. that no new commands are issued
towards the Anybus CompactCom 30 prior to receiving a response to the previous one.

Parameter Conditions
Communication All modes
Host application response time ≥ 0.2 ms

Anybus state All states

No. of ADIs (single UINT8) mapped to Process
Data in each direction

32 or maximum amount in case the network specific maximum is
less

Bus load, no. of nodes, baud rate etc. Normal

No. of simultaneously outstanding Anybus
commands

1

Certain commands may require a considerable amount of time to execute due to various
technical reasons (e.g. storage of parameters to non-volatile memory or formatting of a file
system etc.). The commands are therefore categorized by their expected command delay.

Parameter Description Category Avg. Max. Unit.

T5 Anybus Command delay A <1 1.5 ms

B - 5000 ms

C - ∞ ms

A command is of category A unless otherwise stated.

Commands of category C are used for blocking services; a response is not returned until an
external event occurs of which the Anybus CompactCom 30 has no control. It must, however, be
taken into consideration that such services will lock message resources for an unpredictable
amount of time in both the Anybus CompactCom 30 and the host application.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 92 (104)

D.4 Process Data
D.4.1 Overview

Host Application Anybus

Host
interface
software

Network
specific
software

Network
specific

hardware

Network Master

Application
software HMS Driver

Anybus Delay

Event

Network System Delay

Network Media

Fig. 23

D.4.2 Anybus Read Process Data Delay (Anybus Delay)
The Read Process Data Delay (labelled “Anybus delay” in the figure above) is defined as the time
measured from just before new data is buffered and available to the Anybus host interface
software, to when the data is available to the host application (just after the new data has been
read from the driver).

The transmission delay for the serial communication is not considered in these measurements.

Parameter Conditions
Application CPU -

Time system call interval 1 ms

Driver call interval 0.2... 0.3 ms
All states

No. of ADIs (single UINT8) mapped to Process
Data in each direction

8, 16 and 32

Communication Parallel
Telegram types during measurement period Process Data only

Bus load, no. of nodes, baud rate etc. Normal

Parameter Description Avg. Max. Unit.

T6 Anybus Read Process
Data delay, 8 ADIs
(single UINT8)

< 0.5 1 ms

T7 Anybus Read Process
Data delay, 16 ADIs
(single UINT8)

< 0.7 1.2 ms

T8 Anybus Read Process
Data delay, 32 ADIs
(single UINT8)

< 1 1.5 ms

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 93 (104)

D.4.3 Anybus Write Process Data Delay (Anybus Delay)
The Write Process Data Delay (labelled “Anybus delay” in the figure above) is defined as the time
measured from the point the data is available from the host application (just before the data is
written from the host application to the driver), to the point where the new data has been
forwarded to the network buffer by the Anybus host interface software.

The transmission delay for the serial communication is not considered in these measurements.

Parameter Conditions
Application CPU -

Time system call interval 1 ms

Driver call interval 0.2... 0.3 ms
All states

No. of ADIs (single UINT8) mapped to Process
Data in each direction

8, 16 and 32

Communication Parallel
Telegram types during measurement period Process Data only

Bus load, no. of nodes, baud rate etc. Normal

Parameter Description Avg. Max. Unit.

T12 Anybus Write Process
Data delay, 8 ADIs
(single UINT8)

< 0.5 1 ms

T13 Anybus Write Process
Data delay, 16 ADIs
(single UINT8)

< 0.7 1.2 ms

T14 Anybus Write Process
Data delay, 32 ADIs
(single UINT8)

< 1 1.5 ms

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 94 (104)

D.4.4 Network System Read Process Data Delay (Network System Delay
The Network System Read Process Data Delay (labelled ‘Network System Delay in the figure), is
defined as the time measured from the point where an event is generated at the network master
to when the corresponding data is available to the host application (just after the corresponding
data has been read from the driver).

Parameter Conditions
Application CPU -

Time system call interval 1 ms

Driver call interval 0.2... 0.3 ms
All states

No. of ADIs (single UINT8) mapped to Process
Data in each direction

8, 16 and 32

Communication Parallel
Telegram types during measurement period Process Data only

Bus load, no. of nodes, baud rate etc. Normal

Parameter Description Avg. Max. Unit.

T15 Network System Read
Process Data delay, 8
ADIs (single UINT8)

(network type dependent, see separate network
interface appendix)

T16 Network System Read
Process Data delay16
ADIs (single UINT8)

T17 Network System Read
Process Data delay32
ADIs (single UINT8)

At the time of writing, network specific timing specifications for all networks may not yet
been publicly released. This information will be added continuously to all network guides
when available. In case of questions, contact HMS Industrial Networks.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix D: Timing & Performance 95 (104)

D.4.5 Network System Write Process Data Delay (Network System Delay
The Network System Write Process Data Delay (labelled ‘Network System Delay in the figure), is
defined as the time measured from the time after the new data is available from the host
application (just before the data is written to the driver) to when this data generates a
corresponding event at the network master.

Parameter Conditions
Application CPU -

Time system call interval 1 ms

Driver call interval 0.2... 0.3 ms
All states

No. of ADIs (single UINT8) mapped to Process
Data in each direction

8, 16 and 32

Communication Parallel
Telegram types during measurement period Process Data only

Bus load, no. of nodes, baud rate etc. Normal

Parameter Description Avg. Max. Unit.

T15 Network System Write
Process Data delay, 8
ADIs (single UINT8)

(network type dependent, see separate network
interface appendix)

T16 Network System Write
Process Data delay16
ADIs (single UINT8)

T17 Network System Read
Process Write delay32
ADIs (single UINT8)

At the time of writing, network specific timing specifications for all networks may not yet
been publicly released. This information will be added continuously to all network guides
when available. In case of questions, contact HMS Industrial Networks.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix E: Runtime Remapping of Process Data 96 (104)

E Runtime Remapping of Process Data
This appendix describes how to handle a request from the application to remap read or write
process data in parallel mode and in serial mode. Please note that the telegrams are exchanged
in a ping-pong fashion.

E.1 Parallel mode
Runtime remapping of process data in parallel mode is rather straightforward, see figures below.

E.1.1 Read Process Data

A pp lica tion Anybus
CompactCom

R em ap A C K
E xpect new read
p rocess da ta m ap
(RPD2)

RPD1

W PD

R em ap readM

RPD2

W PDM

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

P rocess da ta

M essage (M = 1)

P ossib le m essage (M = X)

RPD = Read Process Data
WPD = Write Process Data

Fig. 24

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix E: Runtime Remapping of Process Data 97 (104)

E.1.2 Write Process Data

A pp lica tion A B C C

P rocess da ta

R em ap w rite

U se new w rite
p rocess da ta m ap
(WPD2)

W PD1

M R PD

W PD1M

R PD

W PD2

M essage (M = 1)

P ossib le m essage (M = X)

R em ap A C K

H and le R em ap w rite

H and le R em ap A C K

RPD = Read Process Data
WPD = Write Process Data

Fig. 25

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix E: Runtime Remapping of Process Data 98 (104)

E.2 Serial Mode
Please note that the telegrams are exchanged in a ping-pong fashion, and that a telegram
without a message ends each command. A number of telegrams will thus have to be exchanged
before the re-mapping takes effect

E.2.1 Read Process Data

A pp lica tion A B C C

R em ap A C K

E xpect new read
p rocess da ta m ap
(RPD2)

RPD1

W PD

R em ap read

RPD1

W PD

M

RPD1

W PDM

W PD

R PD2

H and le R em ap read

H and le R em ap A C K
U se new read
p rocess da ta m ap
(RPD2)

N o m essage (M = 0)

P rocess da ta

M essage (M = 1)

P ossib le m essage (M = X)

RPD = Read Process Data
WPD = Write Process Data

Fig. 26

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix E: Runtime Remapping of Process Data 99 (104)

E.2.2 Write Process Data

A pp lica tion A B C C

P rocess da ta

R em ap w rite

U se new w rite
p rocess da ta m ap
(WPD2)

W PD1

M R PD

W PD1M

R PD

W PD2

M essage (M = 1)

P ossib le m essage (M = X)

R em ap A C K

H and le R em ap w rite

H and le R em ap A C K

W PD1

R PD

W PD1

R PD

No Message (M = 0)

RPD = Read Process Data
WPD = Write Process Data

Fig. 27

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix E: Runtime Remapping of Process Data 100 (104)

E.3 Example: Remap_ADI_Write_Area

ADI

2

3

4

b

c d e

5

8

12

(1 * UINT8)

(1 * UINT16)

(3 * UINT16)

(4 * UINT8)

(4 * UINT8)

(1 * UINT8)

a

f

j

h

l

i

m

g

k

n

Mapping Item 0 1 2 3
ADI Element

CmdExt[0]
CmdExt[1]
Data[0...1]
Data[2...3]
Data[4...5]
Data[6]
Data[7]
Data[8...9]
Data[10]
Data[11]

Start remap from mapping item 1
(reserved)
Remove 2 mapping items (i.e. 1 and 2)
Insert 2 mapping items
New mapping item 1: Instance no. #8
New mapping item 1: Map from element 1 (k)
New mapping item 1: Map 3 elements (k... m)
New mapping item 2: Instance no. #12
New mapping item 2: Map from element 0 (n)
New mapping item 2: Map 1 element (n)

1
0
2
2
8
1
3

12
0
1

a b c d e f g h i

Initial Mapping:

Mapping Item 0 1 2 3
ADI Element a k l m n f g h i

Result:

Command Remap_ADI_Write_Area:

Fig. 28

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix F: CRC Calculation (16–bit) 101 (104)

F CRC Calculation (16–bit)
F.1 General

The following information applies only when using the serial interface.

To allow the receiving part to detect transmission errors, each serial telegram frame contains a
16-bit Cyclic Redundancy Check.

The CRC is calculated as follows:

1. Load a 16-bit register with FFFFh. (Let’s call it the CRC-register for simplicity)

2. XOR the first byte of the message with the low order byte of the CRC-register, putting the
result in the CRC-register.

3. Shift the CRC-register one bit to the right (towards the LSB), zero-filling the MSB.

4. Examine the LSB that was just shifted out from the register. If set, Exclusive-OR the CRC-
register with the polynomial value A001h (1010 0000 0000 0001).

5. Repeat steps 3 and 4 until 8 shifts have been performed.

6. XOR the next byte from the message with the low order byte of the CRC-register, putting
the result in the CRC-register

7. Repeat steps 3...6 until the complete message has been processed.

8. The CRC-register now contains the final CRC16-value.

F.2 Example
When implementing the CRC calculation algorithm, use these example strings (below) to ensure
that the algorithm yields the same results as the Anybus CompactCom module.

The array { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 } should yield the
following CRC16: { 0xb0, 0xcf }.

The array { 0x00, 0x55, 0xAA, 0xFF, 0x0F, 0x5A, 0xA5, 0xF0 } should yield the
following CRC16: { 0x11 , 0x03 }.

The array { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } should yield the
following CRC16: { 0x77 , 0x28 }.

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix F: CRC Calculation (16–bit) 102 (104)

F.3 Code Example
This example uses a fast approach to calculate the CRC; all possible CRC-values are preloaded
into two arrays, which are simply indexed as the function increments through the message buffer.

const UINT8 abCrc16Hi[] =
{

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00,
0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00,
0xC1, 0x81, 0x40

};
const UINT8 abCrc16Lo[] =
{

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07,
0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF,
0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8,
0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F,
0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16,
0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30,
0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5,
0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE,
0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9,
0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22,
0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64,
0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A,
0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C,
0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3,
0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53,
0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C,
0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A,
0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84,
0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41,
0x81, 0x80, 0x40

};

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

Appendix F: CRC Calculation (16–bit) 103 (104)

UINT16 CRC_Crc16(UINT8* pbBufferStart, UINT16 iLength)
{

UINT8 bIndex;
UINT8 bCrcLo;
UINT8 bCrcHi;
bCrcLo = 0xFF;
bCrcHi = 0xFF;
while(iLength > 0)
{

bIndex = bCrcLo ^ *pbBufferStart++;
bCrcLo = bCrcHi ^ abCrc16Hi[bIndex];
bCrcHi = abCrc16Lo[bIndex];
iLength--;

}
return(bCrcHi << 8 | bCrcLo);

}

Anybus® CompactCom™ 30 Software Design Guide HMSI-168-97 3.1 en-US

last page

© 2019 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se HMSI-168-97 3.1 en-US / 2019-03-01 / 12072

	1 Preface
	1.1 About this Document
	1.2 Related Documents
	1.3 Document History
	1.4 Document Conventions
	1.5 Document Specific Conventions
	1.6 Trademark Information

	2 About the Anybus CompactCom 30
	2.1 General Information
	2.2 Features

	3 Software Introduction
	3.1 Background
	3.2 The Object Model
	3.2.1 Basics
	3.2.2 Addressing Scheme
	3.2.3 Object Categories
	3.2.4 Standard Object Implementation

	3.3 Network Data Exchange
	3.4 Diagnostics
	3.5 Multilingual Support

	4 Host Communication Layer
	4.1 General Information
	4.1.1 Basic Principles
	4.1.2 Telegram Contents

	4.2 Handshake Registers
	4.2.1 Control Register (Read/Write)
	4.2.2 Status Register (Read Only)
	4.2.3 Supervised Bit (SUP)
	4.2.4 Auxiliary Bit (STAT_AUX, CTRL_AUX)

	4.3 Process Data Subfield
	4.3.1 General Information
	4.3.2 Process Data Mapping
	4.3.3 Changed Data Indication

	4.4 Anybus Watchdog
	4.5 Application Watchdog
	4.6 Serial Host Communication
	4.6.1 General Information
	4.6.2 Serial Telegram Frame
	4.6.3 Message Fragmentation
	4.6.4 Transmission Errors

	4.7 Parallel Host Communication
	4.7.1 General Information
	4.7.2 Memory Map
	4.7.3 Parallel Telegram Handling

	5 The Anybus State Machine
	5.1 General Information
	5.2 State Dependent Actions

	6 Object Messaging
	6.1 General Information
	6.1.1 Basic Principles
	6.1.2 Source ID
	6.1.3 Error Handling
	6.1.4 Error Counters

	6.2 Message Layout
	6.3 Data Format
	6.3.1 Available Data Types
	6.3.2 Handling of Array of Char (Strings)

	6.4 Flow Control
	6.5 Command Specification
	6.5.1 General Information
	6.5.2 Command Codes
	6.5.3 Error Codes
	6.5.4 Get_Attribute
	6.5.5 Set_Attribute
	6.5.6 Create
	6.5.7 Delete
	6.5.8 Reset
	6.5.9 Get_Enum_String
	6.5.10 Get_Indexed_Attribute
	6.5.11 Set_Indexed_Attribute

	7 Initialization and Startup
	7.1 General Information
	7.2 Initial Handshake
	7.2.1 Parallel Host Interface
	7.2.2 Serial Host Interface

	7.3 Anybus Setup (SETUP State)
	7.4 Network Initialization (NW_INIT State)

	8 Anybus Module Objects
	8.1 General Information
	8.2 Object Revisions
	8.3 Anybus Object (01h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Exception Codes
	Auxiliary Bit
	Object Specific Error Codes
	GPIO Configuration

	8.4 Diagnostic Object (02h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... N)
	Severity Levels
	Event Codes
	Command Details: Create
	Command Details: Delete

	8.5 Network Object (03h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Map_ADI_Write_Area
	Command Details: Map_ADI_Read_Area

	8.6 Network Configuration Object (04h)
	Category
	Object Description
	Differentiation of Input Devices
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... N)

	9 Host Application Objects
	9.1 General Information
	9.2 Implementation Guidelines
	9.3 Application Data Object (FEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1... n)
	Command Details: Get_Instance_Number_By_Order
	Command Details: Get_Profile_Instance_Numbers
	Command Details: Get_ADI_Info
	Command Details: Remap_ADI_Write_Area
	Command Details: Remap_ADI_Read_Area

	9.4 Application Object (FFh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Reset
	Command Details: Reset_Request
	Command Details: Change_Language_Request

	9.5 Host Application Specific Object (80h)
	Category
	Object Description

	A Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B Network Comparison
	C Object Overview
	C.1 Anybus Module Objects
	C.2 Host Application Objects

	D Timing & Performance
	D.1 General Information
	D.2 Internal Timing
	D.2.1 Startup Delay
	D.2.2 NW_INIT Delay

	D.3 Anybus Response Time
	D.3.1 Overview
	D.3.2 Telegram delay
	D.3.3 Command Delay

	D.4 Process Data
	D.4.1 Overview
	D.4.2 Anybus Read Process Data Delay (Anybus Delay)
	D.4.3 Anybus Write Process Data Delay (Anybus Delay)
	D.4.4 Network System Read Process Data Delay (Network System Delay
	D.4.5 Network System Write Process Data Delay (Network System Delay

	E Runtime Remapping of Process Data
	E.1 Parallel mode
	E.1.1 Read Process Data
	E.1.2 Write Process Data

	E.2 Serial Mode
	E.2.1 Read Process Data
	E.2.2 Write Process Data

	E.3 Example: Remap_ADI_Write_Area

	F CRC Calculation (16–bit)
	F.1 General
	F.2 Example
	F.3 Code Example

