
HALMSTAD • CHICAGO • KARLSRUHE • TOKYO • BEIJING • MILANO • MULHOUSE • COVENTRY • PUNE • COPENHAGEN

HMS Industrial Networks
Mailing address: Box 4126, 300 04 Halmstad, Sweden
Visiting address: Stationsgatan 37, Halmstad, Sweden

Connecting DevicesTM

E-mail: info@hms-networks.com
 www.anybus.com

Network Interface Appendix

Anybus® CompactCom 30 ControlNet
Doc.Id. HMSI-168-79

Rev. 2.11

Important User Information

This document is intended to provide a good understanding of the functionality offered by Anybus CompactCom
30 ControlNet. The document only describes the features that are specific to the Anybus CompactCom 30 Con-
trolNet. For general information regarding the Anybus CompactCom, consult the Anybus CompactCom design
guides.

The reader of this document is expected to be familiar with high level software design, and communication sys-
tems in general. The use of advanced ControlNet-specific functionality may require in-depth knowledge in Con-
trolNet networking internals and/or information from the official ControlNet specifications. In such cases, the
people responsible for the implementation of this product should either obtain the ControlNet specification to gain
sufficient knowledge or limit their implementation in such a way that this is not necessary.

Liability

Every care has been taken in the preparation of this manual. Please inform HMS Industrial Networks AB of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks AB, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that
may appear in this document.

There are many application of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the application meets all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may e.g. include compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot
assume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights

HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications
in the US and other countries.

Trademark Acknowledgements

Anybus ® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their
respective holders.

Warning: This is a class A product. In a domestic environment this product may cause radio interference in
which case the user may be required to take adequate measures.

ESD Note: This product contains ESD (Electrostatic Discharge) sensitive parts that may be damaged if ESD
control procedures are not followed. Static control precautions are required when handling the prod-
uct. Failure to observe this may cause damage to the product.

Anybus CompactCom 30 ControlNet Network Interface Appendix

Rev 2.11

Copyright© HMS Industrial Networks AB

Mar 2015 Doc Id HMSI-168-79

Preface About This Document

Related Documents .. 5

Document History ... 5

Conventions & Terminology .. 6

Support... 6

Chapter 1 About the Anybus CompactCom 30 ControlNet

General ... 7

Features .. 7

Chapter 2 Tutorial

Introduction .. 8

Fieldbus Conformance Notes .. 8

Conformance Test Guide.. 8
Reidentifying Your Product... 9
Factory Default Reset... 9

Chapter 3 Basic Operation

General Information .. 10
Software Requirements ... 10
Electronic Data Sheet (EDS) .. 10

Device Customization.. 11

Communication Settings ... 12

Diagnostics .. 12

Data Exchange.. 13
Application Data (ADIs) ... 13
Process Data .. 13
Translation of Data Types ... 13

Chapter 4 CIP Objects

General Information .. 14

Identity Object (01h).. 15

Message Router (02h) .. 18

Assembly Object (04h) .. 19

Connection Manager (06h) ... 21

Parameter Object (0Fh) ... 22

ControlNet Object (F0h) .. 25

ADI Object (A2h) .. 28

Table of Contents

Table of Contents

Table of Contents II

Chapter 5 Anybus Module Objects

General Information .. 30

Anybus Object (01h).. 31

Diagnostic Object (02h) .. 33

Network Object (03h).. 34

Network Configuration Object (04h).. 35
Instance Attributes (Instance #1, ‘Device Address’)‘ .. 36
Multilingual Strings ... 36

Chapter 6 Host Application Objects

General Information .. 37

CIP Identity Host Object (EDh) ... 38

ControlNet Host Object (F3h) .. 40
Command Details: Process_CIP_Message_Request ... 42
Command Details: Set_Configuration_Data ... 43
Command Details: Get_Configuration_Data... 44

Appendix A Implementation Details

Extended LED Functionality ... 45

SUP-Bit Definition... 45

Anybus State Machine ... 46

Appendix B Message Segmentation

General ... 47

Command Segmentation ... 48

Response Segmentation... 49

Appendix C Categorization of Functionality

Basic.. 50

Extended.. 50

Advanced ... 50

Appendix D Technical Specification

Front View... 51

Protective Earth (PE) Requirements... 52

Power Supply .. 52

Environmental Specification .. 52

EMC Compliance ... 52

Table of Contents III

Appendix E Timing & Performance

General Information .. 53

Process Data.. 54
Overview .. 54
Anybus Read Process Data Delay (Anybus Delay).. 54
Anybus Write Process Data Delay (Anybus Delay)... 54
Network System Read Process Data Delay (Network System Delay) ... 55
Network System Write Process Data Delay (Network System Delay) .. 55

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Preface

P. About This Document

For more information, documentation etc., please visit the HMS website, ‘www.anybus.com’.

P.1 Related Documents

P.2 Document History

Summary of Recent Changes (2.10... 2.11)

Revision List

Document Author

Anybus CompactCom 30 Software Design Guide HMS

Anybus CompactCom Hardware Design Guide HMS

Anybus CompactCom Software Driver User Guide HMS

ControlNet Specification ODVA

Common Industrial Protocol (CIP) specification ODVA

Change Page(s)

Changed Get_Instance_By_Order to Get_Instance_Number_By_Order 10

Added CIP Identity Host Object (EDh) 38

Corrected error response description for command Set_Configuration_Data 43

Front view information moved to Technical Specification 51

Revision Date Author(s) Chapter(s) Description

1.00 2009-09-01 KeL - First official release

2.00 2010-05-04 KeL All Change of concept

2.01 2011-02-10 KeL P, 6 Minor updates

2.02 2011-05-04 KaD P, 5, A Minor updates

2.03 2012-01-26 KeL P, A, 2 Minor updates

2.04 2012-04-13 KeL 2 Minor update

2.10 2012-10-04 KaD 4, 6, B Update

2.11 2015-03-12 KeL 3, 6, D Minor updates

About This Document P-6

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

P.3 Conventions & Terminology

The following conventions are used throughout this manual:

• Numbered lists provide sequential steps

• Bulleted lists provide information, not procedural steps

• The terms ‘Anybus’ or ‘module’ refers to the Anybus CompactCom module.

• The terms ‘host’ or ‘host application’ refers to the device that hosts the Anybus module.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the hexa-
decimal value.

• A byte always consists of 8 bits.

P.4 Support

For general contact information and support, please refer to the contact and support pages at
www.anybus.com.

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Chapter 1

1. About the Anybus CompactCom 30 ControlNet

1.1 General

The Anybus CompactCom 30 ControlNet communication module provides instant ControlNet con-
nectivity via the patented Anybus CompactCom host interface. Any device that supports this standard
can take advantage of the features offered by the module, allowing seamless network integration regard-
less of network type.

The modular approach of the Anybus CompactCom platform allows the CIP-object implementation to
be extended to fit specific application requirements. Furthermore, the Identity Object can be custom-
ized, allowing the end product to appear as a vendor-specific implementation rather than a generic Any-
bus module.

This product conforms to all aspects of the host interface for Active modules defined in the Anybus
CompactCom Hardware- and Software Design Guides, making it fully interchangeable with any other
device following that specification. Generally, no additional network related software support is needed,
however in order to be able to take full advantage of advanced network specific functionality, a certain
degree of dedicated software support may be necessary.

1.2 Features

• Galvanically isolated bus electronics

• CIP Parameter Object Support

• Explicit messaging

• UCMM Capable

• Expansion possibilities via CIP forwarding

• Customizable Identity object

• Redundancy available

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Chapter 2

2. Tutorial

2.1 Introduction

This chapter is a complement to the Anybus CompactCom Implementation Tutorial. The ABCC tuto-
rial describes and explains a simple example of an implementation with Anybus CompactCom. This
chapter includes network specific settings that are needed for a host application to be up and running
and possible to certify for use on ControlNet networks.

2.2 Fieldbus Conformance Notes

• The Anybus CompactCom 30 ControlNet has been pre-compliance tested by ODVA’s autho-
rized Independent Test Lab and found to comply with the ODVA Conformance Test Software.
However, in accordance with ODVA’s conformance test policy, the final product must still be
compliance tested to ensure fieldbus conformance. In order to be able to do this, the vendor in-
formation in the ControlNet Host Object must be customized.

• Any change in the parameters in the EDS file, supplied by HMS, will require a new compliance
test for certification.

• It is strongly recommended to customize the information in the Identity Object (CIP), to enable
the product to appear as a vendor specific implementation rather than a generic Anybus module.
ODVA requires that all manufacturers use their own Vendor ID. A Vendor ID can be applied
for from ODVA.

For further information, please contact HMS or ODVA.

2.3 Conformance Test Guide

When using the default settings of all parameters, the Anybus CompactCom ControlNet module is pre-
certified for network compliance. This precertification is done to ensure that your product can be certi-
fied, but it does not mean that your product will not require certification.

Any change in the parameters in the EDS file, supplied by HMS, will require a certification. A Vendor
ID can be obtained from ODVA and is compulsory for certification. This section provides a guide for
successful conformance testing your product, containing the Anybus CompactCom ControlNet mod-
ule, to comply with the demands for network certification set by the ODVA.

Independent of selected operation mode, the actions described in this section have to be accounted for
in the certification process. The identity of the product needs to be changed to match your company and
device.

IMPORTANT: This section provides guidelines and examples of what is needed for certification. Depending on the
functionality of your application, there may be additional steps to take. Please contact HMS Industrial Networks at
www.anybus.com for more information.

Tutorial 9

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

2.3.1 Reidentifying Your Product.

After successful setting of the “Setup Complete” attribute in the Anybus Object (01h), the Anybus mod-
ule asks for identification data from the ControlNet Host Object (F3h). Therefore, the attributes listed
below shall be implemented and proper values returned.

2.3.2 Factory Default Reset

Reset command to Application Object (FFh) must be supported

When Anybus CompactCom 30 ControlNet modules are delivered, they are required to be in their “Fac-
tory Default” state. When a Factory Default Reset command is received from the network, the Anybus
module will erase all non-volatile information and inform the host application that a reset of the Anybus
module is required. This is done by sending a Reset command to the Application Object (FFh) of the
host (Power-on + Factory Default). For more details, please consult the Anybus CompactCom 30 Soft-
ware Design Guide.

Object/Instance Attribute Explanation Default Customer sample Comment

ControlNet Object (F3h),
Instance 1

#1, Vendor ID With this attribute you
set the Vendor ID of
the device.

005Ah (HMS) 1111h This information must match the
keyword values of the “Device”
section in the EDS file.

ControlNet Object (F3h),
Instance 1

#2, Device Typea

a. The Device Type default value 0000h must be changed for the module to pass a conformance test. If no other
specific profile is implemented, use the value 002Bh (Generic Device (keyable)).

With this attribute you
set the Device Type of
the device.

 0000h 002Bha (Generic
Device (keyable))

ControlNet Object (F3h),
Instance 1

#3, Product Code With this attribute you
set the Product Code
of the device

002Ch 2222h

ControlNet Object (F3h),
Instance 1

#4, Revision With this attribute you
set the Revision of the
device.

1.1

ControlNet Object (F3h),
Instance 1

#5, Serial Number With this attribute you
set the Serial Number
of the device.

12345678h Unique number for all CIP devices
produced with the same ‘Vendor
ID.

ControlNet Object (F3h),
Instance 1

#6, Product Name With this attribute you
set the Product Name
of the device.

Anybus-CC Control-
Net

“Widget” This information must match the
keyword values of the “Device”
section in the EDS file.

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Chapter 3

3. Basic Operation

3.1 General Information

3.1.1 Software Requirements

No additional network support code needs to be written in order to support the Anybus CompactCom
30 ControlNet.

For in-depth information regarding the Anybus CompactCom 30 software interface, consult the general
Anybus CompactCom 30 Software Design Guide.

3.1.2 Electronic Data Sheet (EDS)

Since the module implements the Parameter Object, it is possible for configuration tools such as -RS-
NetWorx to automatically generate a suitable EDS-file.

Note that this functionality requires that the command ‘Get_Instance_Number_By_Order’ (Applica-
tion Data Object, FEh) has been implemented in the host application.

See also...

• “Device Customization” on page 11

• “Parameter Object (0Fh)” on page 22 (CIP-object)

• Anybus CompactCom 30 Software Design Guide, ‘Application Data Object (FEh)’

IMPORTANT: To comply with CIP-specification requirements, custom EDS-implementations require a new Vendor
ID and/or Product Code.

To obtain a Product Code which complies to the default Vendor ID, please contact HMS.

Basic Operation 11

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

3.2 Device Customization

By default, the module supports the generic CIP-profile with the following identity settings:

• Vendor ID: 005Ah (HMS Industrial Networks)

• Device Type: 0000h (Generic Device)

• Product Code: 002Ch (Anybus CompactCom 30 ControlNet)

• Product Name: ‘Anybus-CC ControlNet’

It is possible to customize the identity of the module by implementing the ControlNet Host Object. Fur-
thermore, it is possible to re-route requests to not implemented CIP-objects to the host application, thus
enabling support for other profiles etc.

To support a specific profile, perform the following steps:

• Set up the identity settings in the ControlNet Host Object according to profile requirements.

• Set up the Assembly Instance Numbers according to profile requirements.

• Enable routing of CIP-messages to the host application in the ControlNet Host Object.

• Implement the required CIP-objects in the host application.

See also...

• “Identity Object (01h)” on page 15 (CIP-object)

• “ControlNet Host Object (F3h)” on page 40 (Host Application Object)

• “Command Details: Process_CIP_Message_Request” on page 42

IMPORTANT: The default identity information is valid only when using the standard EDS-file supplied by HMS.
To comply with CIP-specification requirements, custom EDS-implementations require a new Vendor ID and/or Product
Code.

To obtain a Product Code which complies to the default Vendor ID, please contact HMS.

Basic Operation 12

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

3.3 Communication Settings

As with other Anybus CompactCom products, network related communication settings are grouped in
the Network Configuration Object (04h).

In this case, this includes...

• Mac ID

See also...

- “Instance Attributes (Instance #1, ‘Device Address’)‘” on page 36

The parameters in the Network Configuration Object (04h) are available from the network through the
Identity Object (CIP-object).

See also...

• “Identity Object (01h)” on page 15 (CIP-object)

• “Network Configuration Object (04h)” on page 35 (Anybus Module Object)

3.4 Diagnostics

The severity value of all pending events are combined (using logical OR) and copied to the correspond-
ing bits in the ‘Status’-attribute of the CIP Identity Object.

See also...

• “Identity Object (01h)” on page 15 (CIP-object)

• “Diagnostic Object (02h)” on page 33 (Anybus Module Object)

Basic Operation 13

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

3.5 Data Exchange

3.5.1 Application Data (ADIs)

ADIs are represented on ControlNet through the ADI Object (CIP-object). Each instance within this
objects corresponds directly to an instance in the Application Data Object on the host application side.

See also...

• “Parameter Object (0Fh)” on page 22 (CIP-object)

• “ADI Object (A2h)” on page 28 (CIP-object)

3.5.2 Process Data

Process Data is represented on ControlNet through dedicated instances in the Assembly Object. Note
that each ADI element is mapped on a byte-boundary, i.e. each BOOL occupies one byte.

See also...

• “Assembly Object (04h)” on page 19 (CIP-object)

3.5.3 Translation of Data Types

The Anybus data types are translated to CIP-standard and vice versa according to the table below.

Anybus Data Type CIP Data Type Comments

BOOL BOOL Each ADI element of this type occupies one byte.

ENUM USINT

SINT8 SINT

UINT8 USINT

SINT16 INT Each ADI element of this type occupies two bytes.

UINT16 UINT

SINT32 DINT Each ADI element of this type occupies four bytes.

UINT32 UDINT

FLOAT REAL

CHAR SHORT_STRING SHORT_STRING consists of a single-byte length field (which in this case
represents the number of ADI elements) followed by the actual character data
(in this case the actual ADI elements). This means that a 10-character string
occupies 11 bytes.

SINT64 LINT Each ADI element of this type occupies eight bytes.

UINT64 ULINT

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Chapter 4

4. CIP Objects

4.1 General Information

This chapter specifies the CIP-objects implementation in the module. The objects described herein can
be accessed from the network, but not by the host application.

Mandatory Objects1:

• “Identity Object (01h)” on page 15

• “Message Router (02h)” on page 18

• “Assembly Object (04h)” on page 19

• “Connection Manager (06h)” on page 21

• “Parameter Object (0Fh)” on page 22

• “ControlNet Object (F0h)” on page 25

Vendor Specific Objects:

• “ADI Object (A2h)” on page 28

It is possible to implement additional CIP-objects in the host application using the CIP forwarding func-
tionality, see “ControlNet Host Object (F3h)” on page 40 and “Command Details: Process_CIP_Mes-
sage_Request” on page 42.

1. These objects are mandatory to the module and implemented in the module by default. No action from the
application is expected or required.

CIP Objects 15

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

4.2 Identity Object (01h)

Category

Extended

Object Description

This object provides identification of and general information about the module.

Supported Services

Class Get Attribute All

Instance: Get Attribute All
Get Attribute Single
Set Attribute Single
Reset

Class Attributes

Access Name Type Value Description

1 Get Revision UINT 0001h Revision 1

2 Get Max Instance UINT 0001h Maximum instance number 1

CIP Objects 16

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Instance #1 Attributes

Extended

Access Name Type Value Description

1 Get Vendor ID UINT 005Aha

a. Can be customized by implementing the ControlNet Host Object, see “ControlNet Host Object (F3h)” on page 40

HMS Industrial Networks AB

2 Get Device Type UINT 0000ha Generic Device

3 Get Product Code UINT 002Cha Anybus CompactCom ControlNet

4 Get Revision Struct of:
{USINT, USINT}

N/Aa Major and minor firmware revision

5 Get Status WORD - See 4-17 “Device Status”

6 Get Serial Number UDINT Serial numbera Assigned by HMS

7 Get Product Name SHORT_STRING “Anybus Compact-
Com 30 Control-

Net” a

Product name

11 Set Active language Struct of:
{USINT,
USINT,
USINT}

N/A Requests sent to this instance are forwarded
to the Application Object. The host application
is then responsible for updating the language
settings accordingly.

12 Get Supported
Language List

Array of struct of:
{USINT,
USINT,
USINT}

N/A List of languages supported by the host appli-
cation. This list is read from the Application
Object during the NW_INIT state, and trans-

lated to CIP standard.b

b. By default the only supported language is English. To enable more languages the application has to implement
the corresponding attributes in the application object.

CIP Objects 17

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Device Status

Service Details: Reset Service

The module forwards reset requests from the network to the host application. For more information
about network reset handling, consult the general Anybus CompactCom Design Guide.

There are two types of network reset requests on ControlNet:

• Type 0: ‘Power Cycling Reset’

This service emulates a power cycling of the module, and corresponds to Anybus reset type 0
(Power cycling). For further information, consult the general Anybus CompactCom 30 Software
Design Guide.

• Type 1: ‘Out of box reset’

This service sets a “out of box” configuration and performs a reset, and corresponds to Anybus
reset type 2 (Power cycling + factory default). For further information, consult the general Any-
bus CompactCom 30 Software Design Guide.

Bit(s) Name

0 Module Owned

1 (reserved)

2 Configureda

a. This bit shows if the product has other settings than “out-of-box”. The value is set to true if the configured attribute
in the Application Object is set.

3 (reserved)

4... 7 Extended Device Status:

Value:Meaning:
0000b Unknown
0010b Faulted I/O Connection
0011b No I/O connection established
0100b Non-volatile configuration bad
0110b Connection in Run mode
0111b Connection in Idle mode
(other) (reserved)

8 Set for minor recoverable faultsb

b. See “Diagnostic Object (02h)” on page 33.

9 Set for minor unrecoverable faultsb

10 Set for major recoverable faultsb

11 Set for major unrecoverable faultsb

12... 15 (reserved)

CIP Objects 18

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

4.3 Message Router (02h)

Category

Extended

Object Description

This object provides access to CIP addressable objects within the device.

Supported Services

Class -

Instance: -

Class Attributes

-

Instance Attributes

-

CIP Objects 19

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

4.4 Assembly Object (04h)

Category

Extended

Object Description

The Assembly object uses static assemblies and holds the Process Data sent/received by the host appli-
cation. The default assembly instance IDs used are in the vendor specific range.

See also...

• “Process Data” on page 13

• “ControlNet Host Object (F3h)” on page 40

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single

Class Attributes

Instance 05h Attributes (Configuration Data)

The instance number for this instance can be changed by implementing the corresponding attribute in
the ControlNet Host Object.

Configuration data that is sent through the Forward_Open service will be written to this instance.

See also...

• “ControlNet Host Object (F3h)” on page 40

• “Command Details: Set_Configuration_Data” on page 43

Name Access Type Value Comments

1 Revision Get UINT 0002h Revision 2

Name Access Type Comments

3 Data Get/Set N/A Configuration data written to the application when the For-
ward_Open service has configuration data included

CIP Objects 20

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Instance 64h Attributes (Producing Instance)

The instance number for this instance can be changed by implementing the corresponding attribute in
the ControlNet Host Object.

See also...

• “Data Exchange” on page 13

• “ControlNet Host Object (F3h)” on page 40

Instance 96h Attributes (Consuming Instance)

The instance number for this instance can be changed by implementing the corresponding attribute in
the ControlNet Host Object.

See also...

• “Data Exchange” on page 13

• “ControlNet Host Object (F3h)” on page 40

Name Access Type Comments

3 Produced Data Get Array of BYTE This data corresponds to the Write Process Data

Name Access Type Comments

3 Consumed Data Set Array of BYTE This data corresponds to the Read Process Data

CIP Objects 21

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

4.5 Connection Manager (06h)

Category

Extended

Object Description

This object is used for connection and connectionless communications.

Supported Services

Class -

Instance: Forward Open
Forward Close

Class Attributes

-

Instances Attributes

-

CIP Objects 22

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

4.6 Parameter Object (0Fh)

Category

Extended

Object Description

This object allows configuration tools such as RSNetworx to extract information about the Application
Data Instances (ADIs) and present them with their actual name and range to the user.

Since this process may be somewhat time consuming, especially when using the serial host interface, it
is possible to disable support for this functionality in the ControlNet Host Object.

Due to limitations imposed by the CIP standard, ADIs containing multiple elements (i.e. arrays etc.) can-
not be represented through this object. In such cases, default values will be returned, see 4-23 “Default
Values”.

See also...

• “Default Values” on page 23

• “ADI Object (A2h)” on page 28 (CIP Object)

• “ControlNet Host Object (F3h)” on page 40 (Host Application Object)

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single
Get Attributes All
Get Enum String

Class Attributes

Name Access Type Value

1 Revision Get UINT 0001h (Revision of the object)

2 Max instance Get UINT Maximum created instance number = class attribute 3 in

the Application Data Objecta

a. Consult the general Anybus CompactCom 30 Software Design Guide for further information.

8 Parameter class
descriptor

Get WORD Default: 0000 0000 0000 01011b

Bit:Contents:
0 Supports parameter instances
1 Supports full attributes
2 Must do non-volatile storage save command
3 Parameters are stored in non-volatile storage

9 Configuration Assembly
instance

Get UINT 0000h (Configuration assembly not supported)

CIP Objects 23

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Instance Attributes

Extended

Default Values

Name Access Type Value

1 Parameter Value Get/Set Specified in attri-
butes 4, 5 & 6.

Actual value of parameter
This attribute is read-only if bit 4 of Attribute #4 is true

2 Link Path Size Get USINT 0007h

3 Link Path Get Packed EPATH 20h A2h 25h nn nn 30h 05h
(Path to the object from where this parameter’s value is
retrieved, in this case the ADI Object)

4 Descriptor Get WORD Bit:Contents:
0 Supports Settable Path (N/A)
1 Supports Enumerated Strings
2 Supports Scaling (N/A)
3 Supports Scaling Links (N/A)
4 Read only Parameter
5 Monitor Parameter (N/A)
6 Supports Extended Precision Scaling (N/A)

14 Write only Parameter

5 Data type Get EPATH Data type code

6 Data size Get USINT Number of bytes in parameter value

7 Parameter Name String Get SHORT_STRING Name of the parameter, truncated to 16 chars

8 Units String Get SHORT_STRING (not supported)

9 Help String Get SHORT_STRING

10 Minimum value Get (Data Type) Minimum value of parameter
Minimum length of strings

11 Maximum value Get (Data Type) Maximum value of parameter
Maximum length of strings

12 Default value Get (Data Type) Default value of parameter

13 Scaling Multiplier Get UINT 0001h (not supported)

14 Scaling Divisor Get UINT

15 Scaling Base Get UINT

16 Scaling Offset Get INT 0000h (not supported)

17 Multiplier link Get UINT

18 Divisor Link Get UINT

19 Base Link Get UINT

20 Offset Link Get UINT

21 Decimal precision Get USINT

Name Value Description

1 Parameter Value 0 -

2 Link Path Size 0 Size of link path in bytes.

3 Link Path - NULL Path

4 Descriptor 0010h Read only Parameter

5 Data type C6h USINT

6 Data size 1 -

7 Parameter Name String (reserved) -

8 Units String “” -

9 Help String “” -

10 Minimum value N/A 0

11 Maximum value N/A 0

CIP Objects 24

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

12 Default value N/A 0

Name Value Description

CIP Objects 25

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

4.7 ControlNet Object (F0h)

Category

Extended

Object Description

This object provides a consistent Station Management interface to the Physical and Data Link Layers.
The object makes diagnostic information from these layers available to client applications. Each node
shall support one ControlNet object per link.

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single1

Get And Clear
Reset
Enter Listen Only

1. Set once, depending on how MAC ID have been set.

CIP Objects 26

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Class Attributes

Instance #1 Attributes

Extended

Name Access Type Value Description

1 Revision Get UINT 0001h Revision 1

2 Max instance Get UDINT 00000001h Maximum instance number

Name Access Type Description

81h Current_link_config Get Struct of:

Link_config Struct of:

NUT_length UINT NUT length in steps of 10 μs

smax USINT 0... 99

umax USINT 1... 99

slotTime USINT In steps of 1 μs

blanking USINT In steps of 1.6 μs

gb_start USINT In steps of 10 μs

gb_center USINT In steps of 10 μs

reserved UINT Reserved

modulus USINT Value: 127 (required)

gb_prestart USINT In steps of 10 μs

TUI Struct of:

unique_ID UDINT Keeper CRC

status_flag UINT TUI flag

reserved USINT[16] Reserved

CIP Objects 27

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

82h diagnostic_counters Get
Get And
Clear

Struct of:

buffer_errors UINT Buffer event counter

error_log BYTE[8] Bad MAC frame log

event_counters Struct of:

good_frames_transmitted BYTE[3] Good MAC frames transmitted (LSB first)

good_frames_received BYTE[3] Good MAC frames received (LSB first)

selected_channel_-
frame_errors

USINT Framing errors detected on active receive channel

channel_A_frame_errors USINT Framing errors detected on channel A

channel_B_frame_errors USINT Framing errors detected on channel B

aborted_frames_transmit-
ted

USINT MAC frames aborted during transmission (transmit
underflows)

highwaters USINT LLC transmit underflow and LLC receive overflow

NUT_overloads USINT No unscheduled time NUT (All time used for sched-
uled transmissions)

slot_overloads USINT More scheduled data queued for one NUT than
allowed by sched_max_frame parameter

blockages USINT Single Lpacket size exceeds sched_max_frame
parameter

non_concurrence USINT Two or more nodes could not agree whose turn it is to
transmit

aborted_frames_received USINT Incomplete MAC frames received

lonely_counter USINT Number of times nothing detected on network for 8 or
more NUTs

duplicate_node USINT MAC frame received from node with local node’s MAC
ID

noise_hits USINT Noise detected that locked the modem rx PLL

collisions USINT Rx data detected just before start of transmission

Mod_MAC_ID USINT MAC ID of current moderator node

non_lowman_modes USINT Moderator frames detected from non-lowman nodes

rouge_count USINT Rouge events detected

unheard_moderator USINT MAC frames being detected but no moderators

vendor_specific USINT -

reserved BYTE[4] (reserved)

vendor_specific USINT 00h. Not used

vendor_specific USINT 00h. Not used

reserved BYTE (reserved)

83h station_status Get Struct of:

smac_ver USINT MAC implementation

vendor_specific BYTE(4) Vendor specific

channel_state BYTE Channel state LEDs, redundancy warning, and active
channel bits

84h MAC_ID Get/Seta Struct of:

MAC_ID_current USINT Current MAC ID

MAC_ID_switches USINT MAC ID switch settings

MAC_ID_changes BOOL MAC ID switches changed since reset

reserved USINT (reserved)

86h error_log Get Struct of:

buffer_errors USINT Buffer event counter

error_log BYTE[8] Bad MAC frame log

a. Set once, depending on how MAC ID have been set

Name Access Type Description

CIP Objects 28

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

4.8 ADI Object (A2h)

Category

Extended

Object Description

This object maps instances in the Application Data Object to ControlNet. All requests to this object will
be translated into explicit object requests towards the Application Data Object in the host application;
the response is then translated back to CIP-format and sent to the originator of the request.

Class attributes have to be converted to follow the ControlNet specifications

See also...

• Application Data Object (see Anybus CompactCom 30 Software Design Guide)

• “Parameter Object (0Fh)” on page 22 (CIP Object)

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single

Class Attributes

Instances Attributes

Each instance corresponds to an instance within the Application Data Object (for more information,
consult the general Anybus CompactCom 30 Software Design Guide)

Extended.

Name Access Type Value

1 Revision Get UINT Object revision (Current value = 0001h)

2 Max Instance Get UINT Equals attribute #4 in the Application Data Objecta

a. Consult the general Anybus CompactCom 30 Software Design Guide for further information.

3 Number of instances Get UINT Equals attribute #3 in the Application Data Objecta

Name Access Type Description

1 Name Get SHORT_STRING Parameter name (Including length)

2 ABCC Data type Get USINT Data type of instance value

3 No. of elements Get USINT Number of elements of the specified data type

4 Descriptor Get USINT Bit field describing the access rights for this instance

Bit:Meaning:
0 Set = Get Access
1 Set = Set Access

CIP Objects 29

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

5 Value Get/Set Determined by
attribute #2

Instance value

6 Max value Get The maximum permitted parameter value.

7 Min value Get The minimum permitted parameter value.

8 Default value Get The default parameter value.

Name Access Type Description

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Chapter 5

5. Anybus Module Objects

5.1 General Information

This chapter specifies the Anybus Module Object implementation and how they correspond to the func-
tionality in the Anybus CompactCom 30 ControlNet.

The following Anybus Module Objects are implemented:

• “Anybus Object (01h)” on page 31

• “Diagnostic Object (02h)” on page 33

• “Network Object (03h)” on page 34

• “Network Configuration Object (04h)” on page 35

Anybus Module Objects 31

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

5.2 Anybus Object (01h)

Category

Basic, extended

Object Description

This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 30 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Object Attributes (Instance #0)

(Consult the general Anybus CompactCom 30 Software Design Guide for further information.)

Anybus Module Objects 32

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Instance Attributes (Instance #1)

Basic

Extended

GPIO configuration Settings

For more information, see

• “Extended LED Functionality” in “Appendix A” on page 45.

Name Access Type Value

1 Module type Get UINT16 0401h (Standard Anybus CompactCom)

2... 11 - - - Consult the general Anybus CompactCom 30
Software Design Guide for further information.

12 LED colors Get struct of:
UINT8(LED1A)
UINT8(LED1B)
UINT8(LED2A)
UINT8(LED2B)

Value:Color:
01h Green
02h Red
01h Green
02h Red

13... 15 - - - Consult the general Anybus CompactCom 30
Software Design Guide for further information.

Name Access Type Value

16 GPIO configuration Get/Seta

a. Set access of attribute GPIO configuration is only valid in state SETUP.

UINT16 Configuration of the host interface GPIO pins.
See the table below.

Value Functionality Description

0x0000 Standard GIP[0..1] and GOP[0..1] are used as general input/output pins
LED1[A..B] is used for network status LED A
LED2[A..B] is used for module status LED

0x0001 Extended LED functionality GIP0 (red) and GIP1 (green) are used for network status LED A
GOP0 (red) and GOP1 (green) are used for network status LED B
LED1[A..B] is disabled
LED2[A..B] is used for module status LED

Anybus Module Objects 33

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

5.3 Diagnostic Object (02h)

Category

Basic

Object Description

This object provides a standardised way of handling host application events & diagnostics, and is thor-
oughly described in the general Anybus CompactCom 30 Software Design Guide.

Supported Commands

Object: Get_Attribute
Create
Delete

Instance: Get_Attribute

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

In the Anybus CompactCom 30 ControlNet, the severity level of all instances are logically OR:ed to-
gether and represented on the network through the CIP Identity Object. The Event Code cannot be
represented on the network and is thus ignored by the module.

See also...

• “Diagnostics” on page 12

• “Identity Object (01h)” on page 15 (CIP-object)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Diagnostic’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 See general Anybus CompactCom 30 Software Design Guide

4 Highest instance no. Get UINT16

11 Max no. of instances Get UINT16 5+1

Name Access Type Value

1 Severity Get UINT8 See general Anybus CompactCom 30 Software Design Guide

2 Event Code Get UINT8

Anybus Module Objects 34

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

5.4 Network Object (03h)

Category

Basic

Object Description

For more information regarding this object, consult the general Anybus CompactCom 30 Software De-
sign Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String
Map_ADI_Write_Area
Map_ADI_Read_Area

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

Name Access Data Type Value

1 Name Get Array of CHAR “Network”

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Name Access Type Value

1 Network type Get UINT16 0065h

2 Network type string Get Array of CHAR ‘ControlNet’

3 Data format Get ENUM 00h (LSB first)

4 Parameter data support Get BOOL True

5 Write process data size Get UINT16 Current write process data size (in bytes)

Updated on every successful Map_ADI_Write_Areaa

a. Consult the general Anybus CompactCom 30 Software Design Guide for further information.

6 Read process data size Get UINT16 Current read process data size (in bytes)

Updated on every successful Map_ADI_Read_Areaa

7 Exception information Get UINT8 Additional ControlNet exception information pre-
sented if the Anybus module has entered state
EXCEPTION.
00h = no information

Anybus Module Objects 35

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

5.5 Network Configuration Object (04h)

Category

Basic

Object Description

This object holds network specific configuration parameters that may be set by the end user. A reset
command (factory default) issued towards this object will result in all instances being set to their default
values.

See also...

• “Communication Settings” on page 12

• “Identity Object (01h)” on page 15 (CIP-object)

Supported Commands

Object: Get_Attribute
Reset

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Network configuration’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Anybus Module Objects 36

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

5.5.1 Instance Attributes (Instance #1, ‘Device Address’)‘

Basic

5.5.2 Multilingual Strings

The instance name in this object is multilingual, and is translated based on the current language settings
as follows:

Name Access Type Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 36.

Get Array of CHAR ‘Address’ (Actual ControlNet node address)

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valueb

b. A ‘Get’ command always returns the actual value.

Get/Set UINT8 Node address
Valid values: 1-99
0, 100-255: “Incorrect node configuration”
Default: 255

Instance English German Spanish Italian French

1 Address Adresse Dirección Indirizzo Adresse

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Chapter 6

6. Host Application Objects

6.1 General Information

This chapter specifies the host application object implementation in the module. The objects listed here
may optionally be implemented within the host application firmware to expand the ControlNet imple-
mentation.

Standard Objects:

• Application Object (see Anybus CompactCom 30 Software Design Guide)

• Application Data Object (see Anybus CompactCom 30 Software Design Guide)

Network Specific Objects:

• “CIP Identity Host Object (EDh)” on page 38

• “ControlNet Host Object (F3h)” on page 40

Host Application Objects 38

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

6.2 CIP Identity Host Object (EDh)

Category

Advanced

Object Description

This object allows for applications to support additional CIP identity instances. It is used to provide ad-
ditional product identity information.

The first instance in the CIP identity object will not change its behavior. When implementing instances
in the CIP identity host object, they will be mapped to the CIP identity object starting at instance 2. In-
stance no. 1 in the CIP identity host object will be mapped to instance no. 2 in the CIP identity object
and so on.

Supported Commands

Instance: Get_Attribute_All

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Extended

Name Access Data Type Value Description

1 Name Get STRING “CIP Identity” Object name

2 Revision Get UINT8 01h Object revision

3 Number of instances Get UINT16 Depends on application Supported number of instances

4 Highest instance no. Get UINT16 Depends on application Highest implemented instance

Name Access Type Value Comment

1 Vendor ID Get UINT16 - These values replace the default values for the
CIP Identity object.2 Device type Get UINT16 -

3 Product code Get UINT16 -

4 Revision Get Struct of UINT8 -

Major revision UINT8 -

Minor revision UINT8 -

5 Status Get UINT16 -

6 Serial number Get UINT32 -

7 Product name Get Array of CHAR -

Host Application Objects 39

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Command Details: Get_Attribute_All

Category

Advanced

Details

Command Code.: 10h

Valid for: Object Instance

Description

This service must be implemented by the application for all instances that exist in the CIP identity host
object. If identity data is requested from the network the Anybus module will issue this command to the
application. The application will then respond with a message containing a struct of all attributes in the
requested instance.

• Command Details

• Response Details

Byte Parameter Data type Description

0 Source ID UINT8 Selected by the Anybus module

1 Destination object UINT8 CIP identity host object

2, 3 Instance UINT16 Instance number

4 Command UINT8 50h = Get_Attribute_All (command bit set)

5 Data field size (in bytes) UINT8 0

6 CmdExt[0] UINT8 0

7 CmdExt[1] UINT8 0

Byte Parameter Data type Description

0 Source ID UNIT8 Selected by the Anybus module

1 Destination object UNIT8 CIP identity host object

2, 3 Instance UINT16 Instance number

4 Command UNIT8 10h = Get_Attribute_All response

5 Data field size (in bytes) UNIT8 Number of bytes in the data field

6 CmdExt[0] UNIT8 0

7 CmdExt[1] UNIT8 0

0, 1 Vendor ID UINT16 CIP identity host data

2, 3 Device type UINT16

4, 5 Product code UINT16

6 Major revision UNIT8

7 Minor revision UNIT8

8, 9 Status UINT16

10 - 13 Serial number UINT32

14 - n Product name Array of CHAR

Host Application Objects 40

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

6.3 ControlNet Host Object (F3h)

Category

Basic, extended, advanced

Object Description

This object implements ControlNet specific settings in the host application. It is also used when imple-
menting ControlNet classes in the host application, e.g. when creating profile implementations etc.

The implementation of this object is optional; the host application can support none, some, or all of the
attributes specified below. The module will attempt to retrieve the values of these attributes during start-
up; if an attribute is not implemented in the host application, simply respond with an error message (06h,
“Invalid CmdExt[0]”). In such case, the module will use its default value.

If the module attempts to retrieve a value of an attribute not listed below, respond with an error message
(06h, “Invalid CmdExt[0]”).

See also...

• “Identity Object (01h)” on page 15

• “Assembly Object (04h)” on page 19

• Anybus CompactCom 30 Software Design Guide, “Error Codes”

IMPORTANT: To comply with CIP-specification requirements, the combination of Vendor ID (instance attribute
#1) and serial number (instance attribute #5) must be unique. The default Vendor ID, serial number, and Product Code
combination is valid only if using the standard ESD-file supplied by HMS.

Supported Commands

Object: Process_CIP_Message_Request (See “Command Details: Process_CIP_Mes-
sage_Request” on page 42)
Set_Configuration_Data (See “Command Details: Set_Configuration_Data” on
page 43)
Get_Configuration_Data (See “Command Details: Get_Configuration_Data”
on page 44)

Instance: -

Object Attributes (Instance #0)

Name Access Data Type Value

1 Name Get Array of CHAR ‘ControlNet’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Host Application Objects 41

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Instance Attributes (Instance #1)

Basic

Extended

Advanced

Name Access Type Default Value Comment

1 Vendor ID Get UINT16 005Ah These values are forwarded to the Control-
Net Identity Object (CIP).2 Device Type Get UINT16 0000h

3 Product Code Get UINT16 002Ch

4 Revision Get struct of:
UINT8 Major
UINT8 Minor

(software revision)

5 Serial Number Get UINT32 (set at production)

6 Product Name Get Array of CHAR ‘Anybus-CC ControlNet’

Name Access Type Default Value Comment

7 Producing
Instance No.

Get UINT16 0064h See also...
- “Instance 64h Attributes (Producing

Instance)” on page 20 (CIP-instance)

8 Consuming
Instance No.

Get UINT16 0096h See also...
- “Instance 96h Attributes (Consuming

Instance)” on page 20 (CIP-instance)

12 Enable Param-
eter Object

Get BOOL True Value:Meaning:
True: Enable CIP Parameter Object
False: Disable CIP Parameter Object

If the parameter object is disabled and CIP
routing is enabled, any requests will be
routed to the application
See also...

- “Parameter Object (0Fh)” on page 22
(CIP-object)

15 Assembly
object configu-
ration instance
number

Get UINT16 0005h See also...
- “Instance 05h Attributes (Configuration

Data)” on page 19 (CIP-instance)

Name Access Type Default Value Comment

11 Enable CIP
request for-
warding

Get BOOL False Value:Meaning:
True: Requests to unknown ControlNet

objects or unknown assembly object
instances are routed to the application

- “Command Details: Process_CIP_Mes-
sage_Request” on page 42

Host Application Objects 42

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

6.3.1 Command Details: Process_CIP_Message_Request

Category

Advanced

Details

Command Code: 10h

Valid for: Object Instance

Description

By setting the ‘Enable CIP Request Forwarding’-attribute (#11), all requests to unimplemented CIP-ob-
jects or unimplemented assembly object instances will be forwarded to the host application through this
command. The application then has to evaluate the request and return a proper response. The module
supports up to 6 pending CIP-requests; additional requests will be rejected by the module.

Note that since the telegram length on the host interface is limited, the request data size must not exceed
255 bytes. If it does, a the module will send a ‘resource unavailable’ response to the originator of the
request and the message will not be forwarded to the host application.

Note: This command is identical to the ‘Process_CIP_Request’-command in the Anybus CompactCom
Ethernet, similar - but not identical - to the ‘Process_CIP_Request’-command in the Anybus Compact-
Com DeviceNet.

• Command Details

• Response Details

IMPORTANT: When using this functionality, make sure to implement the common CIP Class Attribute (attribute
#1, ‘Revision’) for all objects in the host application firmware. Failure to observe this will prevent the module from success-
fully passing conformance tests.

Field Contents Notes

CmdExt[0] CIP Service Code CIP service code from original CIP request

CmdExt[1] Request Path Size Number of 16-bit words in the Request Path field

MsgData[0... m] Request Path CIP Padded EPATH (Class, Instance, Attr. etc.)

MsgData[m... n] Request Data Service-specific data

Field Contents Notes

CmdExt[0] CIP Service Code (Reply bit set)

CmdExt[1] 00h (reserved, set to zero)

MsgData[0] General Status CIP General Status Code

MsgData[1] Size of Additional Status Number of 16-bit words in Additional Status array

MsgData[2... m] Additional Status Additional Status, if applicable

MsgData[m... n] Response data Actual response data, if applicable

Host Application Objects 43

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

6.3.2 Command Details: Set_Configuration_Data

Category

Advanced

Details

Command Code: 11h

Valid for: Object Instance

Description

If the data segment in the CIP Forward_Open service contains configuration data, this will be forwarded
to the host application with this command. If implemented, the host application should evaluate the re-
quest and return a proper response.

Since the telegram length on the host interface is limited, segmentation is needed for data sizes larger
than 255 bytes. The maximum total amount of configuration data that will be accepted by the module
is 458 bytes.

Note: This command must be implemented in order to support configuration data. If not implemented,
the CIP Forward_Open request will be rejected by the module if it contains configuration data.

• Command Details

• Response Details (success)

• Response Details (error)

Field Contents

CmdExt[0] Reserved

CmdExt[1] Segmentation control bits (see “Message Segmentation” on page 47)

MsgData[0... n] Actual configuration data

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] (reserved, set to zero)

MsgData[0] 00h: accepted

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] (reserved, set to zero)

MsgData[0] Anybus protocol error code

MsgData[1] If MsgData[0] equals 0Ch (value out of range), the content of this field points to the errone-
ous attribute.

Host Application Objects 44

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

6.3.3 Command Details: Get_Configuration_Data

Category

Advanced

Details

Command Code: 13h

Valid for: Object Instance

Description

If the configuration data is requested from the network, the Anybus module will issue this command to
the application. The application shall send the stored configuration data in the response message.

Since the telegram length on the host interface is limited, segmentation is needed for data sizes larger
than 255 bytes. The maximum total amount of configuration data that will be accepted by the module
is 458 bytes.

Note: This command must be implemented in order to support configuration data. If not implemented,
the request will be rejected by the Anybus module.

• Command Details

• Response Details (success)

• Response Details (error)

Field Contents

CmdExt[0] 0

CmdExt[1] 0

Field Contents

CmdExt[0] 0

CmdExt[1] Segmentation control bits (see “Message Segmentation” on page 47)

MsgData[0-n] Configuration data from the application

Field Contents

CmdExt[0] 0

CmdExt[1] Segmentation control bits (see “Message Segmentation” on page 47)

MsgData[0] Anybus protocol error code

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Appendix A

A. Implementation Details

A.1 Extended LED Functionality

On the Anybus CompactCom ControlNet module, only one of the two network status LEDs is available
through the application interface connector (LED1[A..B]). If needed, there is the possibility to use both
network status LEDs by enabling the extended LED functionality. Doing so will disable LED1[A..B]
and instead use GIP[0..1] and GOP[0..1] for the two network LEDs.

To enable the extended LED functionality, the application needs to set the Anybus Object Instance 1
attribute 16 (GPIO configuration) to 0x0001 during state SETUP.

See the Anybus CompactCom Hardware Design Guide for Host Interface Signals.

GPIO mode description

Note 1: Enabling the extended LED functionality will cause both GIP[0..1] and GOP[0..1] to function
as outputs.

Note 2: Enabling the extended LED functionality will define both GIP[0..1] and GOP[0..1] as active
low. This means that LEDs will be lit when the corresponding pin is low.

Note 3: LED behavior is described in chapter 1. See “Network Status” on page 51.

A.2 SUP-Bit Definition

The supervised bit (SUP) indicates that the network participation is supervised by another network de-
vice. For ControlNet this bit is set when one or more CIP (Class 1 or Class 3) connection is opened
towards the module.

Signal

GIP[0..1] GOP[0..1] LED1[A..B] LED2[A..B]

GPIO Configuration Value: 0x0000
(Default)

General purpose
input

General purpose
output

Network Status
LED A

Module Status
LED

Value: 0x0001
(Extended LED
functionality)

Network Status
LED A
GIP0 (red)
GIP1 (green)

Network Status
LED B
GOP0 (red)
GOP1 (green)

Disabled (set to
low)

Module Status
LED

Implementation Details 46

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

A.3 Anybus State Machine

The table below describes how the Anybus State Machine relates to the ControlNet network.

Note: The state does not change for a Class 3 connection.

State ControlNet Specific Meaning Notes

WAIT_PROCESS The module will stay in this state until a Class
1 connection is opened.

-

ERROR Class 1 connection error, invalid link configura-
tion or dup-MAC-fail

If the error is fatal, such as dup-MAC-fail, the
module will stay in this state until it’s restarted.

PROCESS_ACTIVE Error free Class 1 connection active -

IDLE Class 1 connection idle Can only be set for connections consuming
data.

EXCEPTION Some kind of unexpected behavior, e.g.
watchdog timeout.

The Module Status LED will turn red to indi-
cate a major fault, and turn the Network Status
LED off.

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Appendix B

B. Message Segmentation

B.1 General

Category: Advanced

The maximum message size supported by the Anybus CompactCom is 255 bytes. To provide support
for longer messages (needed when using the socket interface), a segmentation protocol is used.

The segmentation protocol is implemented in the message layer and must not be confused with the frag-
mentation used on the serial host interface. Consult the general Anybus CompactCom 30 Software De-
sign Guide for further information.

The module supports 1 (one) simultaneous segmented message per instance.

Message Segmentation 48

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

B.2 Command Segmentation

When a command message is segmented, the command initiator sends the same command header mul-
tiple times. For each message, the data field is exchanged with the next data segment.

Please note that some commands can not be used concurrently on the same instance, since they both
need access to the segmentation buffer for that instance.

Command segmentation is used for the following commands:

• Set_Configuration_Data (see “Command Details: Set_Configuration_Data” on page 43)

Segmentation Control bits (Command)

Segmentation Control bits (Response)

When issuing a segmented command, the following rules apply:

• When issuing the first segment, FS must be set.

• When issuing subsequent segments, both FS and LS must be cleared.

• When issuing the last segment, the LF-bit must be set.

• For single segment commands (i.e. size less or equal to 255 bytes), both FS and LS must be set.

• The last response message contains the actual result of the operation.

• The command initiator may at any time abort the operation by issuing a message with AB set.

• If a segmentation error is detected during transmission, an error message is returned, and the cur-
rent segmentation message is discarded. Note however that this only applies to the current seg-
ment; previously transmitted segments are still valid.

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero).

Bit Contents Meaning

0...7 (reserved) Ignore.

Message Segmentation 49

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

B.3 Response Segmentation

When a response is segmented, the command initiator requests the next segment by sending the same
command multiple times. For each response, the data field is exchanged with the next data segment.

Response segmentation is used for responses to the following commands:

• Get_Configuration_Data (see “Command Details: Get_Configuration_Data” on page 44)

Segmentation Control bits (Command)

Segmentation Control bits (Response)

When receiving a segmented response, the following rules apply:

• In the first segment, FS is set

• In all subsequent segment, both FS and LS are cleared

• In the last segment, LS is set

• For single segment responses (i.e. size less or equal to 255 bytes), both FS and LS are set.

• The command initiator may at any time abort the operation by issuing a message with AB set.

Bit Contents Meaning

0 (reserved) (set to zero)

1

2 AB Set if the segmentation shall be aborted

3...7 (reserved) (set to zero)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2...7 (reserved) (set to zero)

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Appendix C

C. Categorization of Functionality

The objects, including attributes and services, of the Anybus CompactCom and the application are di-
vided into three categories: basic, advanced and extended.

C.1 Basic

This category includes objects, attributes and services that are mandatory to implement or to use. They
will be enough for starting up the Anybus CompactCom and sending/receiving data with the chosen
network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this category.

C.2 Extended

Use of the objects in this category extends the functionality of the application. Access is given to the
more specific characteristics of the industrial network, not only the basic moving of data to and from
the network. Extra value is given to the application.

C.3 Advanced

The objects, attributes and services that belong to this group offer specialized and/or seldom used func-
tionality. Most of the available network functionality is enabled and accessible. Access to the specifica-
tion of the industrial network is normally required.

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Appendix D

D. Technical Specification

D.1 Front View

Note 1: If redundancy is wanted, both connectors should be used, if not use either connector A or con-
nector B.

Note 2: Network Status LED A and Module Status LED correspond to LED 1 and LED 2 in the in-
stance attributes of the Anybus Object. They are available in the application interface, but the LED
placement on the front does not conform to the standard Anybus CompactCom placement of LED 1
and LED 2.

See also:

• “Anybus Object (01h)” on page 31

• Anybus CompactCom HW Design Guide

Network Status

Module Status

ControlNet Connectors

These connectors provides ControlNet connectivity. If reduncancy is wanted, both connectors should
be used. Otherwise either connector can be used.

Item

1 Network Status LED A

2 Module Status LED

3 Network Status LED B

4 ControlNet Connector A

5 ControlNet Connector B

LED State Indication

Led A and B Off Not online / No power

Flashing Red (1 Hz) Incorrect node configuration, duplicate MAC ID etc.

Alternating Red/Green Self test of bus controller

Red Fatal event or faulty unit

Led A or B Off Channel is disabled

Alternating Red/Green Invalid link configuration

Flashing Green (1 Hz) Temporary errors (node will self correct) or node is not config-
ured to go on-line

Green Normal operation

Flashing Red (1 Hz) Media fault or no other nodes on the network

State Indication

Off No power

Green Operating in normal condition, controlled by a Scanner in Run state

Flashing Green (1 Hz) The module has not been configured or the Scanner is in Idle state

Red Unrecoverable fault(s), EXCEPTION, fatal event

Flashing Red (1 Hz) Recoverable fault(s), MAC ID has been changed after initialization etc.

4 5

1 3

2

Technical Specification 52

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

D.2 Protective Earth (PE) Requirements

In order to ensure proper EMC behaviour, the module must be properly connected to protective earth
via the PE pad / PE mechanism described in the general Anybus CompactCom Hardware Design
Guide.

HMS Industrial Networks does not guarantee proper EMC behaviour unless these PE requirements are
fulfilled.

D.3 Power Supply

Supply Voltage

The module requires a regulated 3.3V power source as specified in the general Anybus CompactCom
Hardware Design Guide.

Power Consumption

The Anybus CompactCom 30 ControlNet is designed to fulfil the requirements of a Class C module.
For more information about the power consumption classification used on the Anybus CompactCom
platform, consult the general Anybus CompactCom Hardware Design Guide.

The current hardware design consumes up to 660 mA1.

Note: It is strongly advised to design the power supply in the host application based on the power con-
sumption classifications described in the general Anybus CompactCom Hardware Design Guide, and
not on the exact power requirements of a single product.

D.4 Environmental Specification

Consult the Anybus CompactCom Hardware Design Guide for further information.

D.5 EMC Compliance

Consult the Anybus CompactCom Hardware Design Guide for further information.

1. Note that in line with HMS policy of continuous product development, we reserve the right to change the
exact power requirements of this product without prior notification. Note however that in any case, the
Anybus CompactCom 30 ControlNet will remain as a Class C module.

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

Appendix E

E. Timing & Performance

E.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for the
Anybus CompactCom 30 ControlNet.

The following timing aspects are measured:

Category Parameters Page

Startup Delay T1, T2 Please consult the Anybus Com-
pactCom 30 Software Design
Guide, App. B.

NW_INIT Delay T3

Telegram Delay T4

Command Delay T5

Anybus Read Process Data Delay (Anybus Delay) T6, T7, T8

Anybus Write Process Data Delay (Anybus Delay) T12, T13, T14

Network System Read Process Data Delay (Network System Delay) T9, T10, T11 55

Network System Write Process Data Delay (Network System Delay) T15, T16, T17 55

Timing & Performance 54

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

E.2 Process Data

E.2.1 Overview

E.2.2 Anybus Read Process Data Delay (Anybus Delay)

The Read Process Data Delay (labelled ‘Anybus delay’ in the figure above) is defined as the time mea-
sured from just before new data is buffered and available to the Anybus host interface software, to when
the data is available to the host application (just after the new data has been read from the driver).

Please consult the Anybus CompactCom 30 Software Design Guide, Appendix B, for more informa-
tion.

E.2.3 Anybus Write Process Data Delay (Anybus Delay)

The Write Process Data Delay (labelled ‘Anybus delay’ in the figure) is defined as the time measured
from the point the data is available from the host application (just before the data is written from the
host application to the driver), to the point where the new data has been forwarded to the network buffer
by the Anybus host interface software.

Please consult the Anybus CompactCom 30 Software Design Guide, Appendix B, for more informa-
tion.

Host Application Anybus

Host
interface
software

Network
specific
software

Network
specific

hardware

Network Master

Application
software HMS Driver

Anybus Delay

Event

Network System Delay

Network Media

Timing & Performance 55

Doc.Id. HMSI-168-79
Anybus CompactCom 30 ControlNet
Doc.Rev. 2.11

E.2.4 Network System Read Process Data Delay (Network System Delay)

The Network System Read Process Data Delay (labelled ‘Network System Delay in the figure), is defined
as the time measured from the point where an event is generated at the network master to when the
corresponding data is available to the host application (just after the corresponding data has been read
from the driver).

Conditions:

E.2.5 Network System Write Process Data Delay (Network System Delay)

The Network System Write Process Data Delay (labelled ‘Network System Delay in the figure), is de-
fined as the time measured from the time after the new data is available from the host application (just
before the data is written to the driver) to when this data generates a corresponding event at the network
master.

Conditions: as in “Network System Read Process Data Delay (Network System Delay)”, p. 55.

Parameter Description Min. Max. Unit.

T9 Network System Read Process Data delay, 8 ADIs (single UINT8) 2.1 4.3 ms

T10 Network System Read Process Data delay, 16 ADIs (single UINT8) 2.1 4.2 ms

T11 Network System Read Process Data delay, 32 ADIs (single UINT8) 2.1 4.3 ms

Parameter Conditions

Application CPU -

Timer system call interval 1 ms

Driver call interval 0.2... 0.3 ms

No.of ADIs (single UINT8) mapped to Process Data in each direction. 8, 16 and 32

Communication Parallel

Telegram types during measurement period Process Data only

Bus load, no. of nodes, baud rate etc. Normal

Parameter Description Min. Max. Unit.

T15 Network System Write Process Data delay, 8 ADIs (single UINT8) 2.1 4.3 ms

T16 Network System Write Process Data delay, 16 ADIs (single UINT8) 2.1 4.2 ms

T17 Network System Write Process Data delay, 32 ADIs (single UINT8) 2.1 4.3 ms

	Important User Information
	Liability
	Intellectual Property Rights
	Trademark Acknowledgements

	P. About This Document
	P.1 Related Documents
	P.2 Document History
	P.3 Conventions & Terminology
	P.4 Support

	1. About the Anybus CompactCom 30 ControlNet
	1.1 General
	1.2 Features

	2. Tutorial
	2.1 Introduction
	2.2 Fieldbus Conformance Notes
	2.3 Conformance Test Guide
	2.3.1 Reidentifying Your Product.
	2.3.2 Factory Default Reset

	3. Basic Operation
	3.1 General Information
	3.1.1 Software Requirements
	3.1.2 Electronic Data Sheet (EDS)

	3.2 Device Customization
	3.3 Communication Settings
	3.4 Diagnostics
	3.5 Data Exchange
	3.5.1 Application Data (ADIs)
	3.5.2 Process Data
	3.5.3 Translation of Data Types

	4. CIP Objects
	4.1 General Information
	4.2 Identity Object (01h)
	4.3 Message Router (02h)
	4.4 Assembly Object (04h)
	4.5 Connection Manager (06h)
	4.6 Parameter Object (0Fh)
	4.7 ControlNet Object (F0h)
	4.8 ADI Object (A2h)

	5. Anybus Module Objects
	5.1 General Information
	5.2 Anybus Object (01h)
	5.3 Diagnostic Object (02h)
	5.4 Network Object (03h)
	5.5 Network Configuration Object (04h)
	5.5.1 Instance Attributes (Instance #1, ‘Device Address’)‘
	5.5.2 Multilingual Strings

	6. Host Application Objects
	6.1 General Information
	6.2 CIP Identity Host Object (EDh)
	6.3 ControlNet Host Object (F3h)
	6.3.1 Command Details: Process_CIP_Message_Request
	6.3.2 Command Details: Set_Configuration_Data
	6.3.3 Command Details: Get_Configuration_Data

	A. Implementation Details
	A.1 Extended LED Functionality
	A.2 SUP-Bit Definition
	A.3 Anybus State Machine

	B. Message Segmentation
	B.1 General
	B.2 Command Segmentation
	B.3 Response Segmentation

	C. Categorization of Functionality
	C.1 Basic
	C.2 Extended
	C.3 Advanced

	D. Technical Specification
	D.1 Front View
	D.2 Protective Earth (PE) Requirements
	D.3 Power Supply
	D.4 Environmental Specification
	D.5 EMC Compliance

	E. Timing & Performance
	E.1 General Information
	E.2 Process Data
	E.2.1 Overview
	E.2.2 Anybus Read Process Data Delay (Anybus Delay)
	E.2.3 Anybus Write Process Data Delay (Anybus Delay)
	E.2.4 Network System Read Process Data Delay (Network System Delay)
	E.2.5 Network System Write Process Data Delay (Network System Delay)

