
HALMSTAD • CHICAGO • KARLSRUHE • TOKYO • BEIJING • MILANO • MULHOUSE • COVENTRY • PUNE • COPENHAGEN

HMS Industrial Networks
Mailing address: Box 4126, 300 04 Halmstad, Sweden
Visiting address: Stationsgatan 37, Halmstad, Sweden

Connecting DevicesTM

E-mail: info@hms-networks.com
 www.anybus.com

Network Interface Appendix

Anybus® CompactCom 30 DeviceNet
Doc.Id. HMSI-168-51

Rev. 2.40

Chapter 1 About the Anybus CompactCom 30 DeviceNet

General ... 8

Features .. 8

Chapter 2 Tutorial

Introduction .. 9

Fieldbus Conformance Notes .. 9

Conformance Test Guide.. 9
Reidentifying Your Product... 10
Factory Default Reset... 10

Chapter 3 Basic Operation

General Information .. 11
Software Requirements ... 11
Electronic Data Sheet (EDS) .. 11

Device Customization.. 12

Communication Settings ... 12
Setting MAC ID .. 13

Diagnostics .. 13

Data Exchange.. 14
Application Data (ADIs) ... 14
Process Data .. 14
Translation of Data Types ... 14

Table of Contents

Table of Contents

 4

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Chapter 4 CIP Objects

General Information .. 15

Identity Object (01h).. 16

Message Router (02h) .. 18

DeviceNet Object (03h) .. 19

Assembly Object (04h) .. 21

Connection Object (05h)... 23

Parameter Object (0Fh) ... 28

Acknowledge Handler Object (2Bh) ... 30

ADI Object (A2h) .. 31

Chapter 5 Anybus Module Objects

General Information .. 33

Anybus Object (01h).. 34

Diagnostic Object (02h) .. 36

Network Object (03h).. 37

Network Configuration Object (04h).. 38

Chapter 6 Host Application Objects

General Information .. 41

DeviceNet Host Object (FCh) ... 42
Command Details: Process_CIP_Message_Request ... 45

 5

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Appendix A Categorization of Functionality

Basic.. 46

Extended.. 46

Advanced ... 46

Appendix B Implementation Details

DeviceNet Implementation .. 47

SUP-Bit Definition... 48

Anybus State Machine ... 48

Appendix C CIP Request Forwarding

Appendix D Technical Specification

Front View... 51

Network Connector, Brick Version... 53

Protective Earth (PE) Requirements... 54

Power Supply .. 54

DeviceNet Power Supply .. 54

Environmental Specification .. 54

EMC Compliance ... 54

Appendix E Timing & Performance

General Information .. 56

Process Data.. 57
Overview .. 57
Anybus Read Process Data Delay (Anybus Delay).. 57
Anybus Write Process Data Delay (Anybus Delay)... 57
Network System Read Process Data Delay (Network System Delay) ... 58
Network System Write Process Data Delay (Network System Delay) .. 58

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Preface

P. About This Document

For more information, documentation etc., please visit the HMS website, ‘www.anybus.com’.

P.1 Related Documents

P.2 Document History

Summary of Recent Changes (2.30... 2.40)

Revision List

Document Author

Anybus CompactCom 30 Software Design Guide HMS

Anybus CompactCom 30 Hardware Design Guide HMS

Anybus CompactCom Software Driver User Guide HMS

DeviceNet Specification ODVA

Common Industrial Protocol (CIP) specification ODVA

Change Page(s)

Moved front view info to Technical Specification 51

Added clarification to Product Name attribute in DeviceNet Host Object 43

Added information to Instance #1, attribute #5 of Network Configuration Object 39

Added section on setting MAC ID 13

Changed device address to node address

Revision Date Author(s) Chapter(s) Description

1.00 2005-09-15 PeP - First official release

1.01 2005-10-19 PeP - Misc. minor corrections

1.05 2006-05-03 PeP - Misc. visual and structural updates

1.06 2007-04-26 PeP - Minor update

2.00 2010-04-14 KeL All Change to new concept

2.01 2010-11-12 KeL P, 6 Minor updates

2.02 2011-12-05 KeL 2 Minor update

2.03 2012-04-13 KeL 2 Minor update

2.10 2012-10-19 KeL, KaD 1, 6 M12 connectors added and minor update

2.20 2013-02-18 KeL 1, 3 Updates for brick version, minor update

2.21 2013-05-17 KeL 1 MInor update

2.30 2014-04-24 KeL 1, 4, 6, C Misc. updates

2.40 2015-06-24 KeL 3, 5, 6, D Clarifications

About This Document 7

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

P.3 Conventions & Terminology

The following conventions are used throughout this manual:

• Numbered lists provide sequential steps

• Bulleted lists provide information, not procedural steps

• The terms ‘Anybus’ or ‘module’ refers to the Anybus CompactCom module.

• The terms ‘host’ or ‘host application’ refers to the device that hosts the Anybus module.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the hexa-
decimal value.

• A byte always consists of 8 bits.

P.4 Support

For general contact information and support, please refer to the contact and support pages at
www.anybus.com.

http://www.hms-networks.com
http://www.hms-networks.com
http://www.hms-networks.com

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Chapter 1

1. About the Anybus CompactCom 30 DeviceNet

1.1 General

The Anybus CompactCom 30 DeviceNet communication module provides instant DeviceNet connec-
tivity via the patented Anybus CompactCom host interface. Any device that supports this standard can
take advantage of the features offered by the module, allowing seamless network integration regardless
of network type.

The modular approach of the Anybus CompactCom platform allows the CIP-object implementation to
be extended to fit specific application requirements. Furthermore, the Identity Object can be custom-
ized, allowing the end product to appear as a vendor-specific implementation rather than a generic Any-
bus module.

This product conforms to all aspects of the host interface for Active modules defined in the Anybus
CompactCom 30 Hardware- and Software Design Guides, making it fully interchangeable with any oth-
er device following that specification. Generally, no additional network related software support is need-
ed, however in order to be able to take full advantage of advanced network specific functionality, a
certain degree of dedicated software support may be necessary.

1.2 Features

• DeviceNet connector or M12 connectors

• Brick version

• CIP Parameter Object Support

• Explicit messaging

• UCMM Capable

• Bit-strobed I/O

• Change-of-state / Cyclic I/O

• Polled I/O

• Expansion possibilities via CIP forwarding

• Customizable Identity object

• Automatic Baudrate Detection

• Quick Connect supported

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Chapter 2

2. Tutorial

2.1 Introduction

This chapter is a complement to the Anybus CompactCom Implementation Tutorial. The ABCC tuto-
rial describes and explains a simple example of an implementation with Anybus CompactCom. This
chapter includes network specific settings that are needed for a host application to be up and running
and possible to certify for use on DeviceNet networks.

2.2 Fieldbus Conformance Notes

• The Anybus CompactCom 30 DeviceNet has been pre-compliance tested by ODVA’s autho-
rized Independent Test Lab and found to comply with the ODVA Conformance Test Software.
However, in accordance with ODVA’s conformance test policy, the final product must still be
compliance tested to ensure fieldbus conformance. In order to be able to do this, the vendor in-
formation in the DeviceNet Host Object must be customized.

• It is strongly recommended to customize the information in the Identity Object (CIP), to enable
the product to appear as a vendor specific implementation rather than a generic Anybus module.
ODVA requires that all manufacturers use their own Vendor ID. A Vendor ID can be applied
for from ODVA.

For further information, please contact HMS or ODVA.

2.3 Conformance Test Guide

When using the default settings of all parameters, the Anybus CompactCom 30 DeviceNet module is
precertified for network compliance. This precertification is done to ensure that your product can be cer-
tified, but it does not mean that your product will not require certification.

Any change in the parameters in the EDS file, supplied by HMS, will require a certification. A Vendor
ID can be obtained from ODVA and is compulsory for certification. This section provides a guide for
successful conformance testing your product, containing the Anybus CompactCom 30 DeviceNet mod-
ule, to comply with the demands for network certification set by the ODVA.

Independent of selected operation mode, the actions described in this section have to be accounted for
in the certification process. The identity of the product needs to be changed to match your company and
device.

IMPORTANT: This section provides guidelines and examples of what is needed for certification. Depending on the
functionality of your application, there may be additional steps to take. Please contact HMS Industrial Networks at
www.anybus.com for more information.

Tutorial 10

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

2.3.1 Reidentifying Your Product.

After successful setting of the “Setup Complete” attribute in the Anybus Object (01h), the Anybus mod-
ule asks for identification data from the DeviceNet Host Object (FCh). Therefore, the attributes listed
below shall be implemented and proper values returned.

2.3.2 Factory Default Reset

Reset command to Application Object (FFh) must be supported

When Anybus CompactCom 30 DeviceNet modules are delivered, they are required to be in their “Fac-
tory Default” state. When a Factory Default Reset command is received from the network, the Anybus
module will erase all non-volatile information and inform the host application that a reset of the Anybus
module is required. This is done by sending a Reset command to the Application Object (FFh) of the
host (Power-on + Factory Default). For more details, please consult the Anybus CompactCom 30 Soft-
ware Design Guide.

Object/Instance Attribute Explanation Default Customer sample Comment

DeviceNet Object (FCh),
Instance 1

#1, Vendor ID With this attribute you
set the Vendor ID of
the device.

005Ah (HMS) 1111h This information must match the
keyword values of the “Device”
section in the EDS file.

DeviceNet Object (FCh),
Instance 1

#2, Device Typea

a. The Device Type default value 0000h must be changed for the module to pass a conformance test. If no other
specific profile is implemented, use the value 002Bh (Generic Device (keyable)).

With this attribute you
set the Device Type of
the device.

0000h 002Bha (Generic
Device (keyable))

DeviceNet Object (FCh),
Instance 1

#3, Product Code With this attribute you
set the Product Code
of the device

0064h 2222h

DeviceNet Object (FCh),
Instance 1

#4, Revision With this attribute you
set the Revision of the
device.

1.1

DeviceNet Object (FCh),
Instance 1

#5, Serial Number With this attribute you
set the SERIAL NUM-
ber of the device.

12345678h Unique number for all CIP devices
produced with the same ‘Vendor
ID.

DeviceNet Object (FCh),
Instance 1

#6, Product Name With this attribute you
set the Product Name
of the device.

Anybus-CC Devi-
ceNet

“Widget” This information must match the
keyword values of the “Device”
section in the EDS file.

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Chapter 3

3. Basic Operation

3.1 General Information

3.1.1 Software Requirements

Generally, no additional network support code needs to be written in order to support the Anybus Com-
pactCom DeviceNet. However, due to the nature of the DeviceNet networking system, certain restric-
tions must be taken into account:

• Certain functionality in the module requires that the command ‘Get_Instance_Num-
ber_By_Order’ (Application Data Object, FEh) is implemented in the host application.

• Up to 5 diagnostic instances (See “Diagnostic Object (02h)” on page 36) can be created by the
host application during normal conditions. An additional 6th instance may be created in event of
a major fault.

For in-depth information regarding the Anybus CompactCom software interface, consult the general
Anybus CompactCom Software Design Guide.

See also...

• “Diagnostic Object (02h)” on page 36 (Anybus Module Object)

• Anybus CompactCom Software Design Guide, ‘Application Data Object (FEh)’

3.1.2 Electronic Data Sheet (EDS)

Since the module implements the Parameter Object, it is possible for configuration tools such as RS-
NetWorx to automatically generate a suitable EDS-file.

Note that this functionality requires that the command ‘Get_Instance_Number_By_Order’ (Applica-
tion Data Object, FEh) has been implemented in the host application.

See also...

• “Device Customization” on page 12

• “Parameter Object (0Fh)” on page 28 (CIP-object)

• Anybus CompactCom Software Design Guide, ‘Application Data Object (FEh)’

IMPORTANT: To comply with CIP-specification requirements, custom EDS-implementations require a new Vendor
ID and/or Product Code.

To obtain a Product Code which complies to the default Vendor ID, please contact HMS.

Basic Operation 12

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

3.2 Device Customization

By default, the module supports the generic CIP-profile with the following identity settings:

• Vendor ID: 005Ah (HMS Industrial Networks)

• Device Type: 0000h (Generic Device)

• Product Code: 0062h (Anybus CompactCom DeviceNet)

• Product Name: ‘Anybus-CC DeviceNet’

It is possible to customize the identity of the module by implementing the DeviceNet Host Object. Fur-
thermore, it is possible to re-route requests to unimplemented CIP-objects to the host application, thus
enabling support for other profiles etc.

To support a specific profile, perform the following steps:

• Set up the identity settings in the DeviceNet Host Object according to profile requirements.

• Set up the Assembly Instance Numbers according to profile requirements.

• Enable routing of CIP-messages to the host application in the DeviceNet Host Object.

• Implement the required CIP-objects in the host application.

See also...

• “Identity Object (01h)” on page 16 (CIP-object)

• “DeviceNet Host Object (FCh)” on page 42 (Host Application Object)

• “CIP Request Forwarding” on page 49

IMPORTANT: The default identity information is valid only when using the standard EDS-file supplied by HMS.
To comply with CIP-specification requirements, custom EDS-implementations require a new Vendor ID and/or Product
Code.

To obtain a Product Code which complies to the default Vendor ID, please contact HMS.

3.3 Communication Settings

As with other Anybus CompactCom products, network related communication settings are grouped in
the Network Configuration Object (04h).

In this case, this includes...

• Baud rate

See “Instance Attributes (Instance #2, ‘Baud rate’)” on page 39

• MAC ID

See also... “Setting MAC ID” on page 13

The parameters in the Network Configuration Object (04h) are available from the network through the
Identity Object (CIP-object).

See also...

• “Identity Object (01h)” on page 16 (CIP-object)

• “Network Configuration Object (04h)” on page 38 (Anybus Module Object)

Basic Operation 13

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

3.3.1 Setting MAC ID

There are three different methods to set the MAC ID (the node address) of the module.

See also ...

• “DeviceNet Host Object (FCh)” on page 42 (Host Application Object)

• “Network Configuration Object (04h)” on page 38 (Anybus Module Object)

3.4 Diagnostics

The severity value of all pending events are combined (using logical OR) and copied to the correspond-
ing bits in the ‘Status’-attribute of the CIP Identity Object.

See also...

• “Identity Object (01h)” on page 16 (CIP-object)

• “Diagnostic Object (02h)” on page 36 (Anybus Module Object)

Method
Actions Required to be Performed by Host
Application

Comments

Node address set only
from network

• Set attribute #5 in the Network Configura-
tion Object (04h), Instance #1 to any value
between 64 - 255.

• Set attribute #9 in the DeviceNet Object
(FCh) to TRUE.

An invalid device (node) address (64 - 255) is
set in the application. The network will write a
valid node address to the Network Configura-
tion object. The module deletes all Connection
objects and restarts the network access pro-
cess.

Node address set only
from application

• Set attribute #9 in the DeviceNet Object
(FCh) to FALSE.

• Set attribute #5 in the Network Configura-
tion Object (04h), Instance #1 to any value
between 0 - 63.

• Each time the host application changes the
value, the new value shall be written to attri-
bute #5 in the Network Configuration Object
(04h), Instance #1.

If an invalid value is set by the application (64 -
255), the module will enter the “Communication
faulted state” at network initialization.

Node address set from
network or from appli-
cation

• Set attribute #5 in the Network Configura-
tion Object (04h), Instance #1.

• Each time the host application changes the
value, the new value shall be written to attri-
bute #5 in the Network Configuration Object
(04h), Instance #1.

• Set attribute #9 in the DeviceNet Object
(FCh) to TRUE.

If an invalid value is set by the application, the
module will return to the last used .
When a device adress is set from the network,
the address will be set in attribute #5 in the Net-
work Configuration Object (04h), Instance #1.
The module deletes all Connection objects and
restarts the network access process.

Basic Operation 14

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

3.5 Data Exchange

3.5.1 Application Data (ADIs)

ADIs are represented on DeviceNet through the ADI Object (CIP-object). Each instance within this
objects corresponds directly to an instance in the Application Data Object on the host application side.

See also...

• “Parameter Object (0Fh)” on page 28 (CIP-object)

• “ADI Object (A2h)” on page 31 (CIP-object)

3.5.2 Process Data

Process Data is represented on DeviceNet through dedicated instances in the Assembly Object. Note
that each ADI element is mapped on a byte-boundary, i.e. each BOOL occupies one byte.

See also...

• “Assembly Object (04h)” on page 21 (CIP-object)

• “Connection Object (05h)” on page 23 (CIP-object)

3.5.3 Translation of Data Types

The Anybus data types are translated to CIP-standard and vice versa according to the table below.

Anybus Data Type CIP Data Type Comments

BOOL BOOL Each ADI element of this type occupies one byte.

ENUM USINT

SINT8 SINT

UINT8 USINT

SINT16 INT Each ADI element of this type occupies two bytes.

UINT16 UINT

SINT32 DINT Each ADI element of this type occupies four bytes.

UINT32 UDINT

FLOAT REAL

CHAR SHORT_STRING SHORT_STRING consists of a single-byte length field (which in this case
represents the number of ADI elements) followed by the actual character data
(in this case the actual ADI elements). This means that a 10-character string
occupies 11 bytes.

SINT64 LINT Each ADI element of this type occupies eight bytes.

UINT64 ULINT

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Chapter 4

4. CIP Objects

4.1 General Information

This chapter specifies the CIP-objects implementation in the module. The objects described herein can
be accessed from the network, but not by the host application.

Mandatory Objects:

• “Identity Object (01h)” on page 16

• “Message Router (02h)” on page 18

• “DeviceNet Object (03h)” on page 19

• “Assembly Object (04h)” on page 21

• “Connection Object (05h)” on page 23

• “Parameter Object (0Fh)” on page 28

• “Acknowledge Handler Object (2Bh)” on page 30

Vendor Specific Objects:

• “ADI Object (A2h)” on page 31

It is possible to implement additional CIP-objects in the host application using the CIP forwarding func-
tionality, see “DeviceNet Host Object (FCh)” on page 42 and “CIP Request Forwarding” on page 49.

CIP Objects 16

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.2 Identity Object (01h)

Category

Extended

Object Description

-

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single
Reset

Class Attributes

Instance #1 Attributes

Extended

Access Name Type Comments

1 Get Revision UINT 0001h

Access Name Type Comments

1 Get Vendor ID UINT 005Ah (HMS Industrial Networks ABa)

a. Can be customized by implementing the DeviceNet Host Object, see “DeviceNet Host Object (FCh)” on page 42

2 Get Device Type UINT 0000h (Generic Devicea)

3 Get Product Code UINT 0062h (Anybus CompactCom DeviceNeta)

4 Get Revision Struct of:
{USINT, USINT}

Major and minor firmware revisiona

5 Get Status WORD See “Device Status” on page 17

6 Get Serial Number UDINT Assigned by HMSa

7 Get Product Name SHORT_STRING “Anybus-CC DeviceNet” (Name of producta)

11 Set Active language Struct of:
{USINT,
USINT,
USINT}

Requests sent to this instance are forwarded to the Application
Object. The host application is then responsible for updating the lan-
guage settings accordingly.

12 Get Supported
Language List

Array of struct of:
{USINT,
USINT,
USINT}

List of languages supported by the host application. This list is read
from the Application Object during the NW_INIT state, and translated
to CIP standard.

CIP Objects 17

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Device Status

Service Details: Reset Service

The module forwards reset requests from the network to the host application. For more information
about network reset handling, consult the general Anybus CompactCom Design Guide.

There are two types of network reset requests on DeviceNet:

• Type 0: ‘Power Cycling Reset’

This service emulates a power cycling of the module, and corresponds to Anybus reset type 0
(Power cycling). For further information, consult the general Anybus CompactCom Software
Design Guide.

• Type 1: ‘Out of box reset’

This service sets a “out of box” configuration and performs a reset, and corresponds to Anybus
reset type 2 (Power cycling + factory default). For further information, consult the general Any-
bus CompactCom Software Design Guide.

bit(s) Name

0 Module Owned

1 (reserved)

2 Configureda

a. This bit shows if the product has other settings than “out-of-box”. The value is set to true if the configured attribute
in the Application Object is set and/or the module’s NV storage is changed from default.

3 (reserved)

4... 7 Extended Device Status:

Value:Meaning:
0000b Unknown
0010b Faulted I/O Connection
0011b No I/O connection established
0100b Non-volatile configuration bad
0110b Connection in Run mode
0111b Connection in Idle mode
(other) (reserved)

8 Set for minor recoverable faultsb

b. See “Diagnostic Object (02h)” on page 36.

9 Set for minor unrecoverable faultsb

10 Set for major recoverable faultsb

11 Set for major unrecoverable faultsb

12... 15 (reserved)

CIP Objects 18

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.3 Message Router (02h)

Category

Extended

Object Description

This object provides access to CIP addressable objects within the device.

Supported Services

Class -

Instance: -

Class Attributes

-

Instance Attributes

-

CIP Objects 19

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.4 DeviceNet Object (03h)

Category

Extended

Object Description

-

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single
Allocate Master/Slave Connection Set (4Bh)
Release Group 2 Identifier Set (4Ch)

Class Attributes

Name Access Type Comments

1 Revision Get UINT 0002h

CIP Objects 20

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instance #1 Attributes

Extended

Name Access Type Comments

1 MAC IDa

a. Implementation of attributes 6 to 9 are conditional as well as access right for attributes 1 and 2. For further infor-
mation, see “Communication Settings” on page 12.

Get/Set USINT Currently used MacID

2 Baud Rateab

b. Setting this attribute will also affect attribute #100 (Disable auto baud).

Get/Set USINT Value:Baud rate:
0 125 kbps
1 250 kbps
2 500 kbps

3 BOI Get/Set BOOL False

4 Bus off Counter Get/Set USINT 00h

5 Allocation Information Get Struct of:
BYTE
USINT

Allocation choice byte
MAC ID of master

6 MAC ID Switch changeda Get BOOL Indicates if the MacID has changed since startup

Value:Meaning
True Changed
False No change

7 Baud rate Switch changeda Get BOOL Indicates if the baudrate has changed since startup

Value:Meaning
True Changed
False No change

8 MAC ID Switch valuea Get USINT Actual value of node address switches

9 Baud rate Switch valuea Get USINT Actual value of baud rate switches

10 Quick Connectc

c. Enabled if attribute #13 (‘Enable Quick Connect”) in the DeviceNet Host Object (FCh) is set to true, see “Devi-
ceNet Host Object (FCh)” on page 42.

Get/Set Bool Enables/Disables the Quick Connect feature. Disabled by
default
Value:Meaning

True Enable
False Disable

100 Disable auto baud Set BOOL Value:Meaning
True Disable auto baud
False Enable auto baud

This setting is stored in NV memory.

CIP Objects 21

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.5 Assembly Object (04h)

Category

Extended

Object Description

The Assembly object uses static assemblies and holds the Process Data sent/received by the host appli-
cation. The default assembly instance IDs used are in the vendor specific range.

See also...

• “Process Data” on page 14

• “DeviceNet Host Object (FCh)” on page 42

Supported Services

Class -

Instance: Get Attribute Single
Set Attribute Single

Class Attributes

-

Instance 64h Attributes (Producing Instance)

Extended

The instance number for this instance can be changed by implementing the corresponding attribute in
the DeviceNet Host Object.

See also...

• “Data Exchange” on page 14

• “DeviceNet Host Object (FCh)” on page 42

Name Access Type Comments

3 Produced Data Get Array of BYTE This data corresponds to the Write Process Data

CIP Objects 22

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instance 96h Attributes (Consuming Instance)

Extended

The instance number for this instance can be changed by implementing the corresponding attribute in
the DeviceNet Host Object.

See also...

• “Data Exchange” on page 14

• “DeviceNet Host Object (FCh)” on page 42

Name Access Type Comments

3 Consumed Data Set Array of BYTE This data corresponds to the Read Process Data

CIP Objects 23

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.6 Connection Object (05h)

Category

Extended

Object Description

-

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single

Class Attributes

Name Access Type Comments

1 Revision Get UINT 0001h

CIP Objects 24

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instances #1, #10... #14 (Explicit messaging)

Extended

Name Access Type Comments

1 State Get USINT Value:State:
0 Non existent
1 Configuring
2 Waiting for connection ID
3 Established
4 Time out
5 Deferred Delete

2 Instance type Get USINT 0000h (Explicit messaging connection)

3 Transport Class trigger Get BYTE 83h (Server, Transport class 3)

4 Produced connection ID Get UINT -

5 Consumed connection ID Get UINT -

6 Initial Comm Characteristics Get BYTE The message group over which the communication
occurs:

Value:Message Group
21 Instance #1
33 Instances #10... #14

7 Produced Connection Size Get UINT 262 bytes

8 Consumed Connection Size Get UINT 262 bytes

9 Expected Packet Rate Get/Set UINT 2500ms

12 Watchdog timeout action Get/Set USINT Value:Action:
0001h Auto delete (default)
0003h Deferred delete

13 Produced Connection path length Get UINT 0000h (No connection path)

14 Produced Connection path Get EPATH -

15 Consumed Connection path length Get UINT 0000h (No connection path)

16 Consumed Connection path Get EPATH -

17 Production Inhibit Time Get UINT 0000h

18 Connection Timeout Multiplier Get/Set UINT 0000h

CIP Objects 25

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instance #2 (Poll or “COS/Cyclic consuming”)

Extended

Name Access Type Comments

1 State Get USINT Value:State:
0 Non existent
1 Configuring
2 Waiting for connection ID
3 Established
4 Time out

2 Instance type Get USINT 0001h (I/O Connection)

3 Transport Class trigger Get BYTE Value:Meaning:
82h Server, Polled, Class 2
80h Server, COS/Cyclic, Class 0, No Ack.
82h Server, COS/Cyclic, Class 2, Ack.

4 Produced connection ID Get UINT Value:Meaning:
FFFFh Not consuming (COS/Cyclic)
Other CAN ID for transmission

5 Consumed connection ID Get UINT -

6 Initial Comm Characteristics Get BYTE Value:Meaning:
01h Polled

- Produces over message group 1
- Consumes over message group 2

F1h COS/Cyclic, No Ack
- Consumes only over message group 2

01h COS/Cyclic, Ack
- Produces over message group 1 (Ack)
- Consumes over message group 2

7 Produced Connection Size Get UINT Value:Meaning:
0000h COS/Cyclic
Other Size of Write Process Data (Polled)

8 Consumed Connection Size Get UINT Size of Read Process Data

9 Expected Packet Rate Get/Set UINT -

12 Watchdog timeout action Get USINT 0000h (Transition to the timed out state)

13 Produced Connection path length Get UINT 0000h (COS/Cyclic)

0007h (Polled)

14 Produced Connection path Get EPATH No value (COS/Cyclic)

20 04 25 nn nn 30 03h (Polled)

15 Consumed Connection path length Get UINT 0007h

16 Consumed Connection path Get EPATH 20 04 25 nn nn 30 03h

17 Production Inhibit Time Get UINT 0000h

18 Connection Timeout Multiplier Get/Set UINT 0000h

CIP Objects 26

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instance #3 (Bit-strobe)

Extended

Name Access Type Comments

1 State Get USINT Value:State:
0 Non existent
1 Configuring
2 Waiting for connection ID
3 Established
4 Time out

2 Instance type Get USINT 0001h (I/O Connection)

3 Transport Class trigger Get BYTE 82h (Transport class & Trigger Server,
Cyclic, Class 2)

4 Produced connection ID Get UINT -

5 Consumed connection ID Get UINT -

6 Initial Comm Characteristics Get BYTE Produces over message group 1
Consumes over message group 2

7 Produced Connection Size Get UINT Size of produced data on this connection.
Max of: 8 bytes, Mapped Process data

8 Consumed Connection Size Get UINT 0008h

9 Expected Packet Rate Get/Set UINT -

12 Watchdog timeout action Get USINT 0000h (Transition to the timed out state)

13 Produced Connection path length Get UINT 0007h

14 Produced Connection path Get EPATH 20 04 25 nn nn 30 03h

15 Consumed Connection path length Get UINT 0007h

16 Consumed Connection path Get EPATH 20 04 25 nn nn 30 03h

17 Production Inhibit Time Get UINT 0000h

18 Connection Timeout Multiplier Get/Set UINT 0000h

CIP Objects 27

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instance #4 (COS/Cyclic producing)

Extended

Name Access Type Value

1 State Get USINT Value:State:
0 Non existent
1 Configuring
2 Waiting for connection ID
3 Established
4 Time out

2 Instance type Get USINT 0001h (I/O Connection)

3 Transport Class trigger Get BYTE Value:Meaning:
00h Client, Cyclic, Class 0 (No Ack.)
10h Client, COS, Class 0 (No Ack.)
02h Client, Cyclic, Class 2 (Ack.)
12h Client, COS, Class 2 (Ack.)

4 Produced connection ID Get UINT CAN ID for transmission

5 Consumed connection ID Get UINT Value:Meaning:
FFFFh Not acknowledged
Other CAN ID for reception (Ack.)

6 Initial Comm Characteristics Get BYTE Value:Meaning:
0Fh Producing only over message group 1
(No Ack.)
01h Produces over message group 1
Consumes over message group 2
(Ack.)

7 Produced Connection Size Get UINT Size of produced data on this connection.

8 Consumed Connection Size Get UINT 0000h (Consumes 0 bytes on this connection)

9 Expected Packet Rate Get/Set UINT Timing associated with this connection.

12 Watchdog timeout action Get USINT 0000h (Transition to the timed out state)

13 Produced Connection path length Get UINT 0007h

14 Produced Connection path Get EPATH 20 04 25 nn nn 30 03h

15 Consumed Connection path length Get UINT 0000h (No ack.)

0005h (Acknowledged)

16 Consumed Connection path Get EPATH No value (No ack.)

20 2B 25 01 00h (Acknowledged)

17 Production Inhibit Time Get/Set UINT 0000h

18 Connection Timeout Multiplier Get/Set UINT 0000h

CIP Objects 28

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.7 Parameter Object (0Fh)

Category

Extended

Object Description

This object allows configuration tools such as RSNetworx to extract information about the Application
Data Instances (ADIs) and present them with their actual name and range to the user.

Since this process may be somewhat time consuming, especially when using the serial host interface, it
is possible to disable support for this functionality in the DeviceNet Host Object.

Due to limitations imposed by the CIP standard, ADIs containing multiple elements (i.e. arrays etc) can-
not be represented through this object. In such cases, default values will be returned, see 4-29 “Default
Values”.

See also...

• “Default Values” on page 29

• “ADI Object (A2h)” on page 31 (CIP Object)

• “DeviceNet Host Object (FCh)” on page 42 (Host Application Object)

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single
Get Attributes All
Get Enum String

Class Attributes

Name Access Type Value

1 Revision Get UINT 0001h (Revision of the object)

2 Max instance Get UINT Maximum created instance number = class attribute 3 in

the Application Data Objecta

a. Consult the general Anybus CompactCom Software Design Guide for further information.

8 Parameter class
descriptor

Get WORD Default: 0000 0000 0000 01011b

Bit:Contents:
0 Supports parameter instances
1 Supports full attributes
2 Must do non-volatile storage save command
3 Parameters are stored in non-volatile storage

9 Configuration Assembly
instance

Get UINT 0000h (Configuration assembly not supported)

CIP Objects 29

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instance Attributes

Extended

Default Values

Name Access Type Value

1 Parameter Value Get/Set Specified in attri-
butes 4, 5 & 6.

Actual value of parameter
This attribute is read-only if bit 4 of Attribute #4 is true

2 Link Path Size Get USINT 0007h

3 Link Path Get Packed EPATH 20 A2 25 nn nn 30 05h
(Path to the object from where this parameter’s value is
retrieved, in this case the ADI Object)

4 Descriptor Get WORD Bit:Contents:
0 Supports Settable Path (N/A)
1 Supports Enumerated Strings
2 Supports Scaling (N/A)
3 Supports Scaling Links (N/A)
4 Read only Parameter
5 Monitor Parameter (N/A)
6 Supports Extended Precision Scaling (N/A)

5 Data type Get EPATH Data type code

6 Data size Get USINT Number of bytes in parameter value

7 Parameter Name String Get SHORT_STRING Name of the parameter, truncated to 16 chars

8 Units String Get SHORT_STRING (not supported)

9 Help String Get SHORT_STRING

10 Minimum value Get (Data Type) Minimum value of parameter

11 Maximum value Get (Data Type) Maximum value of parameter

12 Default value Get (Data Type) Default value of parameter

13 Scaling Multiplier Get UINT 0001h (not supported)

14 Scaling Divisor Get UINT

15 Scaling Base Get UINT

16 Scaling Offset Get INT 0000h (not supported)

17 Multiplier link Get UINT

18 Divisor Link Get UINT

19 Base Link Get UINT

20 Offset Link Get UINT

21 Decimal precision Get USINT

Name Value Description

1 Parameter Value 0 -

2 Link Path Size 0 Size of link path in bytes.

3 Link Path - NULL Path

4 Descriptor 0010h Read only Parameter

5 Data type C6h USINT

6 Data size 1 -

7 Parameter Name String (reserved) -

8 Units String “” -

9 Help String “” -

10 Minimum value N/A 0

11 Maximum value N/A 0

12 Default value N/A 0

CIP Objects 30

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.8 Acknowledge Handler Object (2Bh)

Category

Extended

Object Description

-

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single

Class Attributes

Instances Attributes (01h)

Extended

Name Access Type Value

1 Revision Get UINT 0001h

Name Access Type Value

1 Acknowledge Timer Get/Set UINT 16ms

2 Retry Limit Get/Set USINT 01h

3 Producing Connection Instance Get UINT 04h

CIP Objects 31

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

4.9 ADI Object (A2h)

Category

Extended

Object Description

This object maps instances in the Application Data Object to DeviceNet. All requests to this object will
be translated into explicit object requests towards the Application Data Object in the host application;
the response is then translated back to CIP-format and sent to the originator of the request.

See also...

• Application Data Object (see Anybus CompactCom Software Design Guide)

• “Parameter Object (0Fh)” on page 28 (CIP Object)

Supported Services

Class Get Attribute Single

Instance: Get Attribute Single
Set Attribute Single

Class Attributes

Name Access Type Value

1 Revision Get UINT Object revision (Current value = 0001h)

2 Max Instance Get UINT Equals attribute #4 in the Application Data Objecta

a. Consult the general Anybus CompactCom Software Design Guide for further information.

3 Number of instances Get UINT Equals attribute #3 in the Application Data Objecta

CIP Objects 32

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Instances Attributes

Extended

Each instance corresponds to an instance within the Application Data Object (for more information,
consult the general Anybus CompactCom Software Design Guide).

Name Access Type Description

1 Name Get SHORT_STRING Parameter name (Including length)

2 ABCC Data type Get USINT Data type of instance value

3 No. of elements Get USINT Number of elements of the specified data type

4 Descriptor Get USINT Bit field describing the access rights for this instance

Bit:Meaning:
0 Set = Get Access
1 Set = Set Access

5 Valuea

a. Converted to/from CIP standard by the module

Get/Set Determined by
attribute #2

Instance value

6 Max valuea Get The maximum permitted parameter value.

7 Min valuea Get The minimum permitted parameter value.

8 Default valuea Get The default parameter value.

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Chapter 5

5. Anybus Module Objects

5.1 General Information

This chapter specifies the Anybus Module Object implementation and how they correspond to the func-
tionality in the Anybus CompactCom DeviceNet.

The following Anybus Module Objects are implemented:

• “Anybus Object (01h)” on page 34

• “Diagnostic Object (02h)” on page 36

• “Network Object (03h)” on page 37

• “Network Configuration Object (04h)” on page 38

Anybus Module Objects 34

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

5.2 Anybus Object (01h)

Category

Basic

Object Description

This object groups common Anybus information, and is described thoroughly in the general Anybus
CompactCom Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

Name Access Data Type Value

1 Name Get Array of CHAR “Anybus”

2 Revision Get UINT8 04h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Name Access Type Value

1 Module type Get UINT16 0401h (Standard Anybus CompactCom)

2 Firmware version Get struct of:
UINT8 Major
UINT8 Minor
UINT8 Build

(see Anybus CompactCom Software Design Guide)

3 Serial number Get UINT32

4 Application watchdog
timeout

Get/Set UINT16

5 Setup complete Get/Set BOOL

6 Exception Code Get ENUM

8 Error counters Get struct of:
UINT16 DC
UINT16 DR
UINT16 SE

9 Language Get/Set ENUM

10 Provider ID Get UINT16

11 Provide specific info Get/Set UINT16

Anybus Module Objects 35

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

12 LED colors Get struct of:
UINT8(LED1A)
UINT8(LED1B)
UINT8(LED2A)
UINT8(LED2B)

Value:Color:
01h Green
02h Red
01h Green
02h Red

13 LED status Get UINT8 (see Anybus CompactCom Software Design Guide)

14 (reserved) Get UINT8

15 Auxiliary Bit Get/Set UINT8

Name Access Type Value

Anybus Module Objects 36

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

5.3 Diagnostic Object (02h)

Category

Basic

Object Description

This object provides a standardised way of handling host application events & diagnostics, and is thor-
oughly described in the general Anybus CompactCom Software Design Guide.

Supported Commands

Object: Get_Attribute
Create
Delete

Instance: Get_Attribute

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

In the Anybus CompactCom DeviceNet, the severity level of all instances are logically OR:ed together
and represented on the network through the CIP Identity Object. The Event Code cannot be represent-
ed on the network and is thus ignored by the module.

See also...

• “Diagnostics” on page 13

• “Identity Object (01h)” on page 16 (CIP-object)

Name Access Data Type Value

1 Name Get Array of CHAR ‘Diagnostic’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 See general Anybus CompactCom Software Design Guide

4 Highest instance no. Get UINT16

11 Max no. of instances Get UINT16 5+1

Name Access Type Value

1 Severity Get UINT8 See general Anybus CompactCom Software Design Guide

2 Event Code Get UINT8

Anybus Module Objects 37

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

5.4 Network Object (03h)

Category

Basic

Object Description

For more information regarding this object, consult the general Anybus CompactCom Software Design
Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute
Set_Attribute
Get_Enum_String
Map_ADI_Write_Area
Map_ADI_Read_Area

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

Name Access Data Type Value

1 Name Get Array of CHAR “Network”

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Name Access Type Value

1 Network type Get UINT16 0025h

2 Network type string Get Array of CHAR ‘DeviceNet’

3 Data format Get ENUM 00h (LSB first)

4 Parameter data support Get BOOL True

5 Write process data size Get UINT16 Current write process data size (in bytes)

Updated on every successful Map_ADI_Write_Areaa

a. Consult the general Anybus CompactCom Software Design Guide for further information.

6 Read process data size Get UINT16 Current read process data size (in bytes)

Updated on every successful Map_ADI_Read_Areaa

Anybus Module Objects 38

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

5.5 Network Configuration Object (04h)

Category

Basic

Object Description

This object holds network specific configuration parameters that may be set by the end user. A reset
command (factory default) issued towards this object will result in all instances being set to their default
values. Please note that the node address (instance #1) is equal to the MAC ID of the Anybus Compact-
Com.

See also...

• “Communication Settings” on page 12

• “Identity Object (01h)” on page 16 (CIP-object)

Supported Commands

Object: Get_Attribute
Reset

Instance: Get_Attribute
Set_Attribute
Get_Enum_String

Anybus Module Objects 39

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Object Attributes (Instance #0)

Instance Attributes (Instance #1, ‘Node address’)

Basic

Instance Attributes (Instance #2, ‘Baud rate’)

Basic

Multilingual Strings

The instance names in this object are multi-lingual, and are translated based on the current language set-

Name Access Data Type Value

1 Name Get Array of CHAR ‘Network configuration’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0002h

4 Highest instance no. Get UINT16 0002h

Name Access Type Value/Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 39.

Get Array of CHAR ‘Node address’

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valueb

b. A ‘Get’ command always returns the actual value. If an invalid value is assigned to this attribute (i.e. using a ‘Set’
command), the module will accept MacID configuration via the network (unless disabled in the DeviceNet Host
Object - in such case, the module will enter communication fault state at start up).

Get/Set UINT8 Node address (default: 255
For information on how to assign a node address see
“Communication Settings” on page 12

Value
0 - 63
64 - 255

Description
Valid address
Invalid address

Name Access Type Value/Description

1 Namea

a. Multilingual, see “Multilingual Strings” on page 39.

Get Array of CHAR ‘Baud rate’

2 Data type Get UINT8 08h (ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Valueb

b. A ‘Get’ command always returns the actual value. If an invalid value is assigned to this attribute (i.e. using a ‘Set’
command), the module will accept baud rate configuration via the network (unless disabled in the DeviceNet Host
Object - in such case, the module will enter communication fault state at start up).

Get/Set ENUM Value:Enum. String:Meaning:
00h ‘125kbps’ 125kbps
01h ‘250kbps’ 250kbps
02h ‘500kbps’ 500kbps
03h ‘Autobaud’ Autobaud (default)

Anybus Module Objects 40

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

tings as follows:

Instance English German Spanish Italian French

1 Node address Geräteadresse Direcc nodo Indirizzo Adresse

2 Data rate Datenrate Veloc transf velocità dati Vitesse

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Chapter 6

6. Host Application Objects

6.1 General Information

This chapter specifies the host application object implementation in the module. The objects listed here
may optionally be implemented within the host application firmware to expand the DeviceNet imple-
mentation.

Standard Objects:

• Application Object (see Anybus CompactCom Software Design Guide)

• Application Data Object (see Anybus CompactCom Software Design Guide)

Network Specific Objects:

• “DeviceNet Host Object (FCh)” on page 42

Host Application Objects 42

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

6.2 DeviceNet Host Object (FCh)

Category

Basic, extended, advanced

Object Description

This object implements DeviceNet specific settings in the host application. It is also used when imple-
menting DeviceNet classes in the host application, e.g. when creating profile implementations etc.

The implementation of this object is optional; the host application can support none, some, or all of the
attributes specified below. The module will attempt to retrieve the values of these attributes during start-
up; if an attribute is not implemented in the host application, simply respond with an error message (06h,
“Invalid CmdExt[0]”). In such case, the module will use its default value.

If the module attempts to retrieve a value of an attribute not listed below, respond with an error message
(06h, “Invalid CmdExt[0]”).

See also...

• “Identity Object (01h)” on page 16

• Anybus CompactCom 30 Software Design Guide, “Error Codes”

IMPORTANT: To comply with CIP-specification requirements, the combination of Vendor ID (instance attribute
#1) and serial number (instance attribute #5) must be unique. The default Vendor ID, serial number, and Product Code
combination is valid only if using the standard ESD-file supplied by HMS.

Supported Commands

Object: Process_CIP_Message_Request (See “CIP Request Forwarding” on page 49)

Instance: -

Host Application Objects 43

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Object Attributes (Instance #0)

Instance Attributes (Instance #1)

Basic

Extended

Name Access Data Type Value

1 Name Get Array of CHAR ‘DeviceNet’

2 Revision Get UINT8 01h

3 Number of instances Get UINT16 0001h

4 Highest instance no. Get UINT16 0001h

Name Access Type Default Value Comment

1 Vendor ID Get UINT16 005Ah These values are forwarded to the Devi-
ceNet Identity Object (CIP).

The Product Name can have a length of up
to 32 characters in the CIP Identity object. If
a longer product name is assigned here, it
will be truncated when forwarded.

2 Device Type Get UINT16 0000h

3 Product Code Get UINT16 0062h

4 Revision Get struct of:
UINT8 Major
UINT8 Minor

(software revision)

5 Serial Number Get UINT32 (set at production)

6 Product Name Get Array of CHAR ‘Anybus-CC DeviceNet’

Name Access Type Default Value Comment

7 Producing
Instance No.

Get UINT16 0064h See also...
- “Instance 64h Attributes (Producing

Instance)” on page 21 (CIP-instance)

8 Consuming
Instance No.

Get UINT16 0096h See also...
- “Instance 96h Attributes (Consuming

Instance)” on page 22 (CIP-instance)

11 Enable CIP for-
warding

Get BOOL False Value:Meaning:
True Enable CIP forwarding
False Disable CIP forwarding

See also...
- “Command Details: Process_CIP_Mes-

sage_Request” on page 45
- “CIP Request Forwarding” on page 49.

13 Enable Quick
Connect

Get BOOL False Value:Meaning:
True Enable Quick Connect
False Disable Quick Connect

See also...
- “DeviceNet Object (03h)” on page 19

Host Application Objects 44

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Advanced

Name Access Type Default Value Comment

9 Enable Address
from Net

Get BOOL True Value:Meaning:
True Can be set from network
False Cannot be set from network

See also...
- “Identity Object (01h)” on page 16 (CIP-

object)

10 Enable Baud
rate from Net

Get BOOL True Value:Meaning:
True Can be set from network
False Cannot be set from network

See also...
- “Identity Object (01h)” on page 16 (CIP-

object)

12 Enable Param-
eter Object

Get BOOL True Value:Meaning:
True Enable CIP Parameter Object
False Disable CIP Parameter Object

See also...
- “Parameter Object (0Fh)” on page 28

(CIP-object)

Host Application Objects 45

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

6.2.1 Command Details: Process_CIP_Message_Request

Category

Extended

Details

Command Code.: 10h

Valid for: Object Instance

Description

By setting the ‘Enable CIP Request Forwarding’-attribute (#11), all requests to unimplemented CIP-ob-
jects or unimplemented assembly object instances will be forwarded to the host application. The appli-
cation then has to evaluate the request and return a proper response.

The module supports up to 6 pending CIP-requests; additional requests will be rejected by the module.

Note: This command is similar - but not identical - to the ‘Process_CIP_Message_Request’-command
in the Anybus CompactCom EtherNet/IP.

See also...

• “Device Customization” on page 12

• “CIP Request Forwarding” on page 49

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Appendix A

A. Categorization of Functionality

The objects, including attributes and services, of the Anybus CompactCom and the application are di-
vided into three categories: basic, advanced and extended.

A.1 Basic

This category includes objects, attributes and services that are mandatory to implement or to use. They
will be enough for starting up the Anybus CompactCom and sending/receiving data with the chosen
network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this category.

A.2 Extended

Use of the objects in this category extends the functionality of the application. Access is given to the
more specific characteristics of the industrial network, not only the basic moving of data to and from
the network. Extra value is given to the application.

A.3 Advanced

The objects, attributes and services that belong to this group offer specialized and/or seldom used func-
tionality. Most of the available network functionality is enabled and accessible. Access to the specifica-
tion of the industrial network is normally required.

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Appendix B

B. Implementation Details

B.1 DeviceNet Implementation

Predefined Connection Set

The module acts as a Group 2 server and supports the Predefined Master/Slave Connection Set.

• COS Connection

When the master allocates this connection type, the module transmits the Process Data it chang-
es. An inhibit time can be set to prevent the module from sending too often.

The module supports up to 256 bytes in each direction for this type of connection. The size of
the connection is checked against the number of bytes mapped as Process Data.

• Cyclic Connection

When the master allocates this connection type, the module cyclically transmits the Process Data
at the configured interval.

The module supports up to 256 bytes in each direction for this type of connection.

• Bit Strobe Connection

When the master allocates this connection type, the module transmits data when the bit strobe
message is received. The module only uses the input bit if no other I/O connections have been
configured, and produces up to 8 bytes.

• Polled Connection

When the master allocates this connection type, the module transmits the Process Data data
when a poll command is received.

The module supports up to 256 bytes in each direction for this type of connection.

• Explicit Connection

The predefined explicit connection has a buffer of 262 bytes.

• Idle/Running

The module is considered to be in Idle mode when not receiving any DeviceNet telegrams, or
when receiving DeviceNet telegrams with no data. In other cases, the module is considered to
be in Run mode.

This affects the Anybus State machine as describe in B-48 “Anybus State Machine”.

Unconnected Message Server (UCMM)

The module is a UCMM capable device, and supports the Unconnected Explicit Message Request port,
Group3, Message ID=6.

• Explicit Message Server

The module supports up to 5 simultaneous explicit message connections.

Implementation Details 48

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

B.2 SUP-Bit Definition

The supervised bit (SUP) indicates that the network participation is supervised by another network de-
vice. For DeviceNet this bit is set when the connection object has a connection.

B.3 Anybus State Machine

The table below describes how the Anybus State Machine relates to the DeviceNet network. status

State DeviceNet Specific Meaning Notes

WAIT_PROCESS The module will stay in this state until a Class
0 connection is opened.

(Not set for explicit connections.)

ERROR Class 0 connection error, bus off event
detected or dup-MAC-fail

If the error is fatal, such, such as dup-MAC-fail
or bus off, the module will stay in this state until
it’s restarted.

PROCESS_ACTIVE Error free Class 0 connection active -

IDLE Class 0 connection idle Can only be set for connections consuming
data.

EXCEPTION Some kind of unexpected behaviour, e.g.
watchdog timeout.

The Module Status LED will turn red to indi-
cate a major fault, and turn the Network Status
LED off.

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Appendix C

C. CIP Request Forwarding

If CIP request forwarding is enabled (DeviceNet Host Object, Instance 1, Attribute 11), all network re-
quests to unknown CIP objects or unknown assembly object instances will be forwarded to the host
application. For this purpose, the DeviceNet Host Object implements a command called
Process_CIP_Message_Request (Command code 10h), which is used to tunnel CIP requests to the host
application.

Note: CIP requiest forwarding is only relevant for explicit messages. It is not applicable to the messages
that carry the cyclic/process data.

Since the telegram length on the host interface is limited, the request data size must not exceed 255 bytes.
If it does, a the module will send a ‘resource unavailable’ response to the originator of the request and
the message will not be forwarded to the host application.

• Command Message Layout

This message will be sent by the module to the host application upon receiving an unknown CIP
request from the network.

• Host Application Response Message Layout (Successful)

If the host application recognized the CIP request, i.e. if the CIP object in question is implement-
ed in the host application, the following response shall be sent to the module.

Field
Contents

Notes
b7 b6 b5 b4 b3 b2 b1 b0

Source ID (Source ID) Selected by the module

Dest. Object FCh Destination Object = DeviceNet Host Object

Dest. Instance (lsb) 00h Destination Instance = Object Instance

Dest. Instance (msb) 00h

(command/error) 0 This message is not an error message

(command/response) 1 This message is a command

Command number 10h Process_CIP_Object_Request

Message Data Size Length of CIP request -

CmdExt[0] CIP Service Code CIP service code from original CIP request

CmdExt[1] (reserved, ignore)

MsgData[0] Requested CIP Class no. (Low byte)

MsgData[1] (High byte)

MsgData[2] Requested CIP Instance no. (Low byte)

MsgData[3] (High byte)

MsgData[4...n] CIP Data Data associated with the CIP request

Field
Contents

Notes
b7 b6 b5 b4 b3 b2 b1 b0

Source ID (Source ID) (Selected by the module)

Dest. Object FCh Object = DeviceNet Host Object

Dest. Instance (lsb) 00h Instance = Object

Dest. Instance (msb) 00h

(command/error) 0 This message is not an error message

(command/response) 0 This message is a response

Command number 10h Process_CIP_Object_Request

Message Data Size Length of response data -

CmdExt[0] CIP Service Code (with reply bit set) -

CmdExt[1] 00h (not used, set to zero)

MsgData[0...n] Response data -

CIP Request Forwarding 50

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

• Host Application Response Message Layout (Unsuccessful)

If the host application did not recognize the CIP request, i.e. the CIP object in question is not
implemented in the host application, the following response shall be sent to the module.

Field
Contents

Notes
b7 b6 b5 b4 b3 b2 b1 b0

Source ID (Source ID) (Selected by the module)

Dest. Object FCh Object = DeviceNet Host Object

Dest. Instance (lsb) 00h Instance = Object

Dest. Instance (msb) 00h

(command/error) 0 This message is not an ABCC error messagea

a.If this bit is set (1), an Anybus CompactCom error has occurred and an ABCC error code is returned.

(command/response) 0 This message is a response

Command number 10h Process_CIP_Object_Request

Message Data Size 02h 2 bytes of message data

CmdExt[0] 94h CIP error service code with reply bit set

CmdExt[1] 00h (not used, set to zero)

MsgData[0] CIP General status code -

MsgData[1] Optional additional status (FFh if no additional status)

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Appendix D

D. Technical Specification

D.1 Front View

Network Status

Module Status

DeviceNet Connector

This connector provides DeviceNet connectivity.

Item

1 Network Status LED

2 Module status LED

3 DeviceNet Connector

4 M12 Female Connector

5 M12 Male Connector

State Indication

Off Not online / No power

Green On-line, one or more connections are established

Flashing Green (1 Hz) On-line, no connections established

Red Critical link failure

Flashing Red (1 Hz) One or more connections timed-out

Alternating Red/Green Self test

State Indication

Off No power

Green Operating in normal condition

Flashing Green (1 Hz) Missing or incomplete configuration, device needs commissioning

Red Unrecoverable Fault(s)

Flashing Red (1 Hz) Recoverable Fault(s)

Alternating Red/Green Self test

Pin Signal Description

1 V- Negative bus supply voltagea

a. DeviceNet bus power. For more information, see D-51 “Technical Specification”.

2 CAN_L CAN low bus line

3 SHIELD Cable shield

4 CAN_H CAN high bus line

5 V+ Positive bus supply voltagea

1 2

3

1 5

1 24 5

Technical Specification 52

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

M12 Connectors, Code A

The female M12 connector is used when modules are used in a daisy-chain topology.

Pin Name Description

1 Drain Shield

2 V+ Positive voltage
bus power.

11 - 25 VDCa

a. DeviceNet bus power. For more information, see D-51 “Technical Specification”.

3 V- Ground bus
power

4 CAN_H CAN high

5 CAN_L CAN low

34

1 2

5

43

2 1

5

Female

Male

Technical Specification 53

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

D.2 Network Connector, Brick Version

The Anybus CompactCom 30 DeviceNet can also be acquired
in a brick version, without a fieldbus connector, but instead a
pin connector to the carrier board (the host device). The con-
cept and assembly are described in the Anybus CompactCom
Mounting Kit Appendix (Doc. Id. HMSI-168-30).T

Wiring requirements

• Route CAN_H and CAN_L side by side with similar lengths. Use Shield as a reference plane for
this signal pair and for V+ and V-.

• If the device is designed with one fieldbus connecoter e.g. a screw terminal, it is recommended
to connect CAN-H and CAN-L only to pins 3 and 5 of the brick header.

• If the device is designed with two fieldbus connectors, e.g. M12 connectors, it is recommended
to use brick header pins 3 and 5 for one of the connectors, while pins 15 and 16 are used for the
other connector. Which one of the connectors that is used as input or output does not matter.
Route V+and V- with thic traces directly between the connectors.

Pin no. Signal Port

1 Shield Input

2 V+

3 CAN_H

4 Shield

5 CAN_L

6 V-

7 Drain

8 Shield

11 Shield Output

12 Drain

13 V-

14 Shield

15 CAN_L

16 CAN_H

17 V+

18 Shield

135711131517

246812141618

1

Technical Specification 54

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

D.3 Protective Earth (PE) Requirements

In order to ensure proper EMC behaviour, the module must be properly connected to protective earth
via the PE pad / PE mechanism described in the general Anybus CompactCom Hardware Design
Guide.

HMS Industrial Networks does not guarantee proper EMC behaviour unless these PE requirements are
fulfilled.

D.4 Power Supply

Supply Voltage

The module requires a regulated 3.3 V power source as specified in the general Anybus CompactCom
Hardware Design Guide.

Power Consumption

The Anybus CompactCom DeviceNet is designed to fulfil the requirements of a Class A module. For
more information about the power consumption classification used on the Anybus CompactCom plat-
form, consult the general Anybus CompactCom Hardware Design Guide.

The current hardware design consumes up to 65 mA1.

Note: It is strongly advised to design the power supply in the host application based on the power con-
sumption classifications described in the general Anybus CompactCom Hardware Design Guide, and
not on the exact power requirements of a single product.

D.5 DeviceNet Power Supply

The total number of units that can be connected to the DeviceNet bus is limited by the maximum cur-
rent that the power supply can deliver to the bus. Maximum current consumption per unit is specified
in the DeviceNet specification to 750 mA. If e.g. the supply can deliver 9 A and all units consume max-
imum current, the maximum numbers of units allowed on the bus are 12 (12x750 mA = 9A).

The Anybus CompactCom 30 DeviceNet module accepts 11 - 25 V on the industrial network side of
the module. Maximum current consumption at 11 - 25 V is 36 - 38 mA/module.

Note: If the M12 version of the module is used, the current on the DeviceNet bus has to be limited to
a maximum of 3 A, which is the max. current allowed for the M12 connectors.

D.6 Environmental Specification

Consult the Anybus CompactCom Hardware Design Guide for further information.

D.7 EMC Compliance

1. Note that in line with HMS policy of continuous product development, we reserve the right to change the
exact power requirements of this product without prior notification. Note however that in any case, the
Anybus CompactCom DeviceNet will remain as a Class A module.

Technical Specification 55

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Consult the Anybus CompactCom Hardware Design Guide for further information.

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

Appendix E

E. Timing & Performance

E.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for the
Anybus CompactCom 30 DeviceNet.

The following timing aspects are measured:

Category Parameters Page

Startup Delay T1, T2 Please consult the Anybus
CompactCom 30 Software
Design Guide, App. B.

NW_INIT Delay T3

Telegram Delay T4

Command Delay T5

Anybus Read Process Data Delay (Anybus Delay) T6, T7, T8

Anybus Write Process Data Delay (Anybus Delay) T12, T13, T14

Network System Read Process Data Delay (Network System Delay) T9, T10, T11 58

Network System Write Process Data Delay (Network System Delay) T15, T16, T17 58

Timing & Performance 57

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

E.2 Process Data

E.2.1 Overview

E.2.2 Anybus Read Process Data Delay (Anybus Delay)

The Read Process Data Delay (labelled ‘Anybus delay’ in the figure above) is defined as the time mea-
sured from just before new data is buffered and available to the Anybus host interface software, to when
the data is available to the host application (just after the new data has been read from the driver).

Please consult the Anybus CompactCom 30 Software Design Guide, Appendix B, for more informa-
tion.

E.2.3 Anybus Write Process Data Delay (Anybus Delay)

The Write Process Data Delay (labelled ‘Anybus delay’ in the figure) is defined as the time measured
from the point the data is available from the host application (just before the data is written from the
host application to the driver), to the point where the new data has been forwarded to the network buffer
by the Anybus host interface software.

Please consult the Anybus CompactCom 30 Software Design Guide, Appendix B, for more informa-
tion.

Host Application Anybus

Host
interface
software

Network
specific
software

Network
specific

hardware

Network Master

Application
software HMS Driver

Anybus Delay

Event

Network System Delay

Network Media

Timing & Performance 58

Doc.Id. HMSI-168-51
Anybus CompactCom 30 DeviceNet
Doc.Rev. 2.40

E.2.4 Network System Read Process Data Delay (Network System Delay)

The Network System Read Process Data Delay (labelled ‘Network System Delay in the figure), is defined
as the time measured from the point where an event is generated at the network master to when the
corresponding data is available to the host application (just after the corresponding data has been read
from the driver).

Conditions:

E.2.5 Network System Write Process Data Delay (Network System Delay)

The Network System Write Process Data Delay (labelled ‘Network System Delay in the figure), is de-
fined as the time measured from the time after the new data is available from the host application (just
before the data is written to the driver) to when this data generates a corresponding event at the network
master.

Conditions: as in “Network System Read Process Data Delay (Network System Delay)” on page 58.

Parameter Description Avg. Max. Unit.

T9 Network System Read Process Data delay, 8 ADIs (single UINT8) 8.2 14 ms

T10 Network System Read Process Data delay, 16 ADIs (single UINT8) 9.4 16 ms

T11 Network System Read Process Data delay, 32 ADIs (single UINT8) 10 16.2 ms

Parameter Conditions

Application CPU -

Timer system call interval 1 ms

Driver call interval 0.2... 0.3 ms

No.of ADIs (single UINT8) mapped to Process Data in each direction. 8, 16 and 32

Communication Parallel

Telegram types during measurement period Process Data only

Bus load, no. of nodes, baud rate etc. Normal

Parameter Description Avg. Max. Unit.

T15 Network System Write Process Data delay, 8 ADIs (single UINT8) 8.2 14 ms

T16 Network System Write Process Data delay, 16 ADIs (single UINT8) 9.4 16 ms

T17 Network System Write Process Data delay, 32 ADIs (single UINT8) 10 16.2 ms

	P. About This Document
	P.1 Related Documents
	P.2 Document History
	P.3 Conventions & Terminology
	P.4 Support

	1. About the Anybus CompactCom 30 DeviceNet
	1.1 General
	1.2 Features

	2. Tutorial
	2.1 Introduction
	2.2 Fieldbus Conformance Notes
	2.3 Conformance Test Guide
	2.3.1 Reidentifying Your Product.
	2.3.2 Factory Default Reset

	3. Basic Operation
	3.1 General Information
	3.1.1 Software Requirements
	3.1.2 Electronic Data Sheet (EDS)

	3.2 Device Customization
	3.3 Communication Settings
	3.3.1 Setting MAC ID

	3.4 Diagnostics
	3.5 Data Exchange
	3.5.1 Application Data (ADIs)
	3.5.2 Process Data
	3.5.3 Translation of Data Types

	4. CIP Objects
	4.1 General Information
	4.2 Identity Object (01h)
	4.3 Message Router (02h)
	4.4 DeviceNet Object (03h)
	4.5 Assembly Object (04h)
	4.6 Connection Object (05h)
	4.7 Parameter Object (0Fh)
	4.8 Acknowledge Handler Object (2Bh)
	4.9 ADI Object (A2h)

	5. Anybus Module Objects
	5.1 General Information
	5.2 Anybus Object (01h)
	5.3 Diagnostic Object (02h)
	5.4 Network Object (03h)
	5.5 Network Configuration Object (04h)

	6. Host Application Objects
	6.1 General Information
	6.2 DeviceNet Host Object (FCh)
	6.2.1 Command Details: Process_CIP_Message_Request

	A. Categorization of Functionality
	A.1 Basic
	A.2 Extended
	A.3 Advanced

	B. Implementation Details
	B.1 DeviceNet Implementation
	B.2 SUP-Bit Definition
	B.3 Anybus State Machine

	C. CIP Request Forwarding
	D. Technical Specification
	D.1 Front View
	D.2 Network Connector, Brick Version
	D.3 Protective Earth (PE) Requirements
	D.4 Power Supply
	D.5 DeviceNet Power Supply
	D.6 Environmental Specification
	D.7 EMC Compliance

	E. Timing & Performance
	E.1 General Information
	E.2 Process Data
	E.2.1 Overview
	E.2.2 Anybus Read Process Data Delay (Anybus Delay)
	E.2.3 Anybus Write Process Data Delay (Anybus Delay)
	E.2.4 Network System Read Process Data Delay (Network System Delay)
	E.2.5 Network System Write Process Data Delay (Network System Delay)

